This application claims the benefit of Korean Patent Application No. 10-2013-0085758, filed on Jul. 21, 2013, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field
The present disclosure relates to ultrasound image diagnosis and photoacoustic image diagnosis, and in particular, to a contrast agent for ultrasound imaging and a contrast agent for photoacoustic imaging.
2. Description of the Related Art
Photoacoustic imaging provides strong optical absorption contrast and high ultrasound resolution even in deep tissues. The principle of photoacoustic imaging is as follows: the local heat deposition following short laser irradiation pulses generates acoustic waves, and then the propagated waves are detected by conventional ultrasound (US) imaging scanners.
Photoacoustic imaging has been significantly investigated in cancers, brains, hearts, and eyes of small animals. Additionally, according to the trends of natural fusion of the excited light detection and the ultrasound detection, a photoacoustic imaging system could be easily merged with an existing ultrasound imaging system through minor modifications (for example, removing the function of ultrasound transmission and adding the function of collection of wireless radiofrequency data). Such an integrated system, which has a shared acoustic detector, can present the advantages of conventional ultrasound imaging system, such as portability and real-time imaging capability.
At the same time, contrast agents for both imaging modalities have been significantly explored in order to enhance detection sensitivities and specificities. For example, optically absorbing organic dyes, plasmonic gold nanostructures, and organic nanoparticles have been developed for photoacoustic imaging in various biological applications. From a clinical point of view, biocompatibility (i.e., non-toxicity) and biodegradability of those nanoparticles for PA imaging have not been meaningfully studied, and thus, there remain the safety issues to be investigated before the photoacoustic imaging technique can be used in clinical applications.
So far, clinically approved dyes (i.e., methylene blue and indocyanine green) have the highest chance to be chosen as clinical photoacoustic contrast agents. Methylene blue is currently being investigated as a photoacoustic lymph node tracer in breast cancer.
For ultrasound imaging, microbubbles filled with fluorinated gases are routinely used in clinical practices to map blood flow in hearts, livers, and kidneys. Preclinically, microbubbles have been tested for molecular ultrasound imaging, ultrasound-guided drug delivery, etc.
Furthermore, dual-functional contrast agents for simultaneous photoacoustic and ultrasound imaging have recently been reported. Examples of such dual-functional contrast agents are ink-encapsulated micro- or nano-bubbles [13]; gold nanorods encapsulated-human serum albumin shelled microbubbles [14]; and liquid perfluorocarbon nanodroplets with plasmonic nanoparticles encapsulated therein [15]. However, double-functional contrast agents having optical absorbing capabilities have not been utilized in clinics yet.
According to an aspect of the present disclosure, provided are microbubbles that are used as a multi-modality contrast agent for photoacoustic imaging and ultrasound imaging.
According to another aspect of the present disclosure, provided is a method of preparing improved microbubbles that are used as a multi-modality contrast agent for photoacoustic imaging and ultrasound imaging.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
An embodiment of a microbubble according to an aspect of the present disclosure includes, a lipid shell colored with dye; and filling gas filling the inside of the lipid shell.
An embodiment of a method of preparing microbubbles according to other aspect of the present disclosure includes agitating a dye-colored lipid-containing solution in the presence of filling gas.
These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
An embodiment of a microbubble according to an aspect of the present invention includes a lipid shell colored with dye; and filling gas filling the inside of the lipid shell.
The dye absorbs incident light. The dye that has absorbed incident light causes heat deposit of the dye and the shell. Due to the heat deposit, the dye or the shell generates a sound wave. The dye may absorb incident light having a wavelength of, for example, about 500 nm to about 1,300 nm. The sound wave generated from a dye, a dye-colored shell, or a flake of the dye-colored shell may be in a range of, for example, about 1 MHz to about 50 MHz. The sound wave generated from a dye, a dye-colored shell, or a flake of the dye-colored shell may be detected by using, for example, an ultrasound scanner.
The dye may be, for example, azure blue, evans blue, indocyanine green, brilliant blue, nile blu, methylene blu, or a combination thereof. These dyes may have non-toxicity and biodegradability.
A degree of coloring a shell may be adjusted by, for example, controlling the concentration of dye in a dye solution used to hydrate lipid used to prepare the shell. When the concentration of dye in a dye solution used to hydrate lipid is too low, the dye-induced photoacoustic signal may be less produced, and thus, detection thereof may be difficult. When the concentration of dye in a dye solution used to hydrate lipid is too high, the concentration exceeds a maximum concentration for which biosafety is clinically guaranteed and thus, safety-related problems may occur. A concentration of dye in a dye solution used to hydrate lipid may be in a range of, for example, about 0.5 mM to about 20 mM. In an embodiment, for example, a concentration of dye in a dye solution used to hydrate lipid may be about 15 mM. In an embodiment, for example, dye may be methylene blue, and a concentration of dye in a dye solution used to hydrate lipid may be in a range of about 0.5 mM to about 20 mM. In an embodiment, for example, dye may be methylene blue, and a concentration of dye in a dye solution used to hydrate lipid may be in a range of may be about 15 mM. A solvent for the dye solution may be, for example, water, an electrolytic aqueous solution, or a combination thereof. A specific example of the solvent for the dye solution may be PBS.
The coloring of lipid may be performed by immersing lipid in a dye solution.
Lipid may be, for example, triglyceride that is a fatty acid ester of glycerol that is an alcohol, a phosphoglyceride(phospholipid) that is a fatty acid ester of glycerol and a phosphoric acid, sphingolipid that is a complex lipid induced from an alcohol such as sphingosine, steroid such as cholesterol, carotinoid, prostaglandin, or a mixture thereof. In an embodiment, lipid may include phospholipid. Phospholipid may spontaneously form a single layer having high self-orientation at a gas (air)-water interface, and accordingly, when in contact with gas bubbles, water-repellent acyl chains are oriented toward bubbles and hydrophilic head groups are oriented toward a solution, thereby effectively forming a shell. Specific examples of phospholipid are, for example, 1,2-dipalmitoyl-sn-glycero-3-phosphatidic acid (DPPA); 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC); 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC); 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-dibehenoyl-sn-glycero-3-phosphocholine (DBPC); 1,2-diarachidoyl-sn-glycero-3-phosphatidylcholine (DAPC); 1,2-dilignoceroyl-sn-glycero-3-phosphatidylcholine (DLgPC); 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-(1-glycerol)] (DPPG); and a mixture thereof.
The dye-colored lipid shell acts as a container for accommodating a filler therein, for example, filling gas and/or drug. A microbubble having a shell encapsulating filling gas may reflect ultrasound. A microbubble having a shell encapsulating a drug therein may act as a drug carrier.
The shape of the shell is not limited, and for example, the shell may be spherical. When a particle diameter of the shell is too small, scattering of ultrasound may be weak and thus, ultrasound imaging is difficult. When a particle diameter of the shell is too great, it is difficult to retain the shape of the shell, and when the shell is injected in vivo by using, for example, a syringe, the shell may burst. A particle diameter of the shell may be in a range of, for example, about 0.5 μm to about 10 μm.
A thickness of a wall of the shell may be in a range of, for example, about 1 nm to about 200 nm. Since a filling gas bubble is not strong enough to retain the physical shape of a microbubble, a shell having an appropriate thickness is required. The thickness of the shell may vary according to a material used to form the shell, such as a surfactant, a lipid, a protein, a polymer, or a combination thereof.
The shell encapsulates filling gas. The filling gas may prevent the shell from shriveling. Also, a microbubble having the shell encapsulating filling gas may reflect ultrasound. The filling gas may be a biologically inactive gas. Specific examples of the filling gas are perfluorocarbon, sulphur hexafluoride, perfluoromethane, perfluoroethane, perfluoropropane, perfluorobutane, perfluoropentane, perfluorohexane, perfluoroheptane, perfluorooctane, perfluorononane, perluorodecane, perfuorobenzene, perfluorotriethylamine, perfluorooctylbromide, and a mixture thereof.
Embodiments of a microbubble including a dye-colored lipid shell; and filling gas encapsulated by the lipid shell may act as a contrast agent for ultrasound imaging. Also, embodiments of a microbubble according to the present disclosure may burst due to high-voltage ultrasound. When a microbubble according to the present disclosure bursts due to high-voltage ultrasound, a filler, such as filling gas and/or a drug, may be released, and also, a flake of the dye-colored lipid shell may be formed. The flake of the dye-colored lipid shell may substantially increase photoacoustic efficiency of incident light. For example, the flake of the dye-colored lipid shell can generate a photoacoustic signal that is about 817 times stronger than the dye-colored lipid shell which exists in the form of a microbubble. Accordingly, embodiments of the microbubble of the present disclosure accompany the bursting due to high-voltage ultrasound, and thus, may be very effectively used as a contrast agent for combined ultrasound and photoacoustic imaging. Also, since embodiments of the microbubble of the present disclosure accompany the bursting due to high-voltage ultrasound, a drug contained in the microbubble may be released. Accordingly, embodiments of the microbubble of the present disclosure may act as a drug carrier.
The microbubble according to the present disclosure may burst by using ultrasound pulses which may be produced by using a commercially available imaging diagnosis apparatus. In an embodiment, for example, a voltage of about 50 V is applied to a commercially available ultrasound probe to cause the microbubble to burst. In an embodiment, for example, the microbubble may burst due to ultrasound that may be produced by applying a voltage pulse of about 50 V (amplitude) or less. In an embodiment, for example, the microbubble may burst due to ultrasound that may be produced by applying a voltage pulse of about 20 V (amplitude) to about 50 V (amplitude). In an embodiment, for example, the microbubble may burst due to an ultrasound signal having a high mechanical index (MI) of about 0.5 to about 1.9.
Another embodiment of the microbubble may further include a drug located inside the shell. The drug may be, for example, an anti-cancer agent, or other various drugs. In the case that the shell is formed of phospholipid, a water-repellent drug that is bindable to water-repellent acyl chains is loaded, and when a drug is included in a water-repellent other material, the drug may be loaded inside the microbubble.
Another aspect of the present disclosure provides a method of preparing a microbubble. An embodiment of the method of preparing microbubbles includes agitating a dye-colored lipid-containing solution in the presence of filling gas.
In other embodiments of the method, the dye-colored lipid-containing solution may further include an emulsifier. The emulsifier may be, for example, N-(methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (MPEG5000-DPPE), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 (DMPE-PEG2000), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG2000), Polyoxyethylene 40 stearate (PEG40S), or a combination thereof.
In other embodiments of the method, the dye-colored lipid may be a lipid which is colored by using a dye solution including dye and at least one of glycerol, propylene glycol, phosphate, and sodium chloride.
Preparation of Methylene Blue-Dyed Microbubble
Chemical materials used in this experiment are obtained Sigma Co. unless defined otherwise. In the present example, a microbubble having a methylene blue-colored lipid shell encapsulating octafluoropropane gas (manufacturer: Concorde Specialty Gases Inc., USA) was prepared. The following lipids were obtained from “Avanti Polar lipids Inc., USA”: 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA; Avanti #830855); 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; Avanti #850355); and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (MPEG5000; Avanti #880200). Methylene blue was dissolved in PBS (pH=7) to prepare a methylene blue-PBS solution (methylene blue concentration: 20 mM). 1 liter of phosphate-buffered saline (PBS) included 8 g of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4, 0.24 g of KH2PO4, and the balance of water, and a pH thereof was adjusted to 7. DPPA was dissolved in chloroform to prepare a DPPA solution (DPPA concentration: 20 mg/mL), which was then preserved at a temperature of −20° C. DPPC was dissolved in chloroform to prepare a DPPC solution (DPPC concentration: 20 mg/mL), which was then preserved at a temperature of −20° C. MPEG5000 was dissolved in chloroform to prepare a MPEG5000 solution (MPEG5000 concentration: 20 mg/mL), which is then preserved at a temperature of −20° C. Lipid films were prepared at different total concentrations of the lipids while a molar ratio of DPPC:DPPA:MPEG5000 was maintained at 10:1:1.2. Lipid was dissolved in chloroform, and then, the chloroform was evaporated to prepare a lipid film. Lipid was used to prepare, unless explained otherwise, 1 mg/mL of a lipid solution. 750 μl of a methylene blue-PBS solution, 100 μl of propylene glycol (Bioshop Canada #PRO888.1), and 100 μl of glycerol (Bioshop Canada #GLY001.1) were mixed to obtain a dye solution. To hydrate the lipid film with the dye solution, the dye solution and the lipid suspension were loaded into a vial. Octafluoropropane gas was allowed to occupy an upper space of the vial. Then, the vial was sealed, and ultrasound was applied thereto to exchange gas in the solution with octafluoropropane. Then, the upper space of the vial was filled with octafluoropropane gas. Then, the vial was subjected to agitation by using a “vialmix activator” manufactured by “Lantheus Medical Imaging” Co. for 45 seconds, thereby preparing a microbubble having a methylene blue-colored lipid shell.
Evaluation on Physical, Optical, and Acoustic Characteristics of Methylene Blue-Dyed Microbubble
After activation, the vial was left for 15 minutes until its temperature dropped to room temperature. Microbubbles were gently mixed for 10 seconds, and then decanted for 2 minutes before extracting a sample from the bottom of the vial. The size distribution and concentration (number of microbubbles per ml) of microbubbles in each of a variety of formulations were measured by using “Coulter Counter Multisizer Z3 (Beckman Coulter Inc.)”. Varying volumnes 15 μl of microbubbles were extracted and added to 10 mol of “Isoton-II electrolyte solution (Beckman Coulter Inc.)” to obtain a microbubble count in the range of 100,000-300,000. A background count of buffer was taken prior to measurement and subtracted. Dilution was accounted for in the calculation of the microbubble concentration. The number and size distribution were measured using a 30 μm aperture, and thus, it was confirmed that microbubbles had a diameter of about 0.76 to about 18 μm. For each microbubble formulation, three samples were measured and measurement values thereof were averaged. The frequency-dependent attenuation measurements were performed using a narrowband pulse-echo method similar to that used by “Goertz et al.”[see 17]. One transducer (model #595396, 5 MHz, 76 mm focus, 12.7 mm diameter; Olympus NDT Canada Inc., Quebec, Canada) was used to cover a frequency range of about 1.5 to about 12 MHz sampled in 0.5 MHz increments. Each pulse was generated using an arbitrary waveform generator (Tabor Electronics Ltd., Tel Hanan, Israel) and amplified using a power amplifier (model A-150; ENI, Rochester, N.Y., USA). The transducer was calibrated for each frequency using a 75 μm needle hydrophone (model 1544; Precision Acoustics, Dorchester, UK) to deliver a peak negative pressure of 25 kPa at the geometric foci, where the face of an aluminum rod serving as a near-perfect reflector was placed. The received echoes were amplified (model AU1579; Miteq, Hauppauge, N.Y., USA), filtered, and recorded (400 MHz of sampling frequency; Agilent Technologies Inc., Palo Alto, Calif., USA) for further post-process analysis. Echoes were recorded prior to and after contrast agent microbubbles were diluted in the gas-equilibriated saline between the transducer and aluminum reflector. Given the ratio of echo amplitudes pre- and post-contrast agent addition and the length in which ultrasound traveled through the bubbly media, the attenuation per unit length could be calculated at each frequency. Optical absorption spectra of the microbubble contrast agent were recorded in PBS using the indicated dilution using a spectrophotometer (Lamdba 20, PerkinElmer).
Photoacoustic and Ultrasound Imaging Using Methylene Blue-Dyed Microbubble
Two types of combined photoacoustic and ultrasound imaging system were used. The first one was operated with a single-element focused transducer with raster scanning, whereas the other one was modified from a clinical ultrasound array system. Details of the first system are disclosed in reference document 18. Laser pulsing was generated from a controllable laser generator (Surelite OPO PLUS; Continuum; wavelength tuning range: 680 to 1064 nm) pumped by a Q-switched Nd:YAG laser (SLIII-10; Continuum; 532 nm). The pulse width and repetition rate were 5 ns and 10 Hz, respectively. An optical wavelength of 667 nm was used for photoacoustic imaging. Light having this optical wavelength was irradiated to samples through a concave lens, a conical lens, and an optical condenser. A water tray was employed for acoustic coupling. Induced photoacoustic sound waves were sensed by a single-element acoustic transducer (V308; Olympus NDT; 5 MHz center frequency). Then, the photoacoustic signals transferred to a low-noise amplifier (5072PR, Olympus NDT) were recorded by a data acquisition system. In the ultrasound imaging mode, the low-noise amplifier was used as both an ultrasound pulse transmitter and receiver, and the same transducer was used. To form the volumetric data, mechanical raster scanning was used in two transverse directions along the x-y directions. The sample holder had a diameter of 4.5 mm and a depth of 3.2 mm, and was filled with aqueous samples. To investigate the restoration of photoacoustic signals, the photoacoustic and ultrasound signals of the methylene blue-dyed microbubble solution were compared before and after the treatment with ultrasound. Further, to confirm this restoration and investigate the clinical applicability of the mechanism, a clinical photoacoustic imaging scanner was used. 256 channel simultaneous analog-digital converters (ADC) and external triggering capabilities enabled real-time photoacoustic/ultrasound imaging. Conventional ultrasound and photoacoustic images were obtained sequentially, and displayed in the ultrasound imaging monitor. In this regard, structural ultrasound and functional photoacoustic (that is, optical absorption characteristics) images were shown at the same time up to 10 Hz of a PA frame rate. A linear probe with a 7.5 MHz center frequency (Samsung Medison, Seoul, Korea) was used. An OPO laser (Phocus HE, Opotek, California, USA) was employed to provide laser pulses with an optical wavelength of 680 nm, a pulse width of 10 ns, and a pulse repetition rate of 10 Hz. A bifurcated optical fiber bundle was used to deliver light to the sample. For the real-time image reconstruction, one-way (receiving mode only) conventional delay-sum beam forming method was employed. One side surface of a rectangular water container was cut opened, and the opened area was covered by a thin transparent window to prevent the leakage of aqueous solutions and enhance acoustic coupling. One optically transparent plastic vial with a diameter of 7 mm was filled with a methylene blue-dyed microbubble solution (microbubble concentration 0.1 mg/ml; methylene blue concentration 15 mM), the other vial was filled with water as a control. Both vials were vertically positioned inside the container which was filled with water. The photoacoustic/ultrasound probe was horizontally positioned with its surface directing the center of the vials. Before microbubbles in the solutions were disturbed, the control photoacoustic image was obtained. Then, the ultrasound transmission voltage increased to 50 V (the typical voltage is 8 V), was delivered to the vials for 60 seconds, and the photoacoustic image was again obtained. This process was repeatedly performed until the methylene blue-dyed microbubble was accumulatively exposed to the high voltage ultrasound for 10 minutes.
Evaluation Results
As shown in
Conclusion
These results show that methylene blue microbubbles as a dual modality contrast agent are effectively used for ultrasound and activatible photoacoustic imaging. According to the present disclosure, the photoacoustic signals were significantly suppressed according to the increase of the microbubble concentration in the methylene blue-dyed microbubbles solution (with fixed methylene blue concentration). Also, even when the concentration of methylene blue increases (a concentration of microbubble is fixed), ultrasound intensity does not change. In addition, high powered ultrasound generated by a clinical ultrasound imaging scanner burst the microbubbles and drastically (817 times) recovered photoacoustic signals. This is a truly innovative mechanism to modulate photoacoustic signal generation. Conventionally, one or more parameters with respect to the initial photoacoustic amplitude (for example, Grueneisen coefficient, heat conversion efficiency, optical absorption coefficient, or optical induction) within an object should be adjusted to control the photoacoustic signals. However, by using microbubbles dyed with dye according to the present disclosure, these parameters are not needed to be considered any more. From a clinical point of view, both methylene blue and microbubbles have been widely used in clinical practices. From an imaging system perspective, both custom-made bench-top and clinically feasible imaging scanners have been utilized in this study. Thus, the clinical translation abilities of methylene blue-dyed microbubbles and the clinical photoacoustic imaging system are significantly high.
A microbubble having a dye-colored lipid shell according to an embodiment of the present disclosure can be effectively used, as a dual-modality contrast agent, for ultrasound and photoacoustic imaging. According to the present disclosure, a photoacoustic signal is substantially attenuated according to an increase in a concentration of the microbubble in a suspension of the microbubble having a dye-colored lipid shell (a concentration of dye is fixed). Also, even when the concentration of dye increases (a concentration of microbubble is fixed), ultrasound intensity does not change. Also, high powered ultrasound generated by, for example, a clinical ultrasound imaging scanner may be used to burst the microbubble having the dye-colored lipid shell, and accordingly, dramatically restore photoacoustic signals (up to about 817 times). This is a truly innovative mechanism to modulate photoacoustic signal generation. Conventionally, one or more parameters with respect to the initial photoacoustic amplitude (for example, Grueneisen coefficient, heat conversion efficiency, optical absorption coefficient, or optical induction) within an object are required to be adjusted to control the photoacoustic signals. However, by using microbubbles having dye-colored lipid shells, these parameters are not needed for consideration any more. From a clinical point of view, dye, such as methylene blue, and lipid shell have been widely used in clinical practices. Accordingly, the microbubbles having a dye-colored lipid shell have very high safety. Also, even in consideration of functionality, the microbubble having a dye-colored lipid shell according to the present disclosure has direct translation abilities into a clinical photoacoustic imaging system. Accordingly, the microbubble having a dye-colored lipid shell according to the present disclosure enables the combined photoacoustic and ultrasound imaging system to be effectively performed.
Reference Documents
1. (a) Beard, P., Biomedical photoacoustic imaging. Interface focus 2011, 1 (4), 602-31; (b) Kim, C.; Favazza, C.; Wang, L. V., In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chemical reviews 2010, 110 (5), 2756-82; (c) Wang, L. V.; Hu, S., Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012, 335 (6075), 1458-62.
2. (a) Laufer, J.; Johnson, P.; Zhang, E.; Treeby, B.; Cox, B.; Pedley, B.; Beard, P., In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. Journal of biomedical optics 2012, 17 (5), 056016; (b) Yao, J.; Maslov, K. I.; Wang, L. V., In vivo photoacoustic tomography of total blood flow and potential imaging of cancer angiogenesis and hypermetabolism. Technology in cancer research & treatment 2012, 11 (4), 301-7.
3. Yao, J.; Xia, J.; Maslov, K. I.; Nasiriavanaki, M.; Tsytsarev, V.; Demchenko, A. V.; Wang, L. V., Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. NeuroImage 2013, 64, 257-66.
4. (a) Laufer, J.; Norris, F.; Cleary, J.; Zhang, E.; Treeby, B.; Cox, B.; Johnson, P.; Scambler, P.; Lythgoe, M.; Beard, P., In vivo photoacoustic imaging of mouse embryos. Journal of biomedical optics 2012, 17 (6), 061220; (b) Zemp, R. J.; Song, L.; Bitton, R.; Shung, K. K.; Wang, L. V., Realtime photoacoustic microscopy of murine cardiovascular dynamics. Optics express 2008, 16 (22), 18551-6.
5. Jiao, S.; Jiang, M.; Hu, J.; Fawzi, A.; Zhou, Q.; Shung, K. K.; Puliafito, C. A.; Zhang, H. F., Photoacoustic ophthalmoscopy for in vivo retinal imaging. Optics express 2010, 18 (4), 3967-72.
6. (a) Kim, C.; Erpelding, T. N.; Jankovic, L.; Wang, L. V., Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2011, 369 (1955), 4644-50; (b) Ermilov, S. A.; Khamapirad, T.; Conjusteau, A.; Leonard, M. H.; Lacewell, R.; Mehta, K.; Miller, T.; Oraevsky, A. A., Laser optoacoustic imaging system for detection of breast cancer. Journal of biomedical optics 2009, 14 (2), 024007.
7. (a) Kim, C.; Song, K. H.; Gao, F.; Wang, L. V., Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats—volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology 2010, 255 (2), 442-50; (b) Wang, B.; Zhao, Q.; Barkey, N. M.; Morse, D. L.; Jiang, H., Photoacoustic tomography and fluorescence molecular tomography: a comparative study based on indocyanine green. Medical physics 2012, 39 (5), 2512-7; (c) Morgounova, E.; Shao, Q.; Hackel, B. J.; Thomas, D. D.; Ashkenazi, S., Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labeled activatable probes. Journal of biomedical optics 2013, 18 (5), 56004.
8. (a) Cai, X.; Li, W.; Kim, C. H.; Yuan, Y.; Wang, L. V.; Xia, Y., In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS nano 2011, 5 (12), 9658-67; (b) Kim, C.; Song, H. M.; Cai, X.; Yao, J.; Wei, A.; Wang, L. V., In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. Journal of materials chemistry 2011, 21 (9), 2841-2844; (c) Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S., Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS nano 2012, 6 (11), 10366-77; (d) Qin, H.; Zhou, T.; Yang, S.; Chen, Q.; Xing, D., Gadolinium(III)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine 2013.
9. (a) Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C.; Cao, W.; Wang, L. V.; Zheng, G., Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature materials 2011, 10 (4), 324-32; (b) Zha, Z.; Deng, Z.; Li, Y.; Li, C.; Wang, J.; Wang, S.; Qu, E.; Dai, Z., Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 2013, 5 (10), 4462-7.
10. (a) Kim, C.; Erpelding, T. N.; Jankovic, L.; Pashley, M. D.; Wang, L. V., Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomedical optics express 2010, 1 (1), 278-284; (b) Kim, C.; Erpelding, T. N.; Maslov, K.; Jankovic, L.; Akers, W. J.; Song, L.; Achilefu, S.; Margenthaler, J. A.; Pashley, M. D.; Wang, L. V., Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. Journal of biomedical optics 2010, 15 (4), 046010.
11. Wilson, S. R.; Burns, P. N., Microbubble-enhanced US in body imaging: what role Radiology 2010, 257 (1), 24-39.
12. (a) Lanza, G. M.; Wickline, S. A., Targeted ultrasonic contrast agents for molecular imaging and therapy. Current problems in cardiology 2003, 28 (12), 625-53; (b) Song, J.; Qi, M.; Kaul, S.; Price, R. J., Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound. Circulation 2002, 106 (12), 1550-5.
13. Kim, C.; Qin, R.; Xu, J. S.; Wang, L. V.; Xu, R., Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. Journal of biomedical optics 2010, 15 (1), 010510.
14. Wang, Y. H.; Liao, A. H.; Chen, J. H.; Wang, C. R.; Li, P. C., Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy. Journal of biomedical optics 2012, 17 (4), 045001.
15. Wilson, K.; Homan, K.; Emelianov, S., Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nature communications 2012, 3, 618.
16. Huynh, E.; Lovell, J. F.; Helfield, B. L.; Jeon, M.; Kim, C.; Goertz, D. E.; Wilson, B. C.; Zheng, G., Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. Journal of the American Chemical Society 2012, 134 (40), 16464-7.
17. Goertz, D. E.; de Jong, N.; van der Steen, A. F., Attenuation and size distribution measurements of Definity and manipulated Definity populations. Ultrasound in medicine & biology 2007, 33 (9), 1376-88.
18. Kim, C.; Jeon, M.; Wang, L. V., Nonionizing photoacoustic cystography in vivo. Optics letters 2011, 36 (18), 3599-601.
19. (a) Gorce, J. M.; Arditi, M.; Schneider, M., Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue. Investigative radiology 2000, 35 (11), 661-71; (b) Sarkar, K.; Shi, W. T.; Chatterjee, D.; Forsberg, F., Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. The Journal of the Acoustical Society of America 2005, 118 (1), 539-50.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0085758 | Jul 2013 | KR | national |