This application claims priority to European Application No. 16188575.1, filed Sep. 13, 2016, the contents of such applications being incorporated by reference herein.
The present invention relates to a control algorithm for operating a fluid disinfecting system.
The antimicrobial action of ultraviolet (UV) radiation is well known. A drawback of existing systems resides in the power consumption and limited lifespan of UV lamps. In order to address this, it is desirable to provide a means to control the intensity of the UV lamp, in order that the lamp intensity may be attenuated adapted to the status of the system.
Low-pressure UV lamps used in disinfection plants comprise a pair of heating filaments or cathodes at either end. A supplied voltage is utilized to heat the cathodes up to a temperature at which an emission of electrons occurs. These electrons can then be used to initiate a glow discharge across the tube causing the gas to radiate by applying a high voltage across the two cathodes. Commonly, an electronic dimmer circuit linked to the UV lamp is used to control its intensity.
It is known that UV lamp cathodes should be pre-heated in order to start the lamp, as explained above. Pre-heating increases the so-called thermionic emission of electrodes, which is enhanced by a suitable surface coating of the cathodes. At too low temperatures, the emission of electrodes necessitates higher voltages, which in turn results in a damage of the coating and hence in a damage of the UV lamp itself.
Pre-heating protects the cathodes and prolongs the lifespan of the UV lamp. In addition it has been shown, that during operation the temperature of the cathodes should remain elevated. Otherwise cathode material is damaged if the temperature of the cathodes is too low. Nowadays, dimming ranges up to 90% are reached, resulting in a lamp output of only 10% of the nominal power output. The parameters of the electric energy to drive lamps under dimmed conditions are usually optimized in a way that the efficiency of the UV light production in terms of radiation output versus power input is optimized. Parameters are voltage, current and pulse length or duty cycle in case of pulse-width modulation. The current under dimmed conditions is so low that it does not generate enough heat when passing the cathodes. Thus to minimise damage to the cathodes, additional heat sources are used, that prevent a cool-down of the cathodes. The drawback of this is, that additional heat sources are complex and costly.
It is an objective of the present invention to provide a control algorithm for operating a fluid disinfecting system with a UV lamp which is less complex and which keeps the cathodes of the UV lamps at a sufficient temperature when operated at reduced power output.
This problem is solved by a control algorithm for operating a fluid disinfecting system. Accordingly, a control algorithm for operating a fluid disinfecting system by means of UV radiation is provided, wherein the UV radiation is generated by at least one UV gas discharge lamp comprising a pair of heating cathodes having a minimum discharge voltage, said UV lamp is operated by an electronic ballast unit, which is equipped with the control algorithm, which allows to adjust the operating parameters of the UV lamp, especially by using pulse-width-modulation to reduce UV power, said control algorithm being adapted to at least control the parameters current, voltage and pulse width or length, including the following steps for reducing the UV output power:
Technically, the parameters are varied in the way that the UV output remains essentially constant within the usual limits of variation in this kind of control process, and that the electric power input is increased. This process makes the operation of the lamp ineffective in the sense that the efficiency of UV light production versus electric power consumption decreases. Thus, more electric energy is converted into heat in order to keep the operating temperature at a desired level. It is an unusual measure to deliberately vary the parameters of operating a UV lamp such that the efficiency is decreased.
In this way part of the energy is used to heat the cathodes, which prolongs the lifespan of the UV lamp without the need of an additional heat source.
Preferably, the operating voltage of the UV lamps has a frequency between 40 kHz and 80 kHz and even more preferably of about 65 kHz.
The voltage amplitude can be during a major part of the pulse width 110% to 180% of the discharge voltage and even more preferably, 135% to 150%.
Advantageously, the UV lamp is a low-pressure UV lamp and/or the fluid is drinking water or treated wastewater.
A preferred embodiment of the present invention will be described with reference to the drawings. In all figures the same reference signs denote the same components or functionally similar components.
An electronic ballast unit 302 (see
During rated operation the voltage amplitude should be equal to the lamps' discharge voltage UD. If the burn voltage U is higher than the discharge voltage UD, hardly more UV power is produced; rather energy is lost by heat generation.
As shown in
The electronic ballast unit is preferably equipped with two control algorithms. The control variable is UV power. To reduce UV power, the current is decreased to Ikmin and held at this level. After that the voltage amplitude is increased until the desired UV power is reached. With increasing voltage amplitude the pulse width decreases, until PWmin is reached.
The intermediate voltage circuit is preferably designed in such a way that the desired voltage range is given without hardware modification.
In order to reach 30% UV power with acceptable electrode heating, in one embodiment the pulse width is 35% of rated operation and the voltage amplitude is 40% higher.
Number | Date | Country | Kind |
---|---|---|---|
16188575 | Sep 2016 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4394603 | Widmayer | Jul 1983 | A |
5910709 | Stevanovic et al. | Jun 1999 | A |
6121734 | Szabados | Sep 2000 | A |
8593078 | Xiong | Nov 2013 | B1 |
20020017881 | Szabados | Feb 2002 | A1 |
20090273299 | Gawrys et al. | Nov 2009 | A1 |
Entry |
---|
Extended European Search Report for European Application No. 16188575.1-1802, dated Mar. 8, 2017—6 Pages. |
Number | Date | Country | |
---|---|---|---|
20180077784 A1 | Mar 2018 | US |