The disclosure relates to investment casting. More particularly, it relates to the investment casting of superalloy turbine engine components.
Investment casting is a commonly used technique for forming metallic components having complex geometries, especially hollow components, and is used in the fabrication of superalloy gas turbine engine components. The disclosure is described in respect to the production of particular superalloy castings, however it is understood that the disclosure is not so limited.
Gas turbine engines are widely used in aircraft propulsion, electric power generation, and ship propulsion. In gas turbine engine applications, efficiency is a prime objective. Improved gas turbine engine efficiency can be obtained by operating at higher temperatures, however current operating temperatures in the turbine section exceed the melting points of the superalloy materials used in turbine components. Consequently, it is a general practice to provide air cooling. Cooling is provided by flowing relatively cool air from the compressor section of the engine through passages in the turbine components to be cooled. Such cooling comes with an associated cost in engine efficiency. Consequently, there is a strong desire to provide enhanced specific cooling, maximizing the amount of cooling benefit obtained from a given amount of cooling air. This may be obtained by the use of fine, precisely located, cooling passageway sections.
The cooling passageway sections may be cast over casting cores. Ceramic casting cores may be formed by molding a mixture of ceramic powder and binder material by injecting the mixture into hardened steel dies. After removal from the dies, the green cores are thermally post-processed to remove the binder and fired to sinter the ceramic powder together. The trend toward finer cooling features has taxed core manufacturing techniques. The fine features may be difficult to manufacture and/or, once manufactured, may prove fragile. Commonly-assigned U.S. Pat. Nos. 6,637,500 of Shah et al. and 6,929,054 of Beals et al and Pre-grant Publication 2007/261814 of Luczak (the disclosures of which are incorporated by reference herein as if set forth at length) disclose use of ceramic and refractory metal core combinations.
One aspect of the disclosure involves a method for manufacturing an investment casting core from a metallic blank. The blank has a thickness between parallel first and second faces less than a width and length transverse thereto. The blank is locally thinned from at least one of the first and second faces. The blank is through-cut across the thickness. The blank is inserted into the leading portion into a slot in a pre-formed ceramic core.
In various implementations, through-cutting may comprise at least one of laser cutting, liquid jet cutting, and EDM. The thinning may comprise at least one of EDM, ECM, MDP, and mechanical machining.
In an investment casting method, the investment casting core may be at least partially overmolded by a pattern-forming material for forming a pattern. The pattern may be shelled. The pattern-forming material may be removed from the shelled pattern for forming a shell. Molten alloy may be introduced to the shell. The shell may be removed. The method may be used to form a gas turbine engine component. An exemplary component is an airfoil wherein the core forms trailing edge outlet passageways.
Another aspect of the disclosure involves an investment casting core having a metallic core element and a ceramic core. The metallic core element has a tapered leading portion, an intermediate portion downstream of the tapered leading portion, and a trailing portion downstream of the intermediate portion and thicker than the intermediate portion. The ceramic casting core has a slot receiving the leading portion.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
In the exemplary core assembly, the feedcore slot 72 and RMC portion 70 both have an upstream-ward taper. The exemplary thickness T2 of the RMC at the leading edge is less than T1 (e.g., 30-60%). The exemplary RMC taper is essentially constant at an angle of θ1 over a streamwise length L1. The exemplary taper is provided by relieving/beveling only one of the two faces 82 and 84 (the face 84 in the exemplary embodiment with a bevel facet/surface 110). The exemplary relief provides the taper angle θ1. Exemplary θ1 are 0.1-3.0°, more narrowly 1.0-2.5°. Exemplary taper length L1 is coincident with or slightly less than a depth D1 of the slot. The exemplary slot has an opening 120 having a height H1 which may be greater than T1 and has a base 122 with a height H2 which is greater than T2. A portion of the slot between respective slot walls 124 and 126 and the RMC may be filled with an adhesive or slurry 130. The exemplary streamwise cross-section of the RMC is shown as generally arcuate with concavity along the pressure side and convexity along the suction side so as to correspond to a median of the airfoil cross-section.
Exemplary L1 is 0.040-0.100 inch (1-2.5 mm), more narrowly 0.050-0.075 inch (1.3 mm-9 mm). Exemplary T1 is 0.012 inch (0.3 mm), more broadly 0.005-0.020 inch (0.13-0.5 mm) or 0.010-0.015 inch (0.25-0.38 mm). Exemplary T2 is 0.005 inch (0.13 mm), more broadly 0.002-0.015 inch (0.05-0.38 mm) or 0.003-0.007 inch (0.08-0.18 mm) or 25-75% of T1, more narrowly, 40-60%. Exemplary T3 is 0.035 inch (0.9 mm), more broadly 0.020-0.050 inch (0.5-1.3 mm) or 200-500% of T1, more narrowly 250-400%. Exemplary feedcore thickness at either side of the slot base 122 (shown as T4 to the pressure side and T5 to the suction side) may be at least 0.018 inch (0.46 mm), more narrowly 0.018-0.040 inch (0.46-1.0 mm) or 0.08-0.025 inch (0.46-0.64 mm).
In an exemplary sequence 200 of manufacture (
Additionally, a series of through-cuts are cut 206 to define the holes/apertures 100 for forming posts 150 (
Exemplary cutting may be via a punching/stamping operation or, alternatively, mechanical drilling, laser cutting, liquid jet cutting, and/or EDM. To provide the RMC in the desired arcuate shape corresponding to the airfoil median 500, the RMC is bent 208 (e.g., via stamping). This bending may also form a spanwise variation (e.g., to accommodate a varying relationship in the position of the feedcore relative to the discharge slot) such as creating a net spanwise twist. An exemplary stamping is performed via one or more pressing stages in custom presses having opposing die faces contoured to mate with the RMC. The RMC may be coated 210 with a protective coating. Alternatively a coating could be applied pre-assembly. Suitable coating materials include silica, alumina, zirconia, chromia, mullite and hafnia. Preferably, the coefficient of thermal expansion (CTE) of the refractory metal and the coating are similar. Coatings may be applied by any appropriate line-of-sight or non-line-of sight technique (e.g., chemical or physical vapor deposition (CVD, PVD) methods, plasma spray methods, electrophoresis, and sol gel methods). Individual layers may typically be 0.1 to 1 mil thick. Layers of Pt, other noble metals, Cr, Si, W, and/or Al, or other non-metallic materials may be applied to the metallic core elements for oxidation protection in combination with a ceramic coating for protection from molten metal erosion and dissolution.
The ceramic core may be (e.g., silica-, zircon-, or alumina-based) molded 212. The as-molded ceramic material may include a binder. The binder may function to maintain integrity of the molded ceramic material in an unfired green state. Exemplary binders are wax-based. After the molding 212, the preliminary core assembly may be debindered/fired 214 to harden the ceramic (e.g., by heating in an inert atmosphere or vacuum). The slot 72 may have been formed as part of the molding 212 or may be cut in the ceramic (e.g., in the green state or in the fired state). The RMC may be inserted 216 into the ceramic core to assemble and an adhesive or slurry introduced 218.
The overmolded core assembly (or group of assemblies) forms a casting pattern with an exterior shape largely corresponding to the exterior shape of the part to be cast. The pattern may then be assembled 232 to a shelling fixture (e.g., via wax welding between end plates of the fixture). The pattern may then be shelled 234 (e.g., via one or more stages of slurry dipping, slurry spraying, or the like). After the shell is built up, it may be dried 236. The drying provides the shell with at least sufficient strength or other physical integrity properties to permit subsequent processing. For example, the shell containing the invested core assembly may be disassembled 238 fully or partially from the shelling fixture and then transferred 240 to a dewaxer (e.g., a steam autoclave). In the dewaxer, a steam dewax process 242 removes a major portion of the wax leaving the core assembly secured within the shell. The shell and core assembly will largely form the ultimate mold. However, the dewax process typically leaves a wax or byproduct hydrocarbon residue on the shell interior and core assembly.
After the dewax, the shell is transferred 244 to a furnace (e.g., containing air or other oxidizing atmosphere) in which it is heated 246 to strengthen the shell and remove any remaining wax residue (e.g., by vaporization) and/or converting hydrocarbon residue to carbon. Oxygen in the atmosphere reacts with the carbon to form carbon dioxide. Removal of the carbon is advantageous to reduce or eliminate the formation of detrimental carbides in the metal casting. Removing carbon offers the additional advantage of reducing the potential for clogging the vacuum pumps used in subsequent stages of operation.
The mold may be removed from the atmospheric furnace, allowed to cool, and inspected 248. The mold may be seeded 250 by placing a metallic seed in the mold to establish the ultimate crystal structure of a directionally solidified (DS) casting or a single-crystal (SX) casting. Nevertheless the present teachings may be applied to other DS and SX casting techniques (e.g., wherein the shell geometry defines a grain selector) or to casting of other microstructures. The mold may be transferred 252 to a casting furnace (e.g., placed atop a chill plate in the furnace). The casting furnace may be pumped down to vacuum 254 or charged with a non-oxidizing atmosphere (e.g., inert gas) to prevent oxidation of the casting alloy. The casting furnace is heated 256 to preheat the mold. This preheating serves two purposes: to further harden and strengthen the shell; and to preheat the shell for the introduction of molten alloy to prevent thermal shock and premature solidification of the alloy.
After preheating and while still under vacuum conditions, the molten alloy is poured 258 into the mold and the mold is allowed to cool to solidify 260 the alloy (e.g., after withdrawal from the furnace hot zone). After solidification, the vacuum may be broken 262 and the chilled mold removed 264 from the casting furnace. The shell may be removed in a deshelling process 266 (e.g., mechanical breaking of the shell).
The core assembly is removed in a decoring process 268 to leave a cast article (e.g., a metallic precursor of the ultimate part). The cast article may be machined 270, chemically and/or thermally treated 272 and coated 274 to form the ultimate part. Some or all of any machining or chemical or thermal treatment may be performed before the decoring.
One or more embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, the principles may be implemented using modifications of various existing or yet-developed processes, apparatus, or resulting cast article structures (e.g., in a reengineering of a baseline cast article to modify cooling passageway configuration). In any such implementation, details of the baseline process, apparatus, or article may influence details of the particular implementation. Accordingly, other embodiments are within the scope of the following claims.
The invention was made with US Government support under contract W911W6-08-2-0001 awarded by the US Army. The US Government has certain rights in the invention.