The invention disclosed herein is in the field of contouring heads for use in finishing contours of varying diameter in the preformed bore of a machinable part.
The term “contouring head” as used herein, refers to an apparatus adapted for use in combination with a programmable drive system controlling the position of a single edge cutter such as a carbide insert to contour the interior diameter of a preformed bore in a metallic part. The head preferably includes a universal carrier called a “pot” adapted to receive the cutter which, in turn, is connected to a rotating spindle. The spindle and a surrounding sleeve may be connected to a numerical control system that can control the rotation of the sleeve and spindle as well as the depth and effective diameter of the cutting tool in the part.
A system generally conforming to this description is described in my issued U.S. Pat. No. 5,520,077 issued May 28, 1996; the system described herein is an improvement to the mechanism described in that patent.
The contouring apparatus described herein and used to control the longitudinal and radial positions of a rotating cutting tool relative to a longitudinal axis consists essentially of a sleeve and a spindle within the sleeve having a longitudinal axis of rotation and adapted for controlled bi-directional movement along said longitudinal axis so as to enter and move along the bore axis as described above. The apparatus further includes means for advancing and retracting the spindle relative to the sleeve to change the effective radius of the cutting tool relative the simple axis as the tool moves longitudinally through the part.
The apparatus comprises a slide plate which is mounted for rotation with the spindle and has a slide track formed therein and arranged perpendicular to the longitudinal axis of the spindle. A slide capable of carrying the tool is disposed in the slide track and is held in the track by a pair of keeper plates. Bearing means operating on both front and rear faces of the slide promote durability and provide for precise movement of the slide within the slide track.
In the preferred embodiment hereinafter described in detail, the bearings for the slide include a first set of roller bearings between the rear face of the slide and the slide track. I have found that linear, recirculating roller bearings are best suited for this location. I also provide a second set of bearings disposed between the keeper plates and the front face of the slide. In the preferred embodiment, these bearings are V-shaped to fit within grooves that are aligned with the direction of slide movement relative to the slide plate. I also provide means to adjust the tightness of the bearings to close tolerances.
To convert longitudinal movement of the spindle relative to the sleeve which surrounds the spindle and supports the contouring head into radial slide movement, a pivotal yoke is provided. In the preferred form hereinafter illustrated and described in detail the yoke comprises two triangular plates having a fixed pivot at one corner connected to an anchor plate, a pivotal connection at another corner to the spindle, and a third pivotal connection to the slide. The pivotal connections to the spindle and the slide connector are slotted to accommodate the radial motion of the slide as the yoke rotates; i.e., to provide “lost motion” connections.
Further details of the illustrative embodiment hereinafter described include an air hose which extends through and along the longitudinal axis of the spindle and the yoke to a pot which is mounted to the slide and which is adapted to receive and hold a cutting tool in conventional fashion. The air hose is adapted to be connected to an air source to blow chips out of the bore during a cutting-operation.
An additional feature of the apparatus hereinafter described is a cover with an oval aperture and a thin metal skirt adapted to be mounted over the slide keeper plates and in surrounding relationship to the slide plate.
Further and additional features and advantageous of the invention will become apparent from a reading of the following description of an illustrative embodiment which is to be taken in combination to the accompanying drawings of which:
Except for gaps, the drawings of
The contouring head 10 shown in
The slide 24 is held in the slide track 23 by means of a pair of keeper plates 28 and 30 which are bolted to the slide plate 22 and bear upon a grooved face of the slide 24. A first set of four bearings 32 is located between recesses in the rear face on slide 24; i.e., the face shown to the right in the drawings of
The aforesaid radial movement of the slide 24 is achieved by means of a yoke 42 which comprises a pair of parallel triangular plates which are pivotally connected at connection 47 to plate 20. A second pivotal connection 48 is provided between a corner of the yoke plates 42 and a spindle/yoke connector 44. The yoke connector 44 includes a slot 54 at this position to provide a “lost motion” connection that permits sliding movement between the yoke and the connector 44 as the yoke rotates about the pivot 47. A third pivotal connection 49 connects the third corner of the triangular yoke plates to a connector extension 46 on the slide 24 by means of slot 68. This slot provides a second “lost motion” connection that allows longitudinal movement of spindle 16 to produce radial movement of slide 24 in the track 23 of slide plate 22. As hereinafter described, the radial position of slide 24 determines the radius of the finishing cut being made at any given time by the tool carried in the socket of pot 25 of conventional design.
Looking first to
It will be understood by those skilled in the art that a numerical control system can move the spindle to any and all positions between the maximum and minimum radial positions shown in the figures thereby to achieve gradual changes in the interior diameter of a part being contoured.
A further feature of the head 10 is an air tube 70 is mounted to extend through and along the longitudinal axis of the spindle 16 and the yoke 42, as well as the slide 24 for the purpose of blowing chips and other debris out of the bore as a contouring operation is being carried out.
Also shown in
In operation, the contouring head 10 is aligned with the internal bore to be contoured and the power systems necessary to rotate the head 10 and control the axial position of spindle 16 are energized. The tool enters the part and the longitudinal spindle position is adjusted according to the desired NC program to rotate the yoke 42 and move the slide 24 in the slide track 23 so as to control the radial position of the tool as it advances axially through the part. Air is blown through hose 70 to clear chips during a contouring operation.
It is to be understood that my invention has been described herein with respect to an illustrative embodiment and that various changes to sizes, proportions, and individual components can be made without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4411178 | Wachs | Oct 1983 | A |
4487275 | Froehlich | Dec 1984 | A |
4611958 | Vasilchenko | Sep 1986 | A |
4778315 | Duffy | Oct 1988 | A |
5316417 | Romi | May 1994 | A |
5520077 | Lindstrom | May 1996 | A |
5611651 | Wohlhaupter | Mar 1997 | A |
5993121 | Fiesta | Nov 1999 | A |
6123270 | Hara | Sep 2000 | A |
6128985 | Muster | Oct 2000 | A |
6367359 | Ropos | Apr 2002 | B1 |
7331585 | Lindstrom | Feb 2008 | B2 |
7931427 | McArthur | Apr 2011 | B1 |
8128323 | Conroy | Mar 2012 | B2 |
9162291 | Wiest | Oct 2015 | B2 |
Number | Date | Country | |
---|---|---|---|
20200030890 A1 | Jan 2020 | US |