Contrawound antenna

Information

  • Patent Grant
  • 6437751
  • Patent Number
    6,437,751
  • Date Filed
    Tuesday, August 15, 2000
    24 years ago
  • Date Issued
    Tuesday, August 20, 2002
    22 years ago
Abstract
An electromagnetic antenna includes a multiply connected surface, such as a toroidal surface; first and second insulated conductors; and first and second signal terminals. The first insulated conductor extends around and over the surface with a first pitch or winding sense from a first node to a second node. The second insulated conductor also extends around and over the surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node. The first and second insulated conductors are contrawound relative to each other around and over the surface. In one embodiment of the invention, at least one of the nodes is open. In other embodiments of the invention, the signal terminals are structured for connection to a cooperative antenna structure.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to transmitting and receiving antennas, and, in particular, to antennas employing contrawound windings.




2. Background Information




U.S. Pat. Nos. 5,442,369; and 6,028,558, which are incorporated by reference herein, disclose Contrawound Toroidal Helical Antennas (CTHAs).




Referring to

FIG. 1

, one type of CTHA


2


, for example, employs a toroidal surface and two contrawound helical windings


4


,


6


, which are fed with opposite currents in order that the magnetic flux of each helix reinforces the loop magnetic flux. This additive effect of the two helices may produce a stronger magnetic flux than a single toroidal helix, but the magnetic flux is not uniform. The effect can approach uniform currents for an electrically small CTHA, but suffers poor efficiency.




U.S. Pat. Nos. 4,622,558; and 4,751,515 discuss certain aspects of toroidal antennas as a technique for creating a compact antenna by replacing the conventional linear antenna with a self resonant structure that produces vertically polarized radiation that will propagate with lower losses when propagating over the earth. These patents initially discuss a monofilar toroidal helix as a building block for more complex directional antennas. Those antennas may include multiple conducting paths fed with signals whose relative phase is controlled either with external passive circuits or due to specific self resonant characteristics. In a general sense, the patents discuss the use of so called contrawound toroidal windings to provide vertical polarization. The contrawound toroidal windings discussed in these patents are of an unusual design, having only two terminals, as described in the reference Birdsall, C. K., and Everhart, T. E., “Modified Contra-Wound Helix Circuits for High-Power Traveling Wave Tubes”,


IRE Transactions on Electron Devices,


October, 1956, p. 190. The patents point out the distinctions between the magnetic and electric fields/currents and extrapolate that by physically superimposing two monofilar circuits, which are contrawound with respect to one another on a toroid, a vertically polarized antenna can be created using a two port signal input. The basis for the design is the linear helix, the design equations for which were originally developed by Kandoian & Sichak in 1953.




U.S. Pat. No. 5,654,723 discloses antennas having various geometric shapes, such as a sphere. For example, if a sphere is small with respect to wavelength, then the current distribution is uniform. This provides the benefit of a spherical radiation pattern, which approaches the radiation pattern of an ideal isotropic radiator or point source, in order to project energy equally in all directions. Other geometric shapes may provide similar benefits. Contrawound windings are employed to cancel electric fields and leave a magnetic loop current. Thus, different modes of operation of a CTHA may be induced by varying the antennas' geometric properties.




U.S. Pat. No. 5,654,723 also discloses CTHA antennas employed in combination with a reflector.




U.S. Pat. Nos. 5,734,353 and 5,952,978 disclose CTHAs having feed mechanisms including series-parallel impedance matching network (FIG.


59


), electric current conduction employing a magnetic loop signal coupler (FIG.


60


), and magnetic induction to couple a signal, applied to terminals, from a primary coil directly to a generalized contrawound toroidal helix (FIG.


61


).




It is known to employ a simple linear helix which is designed to end-fire (i.e., radiate off the end of the helix predominately) or broadside fire.





FIG. 2

shows the currents in the two helices of

FIG. 1

at the half wavelength resonance as predicted by the Los Alamos National Laboratory's Numerical Electromagnetics Code (NEC). These non-uniform currents, in turn, produce non-uniform magnetic fields.




As shown in

FIG. 3

, the exemplary NEC simulation provides a 3D-radiation (i.e., θ plus φ) pattern


10


having two dimples (only one dimple


12


is shown). This pattern about the origin


14


is considerably different from the radiation pattern of a dipole. While not all CTHA antennas have as pronounced a dimple as the one shown in

FIG. 3

, those antennas all share the characteristic of near isotropic radiation (i.e., there is no overhead null).




Although the prior art shows various antenna structures and feeds, there is room for improvement.




SUMMARY OF THE INVENTION




In accordance with one aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein the first node is electrically connected to the fourth node, and the first and second signal terminals are electrically connected to the second and third nodes, respectively.




In accordance with another aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein the third node is electrically connected to the fourth node, and the first and second signal terminals are electrically connected to the first and second nodes, respectively.




In accordance with a further aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein the second node is electrically connected to the third node and the fourth node, and the first and second signal terminals are electrically connected to: (a) the second, third and fourth nodes, and (b) the first node, respectively.




In accordance with another aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein the first node is electrically connected to the third node, the second node is electrically connected to the fourth node, and the first and second signal terminals are electrically connected to: (a) the first and third nodes, and (b) the second and fourth nodes, respectively.




In accordance with a further aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein the first node is electrically connected to the second node, the third node is electrically connected to the fourth node, and the first and second.signal terminals are electrically connected to: (a) the first and second nodes, and (b) the third and fourth nodes, respectively.




In accordance with another aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein at least one of the nodes is open.




In accordance with a further aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; and first and second signal terminals, wherein the first, third and fourth nodes are electrically connected, wherein one of the first and second signal terminals is electrically connected to the second node, and wherein the other of the first and second signal terminals is structured for connection to a cooperative antenna structure.




In accordance with another aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; first and second signal terminals; and a cooperative antenna structure, wherein one of the first and second signal terminals is electrically connected to at least one of the nodes, and wherein the other of the first and second signal terminals is electrically connected to the cooperative antenna structure.




In accordance with a further aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling the antenna signal to or from the first and second insulated conductors, wherein at least one of the nodes is open.




In accordance with another aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling the antenna signal to or from the first and second insulated conductors, wherein the first node is electrically connected to the second node, the third node is electrically connected to the fourth node, and the first and second nodes are electrically connected to the third and fourth nodes.




In accordance with a further aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling the antenna signal to or from the first and second insulated conductors, wherein the first node is electrically connected to the third node, and the second node is electrically connected to the fourth node.




In accordance with another aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and a shielded loop, proximate the multiply connected surface, without passing completely around the surface, connected to the signal terminals and coupling the antenna signal to or from the first and second insulated conductors, wherein the first node is electrically connected to the fourth node, and the second node is electrically connected to the third node.




In accordance with a further aspect of the invention, an electromagnetic antenna comprises: a multiply connected surface; first and second insulated conductors, with the first insulated conductor extending around and over the multiply connected surface with a first pitch or winding sense from a first node to a second node, and with the second insulated conductor also extending around and over the multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that the first and second insulated conductors are contrawound relative to each other around and over the multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling the antenna signal to or from the first and second insulated conductors, wherein the first node is electrically connected to the second node, and the third node is electrically connected to the fourth node.











BRIEF DESCRIPTION OF THE DRAWINGS




A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:





FIG. 1

is an isometric view of two helical windings in a Contrawound Toroidal Helical Antenna (CTHA) structure;





FIG. 2

is a plot, which shows the current distribution of the CTHA of

FIG. 1

at a self-resonance;





FIG. 3

is a plot of the radiation pattern of the CTHA of

FIG. 1

for the current distribution of

FIG. 2

;





FIGS. 4A-4B

are wiring diagrams for CTHAs having polar and equatorial crossings, respectively;





FIGS. 5A-5D

are views of various CTHA feeds, which employ two feed lines in accordance with embodiments of the present invention;





FIGS. 5E and 5F

are views of various CTHA feeds which employ two feed lines;





FIGS. 5G-5M

are views of various CTHA feeds, which employ two feed lines in accordance with embodiments of the present invention;





FIGS. 6A-6M

are views of various CTHA feeds, which employ only one direct feed connection in accordance with embodiments of the present invention;





FIGS. 7A-7G

and


7


I are views of various CTHA feeds, which employ no direct feed connection in accordance with embodiments of the present invention;





FIG. 7H

is a view of a CTHA feed, which employs no direct feed connection;





FIGS. 8-15

are plots of the impedance spectrums for the feeds of

FIGS. 5A-5H

;





FIG. 16

is a plot of calculated resonant frequencies for a CTHA having the feeds of

FIGS. 5A-5H

;





FIG. 17

is a plot of real impedance at various resonances for the feeds of

FIGS. 5A-5H

;





FIG. 18

is a plot of maximum azimuthal gains for the feeds of

FIGS. 5A-5H

at the respective first resonances;





FIG. 19

is a plot of average azimuthal gains for the feeds of

FIGS. 5A-5H

at the respective first resonances;





FIG. 20

is a plot of average azimuthal gains for the feeds of

FIGS. 5A-5H

at the respective first resonances as shown at the frequency of those resonances;





FIGS. 21A-21C

through


28


A-


28


C are far-field plots of theta-polarized gain (FIGS.


21


A-


28


A), phi-polarized gain (FIGS.


21


B-


28


B), and total gain (

FIGS. 21C-28C

) for the feeds of

FIGS. 5A-5H

, respectively, at the respective first resonances;





FIG. 29

is an azimuth cut of theta-polarized gain versus phi-degrees at each of the first resonances for the feeds of

FIGS. 5A-5H

;





FIG. 30

is an azimuth cut of phi-polarized gain versus phi-degrees at each of the first resonances for the feeds of

FIGS. 5A-5H

;





FIG. 31

is an azimuth cut of total gain versus phi-degrees at each of the first resonances for the feeds of

FIGS. 5A-5H

;





FIG. 32

is a plot of total gain versus frequency averaged over the entire far-field sphere in order to approximate efficiency;





FIG. 33

is a plot of theta-polarized gain versus frequency averaged over the azimuth cut;





FIG. 34

is a plot of phi-polarized gain versus frequency averaged over the azimuth cut;





FIG. 35

is a plot of sphericity theta-polarized gain versus frequency for the feeds of

FIGS. 5A-5H

over the entire far-field sphere;





FIG. 36

is a plot of sphericity phi-polarized gain versus frequency for the feeds of

FIGS. 5A-5H

over the entire far-field sphere;





FIG. 37

is a plot of sphericity total gain versus frequency for the feeds of

FIGS. 5A-5H

over the entire far-field sphere;





FIGS. 38A-38C

are far-field plots of theta-polarized gain, phi-polarized gain, and total gain, respectively, for a vertical loop;





FIGS. 39A-39C

are far-field plots of theta-polarized gain, phi-polarized gain, and total gain, respectively, for a horizontal loop;





FIGS. 40A-40B

are plots of current versus distance along the conductors in the two contrawound windings for the feeds of

FIGS. 5A-5H

;





FIG. 41

is a block diagram in schematic form of an electromagnetic antenna employing a ground plane;





FIG. 42

is a block diagram in schematic form of an electromagnetic antenna employing a reflector;





FIG. 43

is a block diagram in schematic form of an electromagnetic antenna employing a second contrawound toroidal helical antenna;





FIG. 44

is a block diagram in schematic form of an electromagnetic antenna in which the antenna signal is capacitively coupled to the contrawound insulated conductors;





FIG. 45

is a block diagram in schematic form of an electromagnetic antenna in which signal terminals provide antenna coupling of a passive element in an array;





FIG. 46

is a block diagram in schematic form of an electromagnetic antenna in which signal terminals provide antenna coupling of passive elements in an array;





FIG. 47

is a block diagram in schematic form of an electromagnetic antenna in which the antenna signal is inductively or magnetically coupled to the contrawound insulated conductors; and





FIGS. 48 and 49

are cross-sectional views of alternative multiply connected surfaces.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




As employed herein the term “multiply connected surface” shall expressly include, but not be limited to: (a) any toroidal surface, such as a preferred toroid form having its major radius greater than or equal to its minor radius, or a toroid form having its major radius less than its minor radius (see, for example, U.S. Pat. No.


5,654,723);


(b) other surfaces formed by rotating and transforming a plane closed curve or polygon having a plurality of different radii about an axis lying on its plane; and (c) still other surfaces, such as surfaces like those of a washer or nut such as a hex nut, formed from a generally planar material in order to define, with respect to its plane, an inside circumference greater than zero and an outside circumference greater than zero, with the outside and inside circumferences being either a plane closed curve and/or a polygon. Furthermore, such multiply connected surfaces may include surfaces formed by an air core or formed on parallel layers of a printed circuit board antenna.




Many factors must be considered when designing an antenna: the efficiency, the input impedance, the far-field radiation pattern, the polarization of the radiated energy, and the size and shape of the antenna. Different applications may stress different factors in the design process.




In accordance with an important aspect of the present invention, the feed of the antenna gives the antenna designer an additional parameter to vary in trying to meet application-specific requirements.




The strength of the prior art CTHA lies in its relatively low profile, which yields a nearly isotropic radiation pattern of predominately theta-polarized radiation. Not all communication tasks require this combination of characteristics. Thus, new characteristics may be developed by varying antenna parameters, including the feed.




For example, an antenna application might need phi-polarized radiation, or it may be geometrically constrained into a vertical position but still need theta-polarized radiation.




As another example, even when a CTHA is in a vertical position (e.g., in a lollipop mode, in the manner of a coin standing on its edge, with the plane of the major circumference being perpendicular to the ground), it is still a compact device that is smaller than conventional antennas, such as a vertical loop antenna.




In an application where cost is the dominating factor, such as a disposable smart card, the need to obtain a 50 ohm input impedance, without the use of costly discrete components in a matching network, may cause an antenna designer to sacrifice uniform radiation pattern or antenna efficiency in the quest for a naturally matched antenna. For example, this case might occur for an in-room communication link connecting a portable device to a network via a wireless link.




A significant variety may be introduced both to input impedance characteristics and to the polarization and radiation pattern of an antenna through the feed selections disclosed herein.




An alternative method of feeding a CTHA includes the use of inductive loops. While the present invention concentrates on various physical connections, other techniques may be applied alone or in combination with any of the physical connections to create a rapid expansion of the number of possible feeds.




The CTHA may have multiple sections, each with a potentially different feed, as in the four sections of the Quad-Contra configuration disclosed in U.S. Pat. No. 5,442,369. For simplicity of disclosure, the following disclosure is with regard to a single contrawound toroidal section, although a plurality of sections may be employed to increase the possible feed configurations.




A single section CTHA has four wire ends, each of which may be: (1) left alone; (2) electrically connected to another wire end; and/or (3) electrically connected to one of two transmitter and/or receiver feed lines. Conversely, each of those two feed lines from the transmitter and/or receiver may be: (1) electrically connected to a wire end; (2) electrically connected to a group of wire ends; (3) electrically connected to something completely different (e.g., a ground plane, reflector, inductively coupled loop); or (4) left unconnected.





FIGS. 4A-4B

show wire ends A,B,C,D for two different CTHA antennas


16


,


17


. The CTHA antenna


16


of

FIG. 4A

has “polar” crossings at the top and the bottom (only the crossings at the top of the antenna


16


are shown) thereof, while the CTHA antenna


17


of

FIG. 4B

, which is shown in profile, has equatorial crossings at the outside and the inside (only the crossing at the outside of the antenna


17


are shown) thereof. In either case, two conductors


18


,


20


are employed with both ends in the feed area


22


. The conductor


18


has ends A,D, while the conductor


20


has ends B,C.




In one embodiment of the invention, the conductors


18


,


20


are insulated conductors. The first insulated conductor, such as


18


, extends around and over a multiply connected surface, such as the exemplary toroidal surface


23


, with a first pitch or winding sense (e.g., a right-handed winding sense) from the node A to the node D. The second insulated conductor, such as


20


, extends around and over the exemplary surface


23


, with a second pitch or winding sense (e.g., a left-handed winding sense) from the node B to the node C. The first and second pitch or winding senses are opposite, in order that the conductors


18


,


20


are contrawound relative to each other around and over the surface


23


.




As disclosed, for example, in U.S. Pat. No. 6,028,558, and as shown in

FIG. 5F

, ends or nodes A and C are suitably electrically connected together with one electrical connection


24


, and ends or nodes B and D are suitably electrically connected together with another electrical connection


26


. This configuration imparts contra-currents on the two contrawound helices formed by the conductors


18


,


20


. Those currents, in turn, add together to form a pseudo-poloidal current, thereby reinforcing the loop magnetic flux. This arrangement is advantageous for producing vertically polarized energy from a predominately horizontal structure. In turn, those electrical connections


24


,


26


form respective “signal terminals”, which are structured for transmitting or receiving an antenna signal


28


. Another prior CTHA feed arrangement is shown in

FIG. 5E

, in which the nodes D and C are electrically connected, and the nodes A and B are electrically connected to signal terminals for transmitting or receiving an antenna signal.




While “terminals” are not an essential part of CTHA antennas, terminals are employed herein as a mechanism for logically describing connections. In this regard, four terminals are employed: terminals #


1


and #


2


represent two feed lines, and terminals #


3


and #


4


represent a mechanism for connecting multiple wire ends, which are not fed. In defining the various feed arrangements which are disclosed herein, each of the four wire ends A,B,C,D can, therefore, have five possible values: the value “0” means no connection, while the values “1,” “2,” “3,” and “4” indicate a terminal connection.




The following six rules (R


1


-R


6


) are employed in defining connections herein: (R


1


) if terminal #


3


or #


4


has a wire electrically connected to it, then it either has more than one wire electrically connected to it, or it is redundant to a configuration having no connection; (R


2


) terminals #


3


and #


4


are interchangeable (i.e., there is no logical difference); (R


3


) terminals #


1


and #


2


are interchangeable (i.e., there is no logical difference); (R


4


) wire ends A and B may be swapped for ends C and D, respectively (ie., there is A⇄C and B⇄D symmetry); (R


5


) wire ends A and D may be swapped for ends B and C, respectively (i.e., there is A⇄B and C⇄D symmetry); and (R


6


) wire ends A and B may be swapped for D and C, respectively (i.e., there is A⇄D and B⇄C symmetry). Rule


6


is the same as performing rule


4


followed by rule


5


. These rules are employed to remove redundant and symmetrical configurations. While this procedure is not the only method for determining all possible configurations, it is sufficiently rigorous to ensure that all configurations are identified. Also, combinations of these symmetry rules are employed to remove all redundant configurations.




Table 1 shows the effect of removing redundant feed configurations by applying successive symmetry rules. There are, thus, 35 physical ways to connect a pair of feed lines to the four wire ends A,B,C,D. In turn, these may be diversified by employing multiple segment CTHAs, or by employing, for example, inductive loops, reflectors, or ground planes, in combination with the various feed configurations.















TABLE 1











Operation




Combinations



























4 wire ends with 5 possible values




625







Rule 1 (R1)




221







Rule 2, Rule 3, and Rule 2 then Rule 3




83







(R2,R3,R2-R3)







R4, R4-R2, R4-R3, R4-R2-R3




51







R5, R5-R2, R5-R3, R5-R2-R3




46







R6, R6-R2, R6-R3, R6-R2-R3




35















Table 2 defines wire end terminal connections for various CTHA feeds and divides the 35 exemplary feed configurations of Table 1 into three main groups: (1) two connection feeds; (2) one connection feeds; and (3) no physical connection feeds. The third category employs alternative feed techniques (e.g., inductive loops, reflectors, ground planes, multiple antennas, antenna coupling of passive elements in an array).















TABLE 2













Wire


















Feed #




A




B




C




D











Two Connections











 1




3




2




3




1







 2




1




0




0




1







 3




0




1




0




2







 4




2




1




0




0







 5




1




2




3




3







 6




2




1




2




1







 7




2




2




1




1







 8




2




3




3




1







 9




1




2




2




1







10




2




2




0




1







11




2




1




0




1







12




1




2




0




2







13




2




1




1




1







One Connection







14




1




0




0




0







15




1




1




0




0







16




1




0




1




0







17




0




1




1




0







18




1




1




1




0







19




3




3




1




0







20




3




1




3




0







21




1




3




3




0







22




1




1




1




1







23




3




3




1




1







24




3




1




3




1







25




1




3




3




1







26




3




3




3




1







No Connections







27




0




0




0




0







28




3




3




0




0







29




3




0




3




0







30




0




3




3




0







31




3




3




3




0







32




3




3




3




3







33




4




4




3




3







34




4




3




4




3







35




3




4




4




3
















FIGS. 5A-5D

and


5


G-


5


M show various CTHA feeds, which employ two feed lines, in accordance with embodiments of the present invention. Those CTHA feeds are applicable with, for example, the exemplary antennas


16


,


17


of

FIGS. 4A-4B

. In the CTHA feed


30


of

FIG. 5A

, the node A is electrically connected to the node C by electrical connection


32


, although the node A of the conductor


18


may be directly electrically connected to the node C of the conductor


20


. The nodes D and B in this feed are electrically connected to signal terminals


34


and


36


, respectively, which are suitably structured for transmitting or receiving an antenna signal


38


.




As shown in

FIG. 5H

, in the CTHA feed


40


, the node B is electrically connected to the node C by electrical connection


42


. As employed herein, electrical connections, such as


32


or


42


, include separate conductors, such as insulated conductors, as well as direct electrical connections of nodes, such as B and C. The nodes A and D in this feed are electrically connected to signal terminals


44


and


46


, respectively, which are structured for transmitting or receiving an antenna signal


48


. For ease of reference, below, it will be understood that signal terminals are structured for transmitting or receiving a corresponding antenna signal.




Referring to

FIG. 5M

, in the CTHA feed


50


, the node B is electrically connected to the node D and to the node C by electrical connection


52


. The nodes D and A in this feed are electrically connected to signal terminals


54


and


56


, respectively, for transmitting or receiving an antenna signal


58


.




In the CTHA feed


60


of

FIG. 5G

, the node A is electrically connected to the node B by electrical connection


61


, and the node D is electrically connected to the node C by electrical connection


62


. The nodes A,B and the electrical connection


61


are electrically connected to signal terminal


64


, and the nodes D,C and the electrical connection


62


are electrically connected to signal terminal


66


, for transmitting or receiving an antenna signal


68


.




Referring to

FIG. 5I

, in the CTHA feed


70


, the node A is electrically connected to the node D by electrical connection


71


, and the node B is electrically connected to the node C by electrical connection


72


. The nodes A,D and the electrical connection


71


are electrically connected to signal terminal


74


, and the nodes B,C and the electrical connection


72


are electrically connected to signal terminal


76


, for transmitting or receiving an antenna signal


78


.





FIGS. 5B-5D

,


5


J-


5


L and


6


A-


6


H show feeds for electromagnetic antennas, such as, for example, the exemplary antennas


16


,


17


of

FIGS. 4A-4B

, in which one, two or three of the nodes A,B,C,D are open.




In the CTHA feed


80


of

FIG. 5B

, the nodes A and D are electrically connected to signal terminals


84


and


86


, respectively, for transmitting or receiving an antenna signal


88


, and the nodes B and C are open.




In the CTHA feed


90


of

FIG. 5C

, the nodes D and B are electrically connected to signal terminals


94


and


96


, respectively, for transmitting or receiving an antenna signal


98


, and the nodes A and C are open.




In the CTHA feed


100


of

FIG. 5D

, the nodes A and B are electrically connected to signal terminals


104


and


106


, respectively, for transmitting or receiving an antenna signal


108


, and the nodes D and C are open.




In the CTHA feed


110


of

FIG. 5J

, the node A is electrically connected to the node B by electrical connection


112


, the nodes A,B and D are electrically connected to signal terminals


114


and


116


, respectively, for transmitting or receiving an antenna signal


118


, and the node C is open.




In the CTHA feed


120


of

FIG. 5K

, the node D is electrically connected to the node B by electrical connection


122


, the nodes D,B and A are electrically connected to signal terminals


124


and


126


, respectively, for transmitting or receiving an antenna signal


128


, and the node C is open.




In the CTHA feed


130


of

FIG. 5L

, the node A is electrically connected to the node D by electrical connection


132


, the nodes A,D and B are electrically connected to signal terminals


134


and


136


, respectively, for transmitting or receiving an antenna signal


138


, and the node C is open.




In addition to showing feeds for electromagnetic antennas, such as, for example, the exemplary antennas


16


,


17


of

FIGS. 4A-4B

, in which one, two or three of the nodes A,B,C,D are open (FIGS.


6


A-


6


H),

FIGS. 6A-6M

show CTHA feeds, which employ only one direct feed connection in accordance with other embodiments of the present invention.




In the CTHA feed


140


of

FIG. 6A

, the nodes D,B,C are open, a signal terminal


144


is electrically connected to the node A, and a signal terminal


146


is structured for connection to a cooperative antenna structure such as, for example, the ground plane


147


of

FIG. 41

, the reflector


148


of

FIG. 42

, the other CTHA


149


of

FIG. 43

, or any other antenna structure. For convenience of reference, it will be understood that signal terminals, such as


144


,


146


, are for transmitting or receiving an antenna signal, such as


148


.




In the CTHA feed


150


of

FIG. 6B

, the node A is electrically connected to the node B by an electrical connection


152


, the nodes D and C are open, a first signal terminal


154


is electrically connected to the nodes A,B, and a second signal terminal


156


is structured for connection to a cooperative antenna structure. The terminals


154


,


156


are for an antenna signal


158


.




In the CTHA feed


160


of

FIG. 6C

, the node A is electrically connected to the node C by an electrical connection


162


, the nodes D and B are open, a first signal terminal


164


is electrically connected to the nodes A,C, and a second signal terminal


166


is structured for connection to a cooperative antenna structure. The terminals


164


,


166


are for an antenna signal


168


.




In the CTHA feed


170


of

FIG. 6D

, the node B is electrically connected to the node C by an electrical connection


172


, the nodes A and D are open, a first signal terminal


174


is electrically connected to the nodes B,C, and a second signal terminal


176


is structured for connection to a cooperative antenna structure. The terminals


174


,


176


are for an antenna signal


178


.




In the CTHA feed


180


of

FIG. 6E

, the node A is electrically connected to the nodes B and C by an electrical connection


182


, the node D is open, a first signal terminal


184


is electrically connected to the nodes A,B,C, and a second signal terminal


186


is structured for connection to a cooperative antenna structure. The terminals


184


,


186


are for an antenna signal


188


.




In the CTHA feed


190


of

FIG. 6F

, the node A is electrically connected to the node B by an electrical connection


192


, the node D is open, a first signal terminal


194


is electrically connected to the node C, and a second signal terminal


196


is structured for connection to a cooperative antenna structure. The terminals


194


,


196


are for an antenna signal


198


.




In the CTHA feed


200


of

FIG. 6G

, the node A is electrically connected to the node C by an electrical connection


202


, the node D is open, a first signal terminal


204


is electrically connected to the node B, and a second signal terminal


206


is structured for connection to a cooperative antenna structure. The terminals


204


,


206


are for an antenna signal


208


.




In the CTHA feed


210


of

FIG. 6H

, the node B is electrically connected to the node C by an electrical connection


212


, the node D is open, a first signal terminal


214


is electrically connected to the node A, and a second signal terminal


216


is structured for connection to a cooperative antenna structure. The terminals


214


,


216


are for an antenna signal


218


.




In the CTHA feed


220


of

FIG. 6I

, the node A is electrically connected to the node D by an electrical connection


221


, the node B is electrically connected to the node C by an electrical connection


222


, a first signal terminal


224


is electrically connected to the nodes A,B,C,D, and a second signal terminal


226


is structured for connection to a cooperative antenna structure. The terminals


224


,


226


are for an antenna signal


228


.




In the CTHA feed


230


of

FIG. 6J

, the node A is electrically connected to the node B by an electrical connection


231


, the node D is electrically connected to the node C by an electrical connection


232


, a first signal terminal


234


is electrically connected to the nodes D,C, and a second signal terminal


236


is structured for connection to a cooperative antenna structure. The terminals


234


,


236


are for an antenna signal


238


.




In the CTHA feed


240


of

FIG. 6K

, the node A is electrically connected to the node C by an electrical connection


241


, the node D is electrically connected to the node B by an electrical connection


242


, a first signal terminal


244


is electrically connected to the nodes D,B, and a second signal terminal


246


is structured for connection to a cooperative antenna structure. The terminals


244


,


246


are for an antenna signal


248


.




In the CTHA feed


250


of

FIG. 6L

, the node A is electrically connected to the node D by an electrical connection


251


, the node B is electrically connected to the node C by an electrical connection


252


, a first signal terminal


254


is electrically connected to the nodes A,D, and a second signal terminal


256


is structured for connection to a cooperative antenna structure. The terminals


254


,


256


are for an antenna signal


258


.




In the CTHA feed of

FIG. 6M

, the node A is electrically connected to the nodes B,C by electrical connection


262


, signal terminal


264


is electrically connected to the node D, and signal terminal


266


is structured for connection to a cooperative antenna structure. The terminals


264


,


266


are for an antenna signal


268


.





FIGS. 7A-7I

show various CTHA feeds, which employ no direct feed connection. In particular,

FIG. 7A

shows CTHA feed


270


in which signal terminals


274


,


276


are structured for transmitting or receiving an antenna signal


278


. A suitable circuit


279


couples the antenna signal


278


to or from conductors, such as the exemplary insulated conductors


18


,


20


of

FIGS. 4A-4B

.




In

FIGS. 7A-7E

, one, two or all four of the nodes A,B,C,D of the CTHA feeds


270


,


280


,


290


,


300


,


310


are open. Like the feed


270


of

FIG. 7A

, it is understood that the CTHA feeds


270


,


280


,


290


,


300


,


310


,


320


,


330


,


340


,


350


of

FIGS. 7B-71

, respectively, each employ a suitable coupling circuit, such as


279


of FIG.


7


A.




All of the nodes A,B,C,D of the feed


270


of

FIG. 7A

are open. In the feed


280


of

FIG. 7B

, the node A is electrically connected to the node B by electrical connection


282


, and the nodes D,C are open. In the feed


290


of

FIG. 7C

, the node A is electrically connected to the node C by electrical connection


292


, and the nodes D,B are open.

FIG. 7D

shows the feed


300


, in which node B is electrically connected to the node C by electrical connection


302


, and the nodes A,D are open. In the feed


310


of

FIG. 7E

, the node A is electrically connected to the node B and the node C by electrical connection


302


, and the node D is open.




In

FIGS. 7F-7I

, the nodes A,B,C,D of these CTHA feeds are interconnected with at least one other node. In the feed


320


of

FIG. 7F

, the node A is electrically connected to the node D by electrical connection


321


, and the node B is electrically connected to the node C by electrical connection


322


. In turn, the nodes A,D are electrically connected (e.g., at


323


) to the nodes B,C. In the feed


330


of

FIG. 7G

, the node A is electrically connected to the node B by electrical connection


331


, and the node D is electrically connected to the node C by electrical connection


332


. In the feed


340


of

FIG. 7H

, the node A is electrically connected to the node C by electrical connection


341


, and the node D is electrically connected to the node B by electrical connection


342


.




In the embodiment of

FIG. 7G

, the exemplary electrical connections


331


,


332


, and the exemplary insulated conductors


18


,


20


, include a single insulated conductor which forms a single endless conductive path around and over the surface, such as the exemplary toroidal surface


23


of FIG.


4


A.




In the feed


350


of

FIG. 71

, the node A is electrically connected to the node D by electrical connection


351


, and the node B is electrically connected to the node C by electrical connection


352


.




EXAMPLES 1-8




The following examples illustrate the behavior of CTHAs having feeds #1-#8 (i.e.,

FIGS. 5A-5H

, respectively), as set forth in Table 2. These feeds are modeled in NEC 4 (ie., Numerical Electromagnetics Code, Version 4, maintained by Los Alamos National Laboratory). In these examples, an exemplary 10-turn CTHA has a major radius of 1.05 in (0.413 cm), a minor radius of 0.185 in. (0.0728 cm), and a wire diameter of 0.0143 in. (0.00570 cm), and the exemplary antennas employ “polar crossings” (i.e., wire crossings above and below) as shown in

FIG. 4A

, although a wide range of antenna geometries, sizes, and wire sizes may be employed.




The conventional CTHA feed of

FIG. 5F

is employed as the basis of comparison for much of the following discussion.

FIGS. 8-15

are plots of the impedance spectrums for the CTHA feeds of

FIGS. 5A-5H

, respectively.

FIG. 8

shows the impedance spectrum for feed


30


of

FIG. 5A

, which has a reduction in the frequency of the first resonance due to the effective doubling of the wire length between the two feed points


34


,


36


. This is accomplished by electrically connecting the nodes A,C, but feeding the other two nodes D,B. The exemplary feed


30


configuration has a resonance at 300 MHz, as opposed to an anti-resonance, thereby improving impedance matching bandwidth, since the change of impedance with respect to frequency is less rapid at a resonance, as opposed to an anti-resonance. FIG.


8


and

FIG. 13

are based upon the same physical antenna, except that different feeds are employed. The feed


30


configuration greatly reduces the input impedance at 300 MHz, thereby improving impedance matching characteristics. Furthermore, as discussed below, the gain and shape of the corresponding radiation pattern is typically affected by the feed configuration to, thereby, meet various communication needs.





FIG. 9

shows the impedance spectrum for feed


80


of

FIG. 5B

, which leaves the first resonance essentially the same with respect to the feed of

FIG. 5F

, but significantly affects the regular intervals of subsequent resonances. It is believed that this is of importance when operating the exemplary antenna at higher resonances. Feed


80


is essentially a single toroidal helix, as formed by the exemplary conductor


18


, which has a second contrawound toroidal helix, as formed by the exemplary conductor


20


, passively coupled thereto. It is believed that the irregularity in the impedance spectrum of

FIG. 9

coincides with varying degrees of coupling between the CTHA wires.




The impedance spectrum of feed


90


in

FIG. 10

is relatively chaotic from the perspective of regular interval resonances, although it is believed that it has a useful design point at its third resonance


99


.





FIG. 11

shows an impedance spectrum for feed


100


of

FIG. 5D

, which switches to a low impedance first resonance


101


. This is possible by leaving the nodes D,C of

FIG. 5D

unconnected. This spectrum essentially changes a low current feed (e.g., such as a loop) to a high current feed (e.g., such as a dipole), and exhibits regularly spaced resonances at 150 MHz intervals. It is believed that this impedance spectrum may be advantageous at 300 MHz. Furthermore, it is believed that it has similar currents with respect to the feed of

FIG. 5F and

, therefore, should advantageously produce vertically polarized energy from an exemplary horizontal toroid.





FIG. 12

shows the impedance spectrum of the feed of

FIG. 5E

, which has regular interval resonances beginning at 150 MHz due to the effective increase in wire length between the two feed points at nodes A,B.




Although the feed of

FIG. 5F

(the corresponding impedance spectrum is shown in

FIG. 13

) imposes contra-currents in the contrawindings


18


,


20


and, hence, augments magnetic fields at the expense of azimuthal phi-polarized electric fields, the feed


60


of

FIG. 5G

imposes similar currents in the contrawindings, thereby maximizing azimuthal phi-polarized electric fields at the expense of magnetic fields. It is believed that this feed is advantageous for horizontally polarized communication and is especially beneficial at vertically polarized radiation in the vertical position (i.e., when employed in a “lollipop mode”). Of particular interest is the relatively large change in the first resonance, as shown by the corresponding impedance spectrum of

FIG. 14

, which is due to a greatly changed effective velocity factor when employing similar currents.




The feed


40


of

FIG. 5H

is similar to the feed


80


of

FIG. 5B

in that there is one driven helix and one passively coupled helix. However, by closing the second helix (i.e., between the nodes B,C), the coupling now follows a more uniform behavior as shown in the impedance spectrum of FIG.


15


.




The exemplary feeds


30


(FIGS.


5


A and


8


),


80


(FIGS.


5


C and


10


), and


100


(

FIGS. 5D and 11

) lead to a lowering of the first resonance frequency relative to the feed of

FIGS. 5F and 13

, while feeds


60


(

FIGS. 5G and 14

) and


40


(

FIGS. 5H and 15

) increase the first resonance frequency, and feed


80


(

FIGS. 5B and 9

) maintains that first resonance frequency.





FIG. 16

shows a plot of calculated resonant frequencies between 5 and 1000 MHz for a CTHA having the feeds of

FIGS. 5A-5H

. The impedance spectrum for the feed #


6


of

FIG. 5F

has regular interval resonances starting near 300 MHz and alternates between high impedance and low impedance throughout the spectrum. The first resonance refers to the first crossing of the x-axis by the reactance portion of the impedance, even if that crossing represents a discontinuity or anti-resonance. In this plot, the feeds of FIGS.


5


D-SF maintain evenly spaced resonance intervals, while the feeds of

FIGS. 5A-5C

,


5


G and


5


H vary to some extent.




Table 3, below, shows the computed resonant frequencies (MHz) for the feeds of

FIGS. 5A-5H

.




















TABLE 3










Feed




Feed




Feed




Feed




Feed




Feed




Feed




Feed






Resonance




#1




#2




#3




#4




#5




#6




#7




#8











1




156.67




302.59




157.14




148.82




141.51




302.51




542.40




360.80






2




304.96




361.45




548.16




302.49




305.23




597.26





598.95






3




587.89




547.66




595.75




457.02




456.70




917.73





828.84






4




926.01




843.38




601.23




602.86




599.60






5





916.42





756.71




753.26






6







916.67




924.84















FIG. 17

is a plot of the real part of the impedance at various resonances between 5 and 1000 MHz for the feeds of

FIGS. 5A-5H

, respectively. The feeds of

FIGS. 5A

,


5


B, and


5


E-


5


H start at relatively high impedance resonances (i.e., the first resonance looking left to right—the first crossing of the reactance across the frequency axis is referred to as a resonance) (see

FIGS. 8

,


9


and


12


-


15


, respectively). In this regard, if the resistance curve has a relatively high value at the place the reactance crosses the frequency axis, then this is referred to as a high impedance resonance. Otherwise, if, at the resonance, the resistance curve has a relatively low value, then this is referred to as a low impedance resonance. Alternatively, some might call the high impedance resonance an “anti-resonance”. Each impedance spectrum generally shows a repeating pattern of high and low impedance resonances. Some start low and then proceed to high, low, high, etc.; while others start high and then proceed to low, high, low, etc. Some of the feed arrangements disclosed herein are such that the magnetic fields are cancelled and the electric fields are reinforced for applications where a loop antenna pattern is desired, but is smaller in size due to its helical nature.





FIG. 18

is a plot of maximum azimuthal gains for the feeds of

FIGS. 5A-5H

, respectively, at the respective first resonances. An important design consideration is the gain of an antenna. This plot provides an interesting comparison for a fixed size antenna. However, in most applications, the frequency is fixed and a different sized antenna would be employed for each feed in order to provide the same first resonance. Hence, better comparison of the feeds may be obtained. From a pure gain perspective, the feed (#


7


) of

FIG. 5G

is preferred to the extent that energy being completely phi polarized (max_Az_phi) is desired. In that regard, such a polarization may solve various communications problems (e.g., the CTHA acts like a loop antenna, but is smaller than a traditional loop), although it deviates from the traditional CTHA concept of a horizontal structure, which produces vertically polarized radiation.





FIG. 19

is a plot of average azimuthal gains for the feeds of

FIGS. 5A-5H

, respectively, at the respective first resonances.





FIG. 20

is a plot of average azimuthal gains for the feeds of

FIGS. 5A-5H

, respectively, at the respective first resonances as shown at the frequency of those resonances. This plot shows that the variation in average gain (θ, φ, and total) at the respective first resonances is due to changes in frequency of these resonances. In general, if frequency were the only factor, then all of the points would fall on the same curve. Since this is not the case, then it is believed that there are relative efficiency differences for the respective feed configurations of

FIGS. 5A-5H

.





FIGS. 21A-21C

through


28


A-


28


C are far-field plots of theta-polarized gain (FIGS.


21


A-


28


A), phi-polarized gain (FIGS.


21


B-


28


B), and total gain (

FIGS. 21C-28C

) for the feeds of

FIGS. 5A-5H

, respectively, at the respective first resonances. These plots show the relative shapes and magnitudes of the radiation patterns for those feeds. The null


360


(

FIG. 21B

) and the null


362


(

FIG. 23B

) are relatively deep nulls in the phi-polarized gain pattern where very large drops in performance are observed, such as, for example, above and below in the case of a vertical dipole (not shown). These nulls are in contrast to simple dimples or flat spots (see

FIG. 26B

) typically observed with the feed of FIG.


5


F. The nulls, for example, may be employed to reject noise from unwanted sources. Benefits in the input impedance spectrum as derived, for example, from non-symmetric feeds, such as the feed


80


of

FIG. 5B

, yield non-symmetry in the corresponding radiation pattern as shown in

FIGS. 22A-22C

.





FIGS. 29-31

show various slices of the


3


D radiation patterns of

FIGS. 21A-28C

, in order to better illustrate relative quantities. These comparisons are at the respective first resonances and, therefore, are not at the same frequency.

FIG. 29

shows an azimuth cut of theta-polarized gain versus phi-degrees at each of the first resonances for the respective feeds of

FIGS. 5A-5H

.

FIGS. 30 and 31

similarly show an azimuth cut of phi-polarized gain versus phi-degrees, and an azimuth cut of total gain versus phi-degrees, respectively.





FIGS. 32-34

illustrate the relative performance of a CTHA antenna, which employs the different feeds of

FIGS. 5A-5H

, throughout the spectrum.

FIG. 32

is a plot of total gain versus frequency averaged over the entire far-field sphere in order to approximate efficiency.

FIGS. 33 and 34

are plots of theta-polarized gain and phi-polarized gain, respectively, versus frequency averaged over the azimuth cut.

FIG. 32

shows that the feed of

FIG. 5F

is not the most efficient radiator; however, comparison between FIG.


32


and

FIG. 34

shows that the most efficient feeds are those that excel in the production of phi-polarized energy in the azimuthal plane. It is believed that these relatively efficient antenna feeds will solve various communication needs. For example, feed


60


(

FIG. 5G

) has high efficiency, as shown in

FIG. 32

, but low theta-polarized energy in the azimuthal plane, as shown in

FIG. 33

, and high phi-polarized energy in the azimuthal plane, as shown in

FIG. 34

, which would make it preferred for television, as contrasted with FM radio.




An original goal of obtaining vertically polarized energy from a low profile antenna is best judged from

FIG. 33

for the azimuthal plane. From 450 MHz and up (about 1.5 times the first resonance of the feed of FIG.


5


F), the feed of

FIG. 5F

has a relatively high efficiency, as do feed


100


of FIG.


5


D and the feed of FIG.


5


E. While not more efficient, it is believed that these latter two feeds may be more readily matched at 450 MHz, due to proximity of the resonances.




Furthermore, the feed


40


of

FIG. 5H

appears to have one highly efficient point at its second resonance of 600 MHz. Also, below 450 MHz, feed


30


(

FIG. 5A

) and the feed of

FIG. 5E

are more efficient than the feed of FIG.


5


F. Further, below 300 MHz, the feeds


90


(

FIG. 5C

) and


100


(

FIG. 5D

) are also more efficient than the feed of

FIG. 5F

at theta-polarized radiation in the azimuth plane. While that latter feed usually produces one of the more spherical theta-polarized patterns, the strong phi-polarized feeds


30


,


90


,


60


,


40


(

FIGS. 5A

,


5


C,


5


G,


5


H, respectively) are more spherical in the phi-polarized radiation. The diverse resonances have an effect on where various feeds are more spherical throughout the spectrum.




The exemplary relationships disclosed herein are for a single fixed-geometry antenna having different feeds. A different set of relationships may result from scaling the antennas with different feeds in order that they all have the same first resonance.




Operation of CTHA antennas, which employ the feeds disclosed herein, either on or off of resonance is a matter of providing a suitable matching mechanism in order that energy is successfully coupled into the antenna and standing waves are established to successfully radiate (or receive) the energy. Since this can be achieved ahnost anywhere in the impedance spectrum, the different feeds may be compared for efficiency without regard to their natural resonances.




As employed herein, the term sphericity quantifies the isotropic nature of the radiation pattern (i.e., smoothness over the sphere, not efficiency). The quantity developed here is roughly analogous to the standard deviation or variance of the gain over the entire sphere. As such, smaller numbers correspond to more spherical, or more isotropic, patterns.





FIG. 35

is a plot of sphericity theta-polarized gain versus frequency for the respective feeds of

FIGS. 5A-5H

over the entire far-field sphere. Similarly,

FIGS. 36 and 37

are plots of sphericity phi-polarized gain and sphericity total gain, respectively, versus frequency for those feeds over the entire far-field sphere.





FIGS. 38A-38C

show far-field patterns for a conventional vertical loop produced for a full λ resonance. The field patterns are similar to those of a CTHA employing the feed of

FIG. 5F

(see

FIGS. 26A-26C

) at second resonance (i.e., the full λ resonance).

FIGS. 39A-39C

show far-field patterns for a conventional horizontal loop.

FIGS. 38A and 39A

show theta-polarized gain,

FIGS. 38B and 39B

show phi-polarized gain, and

FIGS. 38C and 39C

show total gain. These patterns illustrate similarities between full size vertical and horizontal loops and compact CTHAs.





FIGS. 40A-40B

show simulated currents versus length along the conductors in the two helical contrawound windings for the feeds of

FIGS. 5A-5H

. These show that the feeds of

FIGS. 5E and 5F

produce contra-currents, while the feed


60


of

FIG. 5G

produces similar currents, or co-currents. The relative magnitudes of the currents of the respective feeds vary as well. The second loop of feed


40


of

FIG. 5H

resonates naturally with a contra-current, but is not centered on the vertical current axis. Since the second loop of feed


40


is not electrically connected to that feed, it is free to float at some DC value above the driven helix center.





FIG. 41

shows an electromagnetic antenna


370


, which employs ground plane


147


, in order to form a monopole antenna. In this example, the signal terminal


246


of the feed


240


is electrically connected to the ground plane


147


.





FIG. 42

shows an electromagnetic antenna


380


, which employs reflector


148


. In this example, the signal terminal


246


of the feed


240


is electrically connected to the reflector


246


.





FIG. 43

shows an electromagnetic antenna


390


, which employs a second CTHA antenna


149


. In this example, the signal terminal


246


of the feed


240


is electrically connected to the second antenna


149


.




Although reference is made in

FIGS. 41-43

to the exemplary feed


240


of

FIG. 6K

, these examples are applicable to any of the exemplary feeds of

FIGS. 6A-6M

.





FIG. 44

shows an electromagnetic antenna


400


in which the antenna signal


402


is capacitively coupled to contrawound insulated conductors


404


,


406


. A suitable circuit


408


is employed to capacitively couple the antenna signal


402


.





FIG. 45

shows an electromagnetic antenna


410


in which signal terminals


412


,


414


provide antenna coupling of a passive CTHA element


416


in an array with an active dipole


418


.





FIG. 46

shows an electromagnetic antenna


420


in which signal terminals


422


,


424


provide antenna coupling of passive CTHA elements


426


,


427


in an array with an active CTHA


428


.





FIG. 47

shows an example of a conventional shielded loop


430


which is employed to magnetically couple an RF signal at signal carrying terminals


431


,


432


to or from a CTHA antenna


433


. The shielded loop


430


is formed by a coaxial cable


434


(e.g., 50Ω), in which the shield


435


is cut at


436


and


438


to expose the center conductor


440


. In turn, the center conductor


440


and the corresponding shield


435


are electrically connected to the exposed shield


435


at


441


. The exposed center conductor


440


(or cut shield) at


436


serves to stop the current flow in the shield


435


. Although no electrical connection is made from the coupling loop


442


to the antenna


433


, the loop


442


is suitably positioned in proximity to the CTHA


433


, and preferably without passing completely around the exemplary toroidal surface, in order to couple and match RF energy to or from the antenna


433


. Preferably, the size of the loop


442


is relatively small with respect to the wavelength, λ, of the RF signal at terminals


431


,


432


.





FIGS. 48 and 49

show other variations of multiply connected surfaces


450


and


452


, respectively. The surface


450


has a cross-section


454


, which is a generally connected form. The surface


452


is a generalized toroid having a cross-section


456


, which is non-circular (e.g., oval, elliptical, egg-shaped).




As disclosed in U.S. Pat. No. 6,028,558, the exemplary contrawound conductors or conductive paths, such as the exemplary insulated conductors


18


,


20


of

FIG. 4A

, may be contrawound helical conductive paths having the same number of turns, with the helical pitch sense for one conductive path being right hand (RH), and the helical pitch sense for the other conductive path being left hand (LH), which is opposite from the RH pitch sense. The exemplary conductive paths disclosed herein may be arranged in other than a helical fashion, such as a generally helical fashion, a spiral fashion, a caduceus fashion, or any contrawound fashion, and still satisfy the spirit of this invention. The conductive paths may further be contrawound “poloidal-peripheral winding patterns” having opposite winding senses (e.g., the helix formed by each of two insulated conductors is decomposed into a series of interconnected poloidal loops) (see, for example, U.S. Pat. No. 5,442,369). Although exemplary insulated conductor windings


18


,


20


are disclosed herein, such conductors need not be entirely insulated. In other words, such conductors, while being isolated from each other (except at points where electrical connections are intended), may employ other forms of insulation (e.g., without limitation, air gaps).




As disclosed herein, different modes of operation of the CTHA may be induced by different feed configurations.




While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.



Claims
  • 1. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; and first and second signal terminals, wherein said first node is electrically connected to said fourth node, and said first and second signal terminals are electrically connected to said second and third nodes, respectively.
  • 2. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; and first and second signal terminals, wherein said third node is electrically connected to said fourth node, and said first and second signal terminals are electrically connected to said first and second nodes, respectively.
  • 3. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; and first and second signal terminals, wherein said second node is electrically connected to said third node and said fourth node, and said first and second signal terminals are electrically connected to: (a) said second, third and fourth nodes, and (b) said first node, respectively.
  • 4. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; and first and second signal terminals, wherein said first node is electrically connected to said second node, said third node is electrically connected to said fourth node, and said first and second signal terminals are electrically connected to: (a) said first and second nodes, and (b) said third and fourth nodes, respectively.
  • 5. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; and first and second signal terminals, wherein at least one of said nodes is open.
  • 6. The electromagnetic antenna of claim 5, whereinsaid first and second signal terminals are electrically connected to said first and second nodes, respectively; and said third and fourth nodes are open.
  • 7. The electromagnetic antenna of claim 5, whereinsaid first and second signal terminals are electrically connected to said second and third nodes, respectively; and said first and fourth nodes are open.
  • 8. The electromagnetic antenna of claim 5, whereinsaid first and second signal terminals are electrically connected to said first and third nodes, respectively; and said second and fourth nodes are open.
  • 9. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said third node; said fourth node is open; and said first and second signal terminals are electrically connected to: (a) said first and third nodes, and (b) said second node, respectively.
  • 10. The electromagnetic antenna of claim 5, whereinsaid second node is electrically connected to said third node; said fourth node is open; and said first and second signal terminals are electrically connected to: (a) said second and third nodes, and (b) said first node, respectively.
  • 11. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said second node; said fourth node is open; and said first and second signal terminals are electrically connected to: (a) said first and second nodes, and (b) said third node, respectively.
  • 12. The electromagnetic antenna of claim 5, whereinsaid second, third and fourth nodes are open; said first signal terminal is electrically connected to said first node; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 13. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said third node; said second and fourth nodes are open; said first signal terminal is electrically connected to said first and third nodes; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 14. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said fourth node; said second and third nodes are open; said first signal terminal is electrically connected to said first and fourth nodes; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 15. The electromagnetic antenna of claim 5, whereinsaid third node is electrically connected to said fourth node; said first and second nodes are open; said first signal terminal is electrically connected to said third and fourth nodes; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 16. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said third and fourth nodes; said second node is open; said first signal terminal is electrically connected to said first, third and fourth nodes; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 17. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said third node; said second node is open; said first signal terminal is electrically connected to said fourth node; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 18. The electromagnetic antenna of claim 5, whereinsaid first node is electrically connected to said fourth node; said second node is open; said first signal terminal is electrically connected to said third node; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 19. The electromagnetic antenna of claim 5, whereinsaid third node is electrically connected to said fourth node; said second node is open; said first signal terminal is electrically connected to said first node; and said second signal terminal is structured for connection to a cooperative antenna structure.
  • 20. The electromagnetic antenna of claim 5 wherein said multiply connected surface is a toroidal surface.
  • 21. The electromagnetic antenna of claim 5 wherein a plurality of said nodes are open.
  • 22. The electromagnetic antenna of claim 5, wherein said multiply connected surface has a cross section which is a generally connected form.
  • 23. The electromagnetic antenna of claim 5, wherein said first and second pitch or winding senses are first and second helical pitch senses.
  • 24. The electromagnetic antenna of claim 5, wherein said first and second pitch or winding senses are first and second poloidal-peripheral winding patterns.
  • 25. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; and first and second signal terminals, wherein said first, third and fourth nodes are electrically connected, wherein one of said first and second signal terminals is electrically connected to said second node, and wherein the other of said first and second signal terminals is structured for connection to a cooperative antenna structure.
  • 26. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; first and second signal terminals; and a cooperative antenna structure, wherein one of said first and second signal terminals is electrically connected to at least one of said nodes, and wherein the other of said first and second signal terminals is electrically connected to said cooperative antenna structure.
  • 27. The electromagnetic antenna of claim 26, whereinsaid second, third and fourth nodes are open; said first signal terminal is electrically connected to said first node; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 28. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said third node; said second and fourth nodes are open; said first signal terminal is electrically connected to said first and third nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 29. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said fourth node; said second and third nodes are open; said first signal terminal is electrically connected to said first and fourth nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 30. The electromagnetic antenna of claim 26, whereinsaid third node is electrically connected to said fourth node; said first and second nodes are open; said first signal terminal is electrically connected to said third and fourth nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 31. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said third and fourth nodes; said second node is open; said first signal terminal is electrically connected to said first, third and fourth nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 32. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said third node; said second node is open; said first signal terminal is electrically connected to said fourth node; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 33. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said fourth node; said second node is open; said first signal terminal is electrically connected to said third node; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 34. The electromagnetic antenna of claim 26, whereinsaid third node is electrically connected to said fourth node; said second node is open; said first signal terminal is electrically connected to said first node; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 35. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said second node; said third node is electrically connected to said fourth node; said first signal terminal is electrically connected to said first, second, third, and fourth nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 36. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said third node; said second node is electrically connected to said fourth node; said first signal terminal is electrically connected to said second and fourth nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 37. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said fourth node; said second node is electrically connected to said third node; said first signal terminal is electrically connected to said second and third nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 38. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said second node; said third node is electrically connected to said fourth node; said first signal terminal is electrically connected to said first and second nodes; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 39. The electromagnetic antenna of claim 26, whereinsaid first node is electrically connected to said third node and said fourth node; said first signal terminal is electrically connected to said second node; and said second signal terminal is electrically connected to said cooperative antenna structure.
  • 40. The electromagnetic antenna of claim 26, whereinsaid cooperative antenna structure is a ground plane.
  • 41. The electromagnetic antenna of claim 26, whereinsaid cooperative antenna structure is a reflector.
  • 42. The electromagnetic antenna of claim 26, whereinsaid cooperative antenna structure is a contrawound toroidal helical antenna.
  • 43. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling said antenna signal to or from said first and second insulated conductors, wherein at least one of said nodes is open.
  • 44. The electromagnetic antenna of claim 43, whereinsaid first, second, third and fourth nodes are open.
  • 45. The electromagnetic antenna of claim 43, whereinsaid first node is electrically connected to said third node; and said second and fourth nodes are open.
  • 46. The electromagnetic antenna of claim 43, whereinsaid first node is electrically connected to said fourth node; and said second and third nodes are open.
  • 47. The electromagnetic antenna of claim 43, whereinsaid third node is electrically connected to said fourth node; and said first and second nodes are open.
  • 48. The electromagnetic antenna of claim 43, whereinsaid first node is electrically connected to said third node and said fourth node; and said second node is open.
  • 49. The electromagnetic antenna of claim 43, whereinsaid means for coupling said antenna signal includes an inductively or magnetically coupled loop.
  • 50. The electromagnetic antenna of claim 43, whereinsaid means for coupling said antenna signal includes means for capacitively coupling said antenna signal.
  • 51. The electromagnetic antenna of claim 43, whereinsaid first and second signal terminals provide antenna coupling of at least one passive element in an array.
  • 52. The electromagnetic antenna of claim 43, whereinsaid first and second signal terminals are electrically connected to a linear array; and at least some of said nodes are coupled to said linear array, in order to form an antenna array.
  • 53. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling said antenna signal to or from said first and second insulated conductors, wherein said first node is electrically connected to said second node, said third node is electrically connected to said fourth node, and said first and second nodes are electrically connected to said third and fourth nodes.
  • 54. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling said antenna signal to or from said first and second insulated conductors, wherein said first node is electrically connected to said third node, and said second node is electrically connected to said fourth node.
  • 55. The electromagnetic antenna of claim 54 wherein said insulated conductors include a single insulated conductor which forms a single endless conductive path.
  • 56. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and a shielded loop, proximate said multiply connected surface, without passing completely around said surface, said shielded loop electrically connected to said signal terminals and coupling said antenna signal to or from said first and second insulated conductors, wherein said first node is electrically connected to said fourth node, and said second node is electrically connected to said third node.
  • 57. The electromagnetic antenna of claim 56 wherein said insulated conductors include a single insulated conductor which forms a single endless conductive path.
  • 58. An electromagnetic antenna comprising:a multiply connected surface; first and second insulated conductors, said first insulated conductor extending around and over said multiply connected surface with a first pitch or winding sense from a first node to a second node, said second insulated conductor also extending around and over said multiply connected surface with a second pitch or winding sense, which is opposite from the first pitch or winding sense, from a third node to a fourth node, in order that said first and second insulated conductors are contrawound relative to each other around and over said multiply connected surface; first and second signal terminals structured for transmitting or receiving an antenna signal; and means for coupling said antenna signal to or from said first and second insulated conductors, wherein said first node is electrically connected to said second node, and said third node is electrically connected to said fourth node.
  • 59. The electromagnetic antenna of claim 58 wherein said insulated conductors have polar crossings on said surface.
  • 60. The electromagnetic antenna of claim 58 wherein said insulated conductors have equatorial crossings on said surface.
US Referenced Citations (17)
Number Name Date Kind
3284801 Bryant Nov 1966 A
3646562 Acker et al. Feb 1972 A
3671970 Layton Jun 1972 A
3721989 Christensen Mar 1973 A
4622558 Corum Nov 1986 A
4751515 Corum Jun 1988 A
4999642 Wells Mar 1991 A
5159332 Walton Oct 1992 A
5257033 Roche Oct 1993 A
5442369 Van Voorhies et al. Aug 1995 A
5654723 Craven et al. Aug 1997 A
5734353 Van Voorhies Mar 1998 A
5952978 Van Voorhies Sep 1999 A
6028558 Van Voorhies Feb 2000 A
6204821 Van Voorhies Mar 2001 B1
6218998 Van Voorhies Apr 2001 B1
6320550 Van Voorhies Nov 2001 B1
Foreign Referenced Citations (3)
Number Date Country
3823972 Jan 1990 DE
043591 Jan 1982 EP
7146386 Jun 1995 JP
Non-Patent Literature Citations (7)
Entry
J.M. Ham, et al., “Time-Varying Electric and Magnetic Fields,” Scientific Basis of Electrical Engineering, pp. 302-305, 1961.
Howard W. Sams, Reference Data for Radio Engineers, 7th Ed. E.C. Jordan Ed., pp. 6-13-6-14.
Kandoian, A.G., et al., “Wide Frequency-Range Tuned Helical Antennas and and Circuits,” Fed. Telecommunication Laboratories, Inc., pp. 42-47, 1953.
Birdsall, C.K., et al., “Modified Contra-Wound Helix Circuits for High-Power Traveling-Wave Tubes,” IRE Transactions on Electron Devices, pp. 190-206, Oct. 1956.
Harington, R.F., “Time Harmonic Electromagnetic Fields,” pp. 106-111, 1961.
Van Voorhies, K.L., et al., “Energy and the Environment: A Continuing Partnership,” 26th Intersociety Energy Conversion Engineering Conference, 6 pp., Aug. 1991.
Ben Smith, “CTHA Evaluation,” http://www.antennex.com, pp. 1-11, Feb. 23, 2000.