Contractable and expandable tubular wellbore system

Information

  • Patent Grant
  • 7152673
  • Patent Number
    7,152,673
  • Date Filed
    Friday, October 4, 2002
    22 years ago
  • Date Issued
    Tuesday, December 26, 2006
    18 years ago
Abstract
A tubular system arranged in a wellbore, having an outer tube extending into the wellbore and a wall with at least one section of reduced bending stiffness, each section defining a hinge allowing the outer tube to move between a collapsed mode and an expanded mode. An inner tube extends into the outer tube and has a wall with at least one section of reduced bending stiffness, each section defining a hinge allowing the inner tube to move between a collapsed mode and an expanded mode. With the tubes in their respective expanded modes, the inner tube supports the outer tube and is oriented in the outer tube such that each hinge of the inner tube is circumferentially displaced from each hinge of the outer tube.
Description

The present application claims priority on European Patent Application 01308525.3 filed on 5 Oct. 2001.


FIELD OF THE INVENTION

The present invention relates to a tubular system arranged in a wellbore, comprising a tube extending into the wellbore and having a wall with at least one section of reduced bending stiffness, each section of reduced bending stiffness defining a hinge allowing the tube to move between a collapsed mode in which the tube has a relatively small cross-sectional size and an expanded mode in which the tube has a relatively large cross-sectional size.


BACKGROUND OF THE INVENTION

WO 99/55999 discloses such system wherein the tube forms a wellbore casing which stabilises the borehole wall and prevents collapse of the borehole.


A drawback of the known system is that the collapse resistance of the tube, when in the expanded mode, is lower than conventional tubular elements without hinges.


In accordance with the invention there is provided a tubular system arranged in a wellbore, comprising:


an outer tube extending into the wellbore and having a wall with at least one section of reduced bending stiffness, each section of reduced bending stiffness defining a hinge allowing the outer tube to move between a collapsed mode in which the outer tube has a relatively small cross-sectional size and an expanded mode in which the outer tube has a relatively large cross-sectional size;

    • an inner tube extending into the outer tube and having a wall with at least one section of reduced bending stiffness, each section of reduced bending stiffness defining a hinge allowing the inner tube to move between a collapsed mode in which the inner tube has a relatively small cross-sectional size and an expanded mode in which the inner tube has a relatively large cross-sectional size;


      wherein, when said tubes are in their respective expanded modes, the inner tube supports the outer tube and is oriented in the outer tube such that each hinge of the inner tube is circumferentially displaced from each hinge of the outer tube.


By virtue of the staggered arrangement of the respective sets of hinges it is achieved that each hinge of the outer tube is arranged opposite a section of the inner tube of full wall thickness, so that inadvertent/ unintentional bending of the hinges of the outer tube (when in the expanded mode) is prevented.





BRIEF DESCRIPTION OF THE DRAWING

The invention will be described hereinafter in more detail and by way of example with reference to the accompanying drawings in which:



FIG. 1 schematically shows a cross-sectional view of an outer tube in an expanded mode thereof;



FIG. 2 schematically shows the outer tube in a collapsed mode thereof;



FIG. 3 schematically shows the outer tube and the inner tube, both in their respective expanded modes;



FIG. 4 schematically shows the outer tube in its expanded mode and in inner tube in a collapsed mode.





DETAILED EMBODIMENT OF THE INVENTION

Referring to FIG. 1 there is shown a wellbore casing in the form of tubular member 1 which is to be installed in a wellbore (not shown) which has been drilled in an earth formation, whereby the tubular member 1 in the final position thereof is either directly surrounded by the rock formation (not shown) optionally with a cement bonding agent or rubber sleeve inbetween, or is surrounded by another wellbore tubular member. The tubular member 1 will be referred hereinafter as an “outer tube 1” in order to distinguish from an “inner tube” referred to hereinafter.


The outer tube 1 has five arcuate sections 2, 3, 4, 5, 6 having a relatively thick wall, and five short sections 7, 8, 9, 10, 11 interconnecting the arcuate sections and having a relatively thin wall. The short sections 7, 8, 9, 10, 11 extend in longitudinal or near longitudinal direction of the outer tube 1. By virtue of their reduced wall thickness, the short sections 7, 8, 9, 10, 11 have a reduced bending stiffness and therefore form plastically deformable hinges. Hereinafter the outer tube 1 when in the rounded cross-sectional shape as shown in FIG. 1, will be referred to as the expanded mode of the outer tube 1.


In FIG. 2 is shown the outer tube 1 when in a collapsed mode whereby the outer tube 1 has been bent at the plastic hinges 7, 8, 9, 10, 11 so that arcuate section 5 has moved radially inwards. In the collapsed mode, the outer tube 1 has a smaller cross-sectional size than in the expanded mode, which smaller cross-sectional size allows the outer tube 1 to be transported through the wellbore to the desired location.


In FIG. 3 is shown an inner tube 14 concentrically arranged within the outer tube 1, whereby the inner tube 14 is biased against the outer tube 1 so as to support the outer tube 1; The inner tube 14 has five arcuate sections 15, 16, 17, 18, 19 having a relatively thick wall, and five short sections 20, 21, 22, 23, 24 interconnecting the arcuate sections 15, 16, 17, 18, 19 and having a relatively thin wall. The short sections 20, 21, 22, 23, 24 extend in longitudinal direction of the outer tube 1. By virtue of their reduced wall thickness, the short sections 20, 21, 22, 23, 24 have a reduced bending stiffness and therefore form plastic hinges. Hereinafter the inner tube 1 when in the rounded cross-sectional shape as shown in FIG. 3, will be referred to as the expanded mode of the inner tube 14.


As shown in FIG. 3 the arrangement of the tubes 1, 14 is such that each hinge 20, 21, 22, 23, 24 of the inner tube 14 is circumferentially displaced from each hinge 7, 8, 9, 10, 11 of the outer tube 1. In other words, the hinges 20, 21, 22, 23, 24 of the inner tube 14 are staggeredly arranged relative to the hinges 7, 8, 9, 10, 11 of the outer tube 1.


In FIG. 4 is shown the inner tube 14 when in a collapsed mode thereof whereby the inner tube 14 has been bent at the plastic hinges 20, 21, 22, 23, 24 so that arcuate section 17 has moved radially inwards. In the collapsed mode, the inner tube 14 has a smaller cross-sectional size than in the expanded mode, which smaller cross-sectional size allows the inner tube 14 to be transported through the outer tube 1.


During normal operation an upper part of the wellbore is drilled and provided with an upper casing (not shown) to support the wellbore wall and thereby to prevent collapse of the wellbore. A lower part of the wellbore is then drilled using a drill string (not shown) extending through the upper casing, and subsequently under-reamed to a larger diameter. The diameter of the under-reamed wellbore is equal to, or slightly larger than, the outer diameter of the outer tube 1 when in its expanded mode.


The outer tube 1 is then brought to its collapsed mode by plastically deforming the outer tube 1 at the hinges 7, 8, 9, 10, 11 to the shape shown in FIG. 2. The outer tube 1 is then lowered through the upper casing to the lower part of the wellbore where the outer tube 1 is suspended by any suitable means. Subsequently the outer tube 1 is brought to its expanded mode by means of, for example, an expander or an inflatable device.


Thereafter the inner tube 14 is brought to its collapsed mode by plastically deforming the inner tube 14 at the hinges 20, 21, 22, 23, 24 to the shape shown in FIG. 4. The inner tube 14 is then lowered through the upper casing into the outer tube 1.


In a next step the inner tube 14 is oriented in the outer tube 1 such that, after expansion of the inner tube 14, the hinges 20, 21, 22, 23, 24 of the inner tube 14 are staggeredly arranged relative to the hinges 7, 8, 9, 10, 11 of the outer tube 1 (as shown in FIG. 3). Subsequently the inner tube 14 is expanded to its expanded mode by means of, for example, a suitable expander (which may be the same expander as used to expand the outer tube 1) or an inflatable device.


With the inner tube 14 expanded against the outer tube 1 whereby the respective sets of hinges are staggeredly arranged, each hinge 7, 8, 9, 10, 11 of the outer tube 1 is arranged opposite a respective arcuate section 15, 16, 17, 18, 19 of the inner tube 14. In this manner it is achieved that the hinges 7, 8, 9, 10, 11 are “locked” so that inadvertent collapse of the outer tube 1 due to external pressure from the rock formation or wellbore fluid (e.g. water, gas or oil) is prevented.


If desired, real hinges can be applied instead of, or in addition to, the plastic hinges for the inner and outer tubes.


To allow for some diameter variation between the tubes, a compressible layer can be applied between the tubes. Also, one or more of the hinges can be formed by a small tubular element (named “cell tube”) which has reduced bending stiffness and which accommodates for the diameter variation by virtue of its flattening upon bending.


While the illustrative embodiments of the invention have been described with particularity, it will be understood that various other modifications will be readily apparent to, and can be easily made by one skilled in the art without departing from the spirit of the invention. Accordingly, it is not intended that the scope of the following claims be limited to the examples and descriptions set forth herein but rather that the claims be construed as encompassing all features which would be treated as equivalents thereof by those skilled in the art to which this invention pertains.

Claims
  • 1. A tubular system arranged in a wellbore, comprising: an outer tube extending into the wellbore and having a wall with at least one section of reduced bending stiffness, each section of reduced bending stiffness defining a hinge allowing the outer tube to move between a collapsed mode in which the outer tube has a relatively small cross-sectional size and an expanded mode in which the outer tube has a relatively large cross-sectional size;an inner tube extending into the outer tube and having a wall with at least one section of reduced bending stiffness, each section of reduced bending stiffness defining a hinge allowing the inner tube to move between a collapsed mode in which the inner tube has a relatively small cross-sectional size and an expanded mode in which the inner tube has a relatively large cross-sectional size;
  • 2. The tubular system of claim 1, wherein the tubular system forms a wellbore casing arranged to support the wellbore wall.
  • 3. The tubular system of claim 1, wherein each said tube has at least three said hinges.
  • 4. The tubular system of claim 3, wherein the tube has at least four said hinges.
  • 5. The tubular system of claim 1, wherein each hinge extends in substantially longitudinal direction of the respective tube.
  • 6. The tubular system of claims 1, wherein, when said tubes are in their respective expanded modes, the inner tube is expanded against the outer tube.
  • 7. The tubular system of claims 1, wherein, when said tubes are in their respective expanded modes, the outer tube is expanded against the wellbore wall.
Priority Claims (1)
Number Date Country Kind
01308525 Oct 2001 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP02/11133 10/4/2002 WO 00 8/27/2004
Publishing Document Publishing Date Country Kind
WO03/031771 4/17/2003 WO A
US Referenced Citations (10)
Number Name Date Kind
347416 Buckingham Aug 1886 A
1233888 Leonard Jul 1917 A
3508587 Mauch Apr 1970 A
3648895 Strazdins Mar 1972 A
4124985 Maimets Nov 1978 A
5141360 Zeman Aug 1992 A
5224796 Zeman Jul 1993 A
5337823 Nobileau Aug 1994 A
5901789 Donnelly et al. May 1999 A
20050039910 Lohbeck Feb 2005 A1
Foreign Referenced Citations (4)
Number Date Country
1298469 Jun 2001 CN
9955999 Nov 1999 WO
9956000 Nov 1999 WO
0026502 May 2000 WO
Related Publications (1)
Number Date Country
20050000686 A1 Jan 2005 US