Control algorithm of variable speed pumping system

Information

  • Patent Grant
  • 9605680
  • Patent Number
    9,605,680
  • Date Filed
    Tuesday, July 8, 2014
    9 years ago
  • Date Issued
    Tuesday, March 28, 2017
    7 years ago
  • CPC
  • Field of Search
    • US
    • 417 175000
    • 417 199200
    • 700 282000
    • CPC
    • F04D15/0066
  • International Classifications
    • G05D7/00
    • F04F5/00
    • F04B23/08
    • F04D15/00
Abstract
A pumping system includes a pump for moving water. In one aspect, this is in connection with performance of an operation. The system includes a variable speed motor operatively connected to drive the pump. A value indicative of flow rate of water is determined and the motor is controlled to adjust the flow rate indicative value toward a constant. A value indicative of flow pressure is determined and the motor is controlled to adjust the flow pressure indicative value toward a constant. A selection is made between flow rate control and flow pressure control. In another aspect, the pump is controlled to perform a first operation, and is operated to perform a second water operation. Control of operation of the pump to perform the first water operation is altered in response to operation of the pump to perform the second operation.
Description
FIELD OF THE INVENTION

The present invention relates generally to control of a pump, and more particularly to control of a variable speed pumping system for a pool, a spa or other aquatic application.


BACKGROUND OF THE INVENTION

Conventionally, a pump to be used in an aquatic application such as a pool or a spa is operable at a finite number of predetermined speed settings (e.g., typically high and low settings). Typically these speed settings correspond to the range of pumping demands of the pool or spa at the time of installation. Factors such as the volumetric flow rate of water to be pumped, the total head pressure required to adequately pump the volume of water, and other operational parameters determine the size of the pump and the proper speed settings for pump operation. Once the pump is installed, the speed settings typically are not readily changed to accommodate changes in the pumping demands.


Installation of the pump for an aquatic application such as a pool entails sizing the pump to meet the pumping demands of that particular pool and any associated features. Because of the large variety of shapes and dimensions of pools that are available, precise hydraulic calculations must be performed by the installer, often on-site, to ensure that the pumping system works properly after installation. The hydraulic calculations must be performed based on the specific characteristics and features of the particular pool, and may include assumptions to simplify the calculations for a pool with a unique shape or feature. These assumptions can introduce a degree of error to the calculations that could result in the installation of an unsuitably sized pump. Essentially, the installer is required to install a customized pump system for each aquatic application.


A plurality of aquatic applications at one location requires a pump to elevate the pressure of water used in each application. When one aquatic application is installed subsequent to a first aquatic application, a second pump must be installed if the initially installed pump cannot be operated at a speed to accommodate both aquatic applications. Similarly, features added to an aquatic application that use water at a rate that exceeds the pumping capacity of an existing pump will need an additional pump to satisfy the demand for water. As an alternative, the initially installed pump can be replaced with a new pump that can accommodate the combined demands of the aquatic applications and features.


During use, it is possible that a conventional pump is manually adjusted to operate at one of the finite speed settings. Resistance to the flow of water at an intake of the pump causes a decrease in the volumetric pumping rate if the pump speed is not increased to overcome this resistance. Further, adjusting the pump to one of the settings may cause the pump to operate at a rate that exceeds a needed rate, while adjusting the pump to another setting may cause the pump to operate at a rate that provides an insufficient amount of flow and/or pressure. In such a case, the pump will either operate inefficiently or operate at a level below that which is desired.


Accordingly, it would be beneficial to provide a pump that could be readily and easily adapted to provide a suitably supply of water at a desired pressure to aquatic applications having a variety of sizes and features. The pump should be customizable on-site to meet the needs of the particular aquatic application and associated features, capable of pumping water to a plurality of aquatic applications and features, and should be variably adjustable over a range of operating speeds to pump the water as needed when conditions change. Further, the pump should be responsive to a change of conditions and/or user input instructions.


SUMMARY OF THE INVENTION

In accordance with one aspect, the present invention provides a pumping system for moving water of an aquatic application. The pumping system includes a water pump for moving water in connection with performance of an operation upon the water and a variable speed motor operatively connected to drive the pump. The system includes means for determining a value indicative of flow rate of water moved by the pump, and means for controlling the motor to adjust the flow rate indicative value toward a constant. The system includes means for determining a value indicative of flow pressure of water moved by the pump, and means for controlling the motor to adjust the flow pressure indicative value toward a constant. The system includes means for selecting between flow rate control and flow pressure control.


In accordance with another aspect, the present invention provides a pumping system for moving water of an aquatic application. The pumping system includes a water pump for moving water, and a variable speed motor operatively connected to drive the pump. The system includes means for controlling the motor to adjust motor output, means for performing a first operation upon the moving water, and means for performing a second operation upon the moving water. The system includes means for using control parameters for the motor during the first operation based upon a target water volume, and means for determining volume of water moved by the pump during a time period. The system also includes means for changing the control parameters used for the first operation dependent upon performance of the second operation during the time period.


In accordance with another aspect, the present invention provides a pumping system for moving water of an aquatic application. The pumping system includes a water pump for moving water in connection with performance of an operation upon the water and a variable speed motor operatively connected to drive the pump. The system includes means for determining flow rate of water moved by the pump, and means for controlling the motor to adjust the flow rate toward a constant flow rate value. The system includes means for determining flow pressure of water moved by the pump, and means for controlling the motor to adjust the flow pressure toward a constant flow pressure value. The system includes means for selecting between flow rate control and flow pressure control.


In accordance with yet another aspect, the present invention provides a pumping system for moving water of an aquatic application. The pumping system includes a water pump for moving water, and means for controlling operation of the pump to perform a first water operation with at least one predetermined parameter. The system includes means for operating the pump to perform a second water operation, and means for altering control of operation of the pump to perform the first water operation to vary the at least one parameter in response to operation of the pump to perform the second operation.


In accordance with yet another aspect, the present invention provides a pumping system for moving water of an aquatic application. The pumping system includes a water pump for moving water, and means for controlling a routine filter cycle. The system includes means for operating the pump to perform an additional water operation, and means for altering the routine filter cycle in response to operation of the pump to perform the additional water operation.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:



FIG. 1 is a block diagram of an example of a variable speed pumping system in accordance with the present invention with a pool environment;



FIG. 2 is another block diagram of another example of a variable speed pumping system in accordance with the present invention with a pool environment;



FIG. 3 is a function flow chart for an example methodology in accordance with the present invention;



FIGS. 4A and 4B are a flow chart for an example of a process in accordance with an aspect of the present invention;



FIGS. 5A-5C are time lines showing operations that may be performed via a system in accordance with the present;



FIG. 6 is a perceptive view of an example pump unit that incorporates the present invention;



FIG. 7 is a perspective, partially exploded view of a pump of the unit shown in FIG. 6; and



FIG. 8 is a perspective view of a controller unit of the pump unit shown in FIG. 6.





DESCRIPTION OF EXAMPLE EMBODIMENTS

Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Further, in the drawings, the same reference numerals are employed for designating the same elements throughout the figures, and in order to clearly and concisely illustrate the present invention, certain features may be shown in somewhat schematic form.


An example variable-speed pumping system 10 in accordance with one aspect of the present invention is schematically shown in FIG. 1. The pumping system 10 includes a pump unit 12 that is shown as being used with a pool 14. It is to be appreciated that the pump unit 12 includes a pump 16 for moving water through inlet and outlet lines 18 and 20.


The pool 14 is one example of an aquatic application with which the present invention may be utilized. The phrase “aquatic application” is used generally herein to refer to any reservoir, tank, container or structure, natural or man-made, having a fluid, capable of holding a fluid, to which a fluid is delivered, or from which a fluid is withdrawn. Further, “aquatic application” encompasses any feature associated with the operation, use or maintenance of the aforementioned reservoir, tank, container or structure. This definition of “aquatic application” includes, but is not limited to pools, spas, whirlpool baths, landscaping ponds, water jets, waterfalls, fountains, pool filtration equipment, pool vacuums, spillways and the like. Although each of the examples provided above includes water, additional applications that include liquids other than water are also within the scope of the present invention. Herein, the terms pool and water are used with the understanding that they are not limitations on the present invention.


A water operation 22 is performed upon the water moved by the pump 16. Within the shown example, water operation 22 is a filter arrangement that is associated with the pumping system 10 and the pool 14 for providing a cleaning operation (i.e., filtering) on the water within the pool. The filter arrangement 22 is operatively connected between the pool 14 and the pump 16 at/along an inlet line 18 for the pump. Thus, the pump 16, the pool 14, the filter arrangement 22, and the interconnecting lines 18 and 20 form a fluid circuit or pathway for the movement of water.


It is to be appreciated that the function of filtering is but one example of an operation that can be performed upon the water. Other operations that can be performed upon the water may be simplistic, complex or diverse. For example, the operation performed on the water may merely be just movement of the water by the pumping system (e.g., re-circulation of the water in a waterfall or spa environment).


Turning to the filter arrangement 22, any suitable construction and configuration of the filter arrangement is possible. For example, the filter arrangement 22 may include a skimmer assembly for collecting coarse debris from water being withdrawn from the pool, and one or more filter components for straining finer material from the water.


The pump 16 may have any suitable construction and/or configuration for providing the desired force to the water and move the water. In one example, the pump 16 is a common centrifugal pump of the type known to have impellers extending radially from a central axis. Vanes defined by the impellers create interior passages through which the water passes as the impellers are rotated. Rotating the impellers about the central axis imparts a centrifugal force on water therein, and thus imparts the force flow to the water. Although centrifugal pumps are well suited to pump a large volume of water at a continuous rate, other motor-operated pumps may also be used within the scope of the present invention.


Drive force is provided to the pump 16 via a pump motor 24. In the one example, the drive force is in the form of rotational force provided to rotate the impeller of the pump 16. In one specific embodiment, the pump motor 24 is a permanent magnet motor. In another specific embodiment, the pump motor 24 is a three-phase motor. The pump motor 24 operation is infinitely variable within a range of operation (i.e., zero to maximum operation). In one specific example, the operation is indicated by the RPM of the rotational force provided to rotate the impeller of the pump 16.


A controller 30 provides for the control of the pump motor 24 and thus the control of the pump 16. Within the shown example, the controller 30 includes a variable speed drive 32 that provides for the infinitely variable control of the pump motor 24 (i.e., varies the speed of the pump motor). By way of example, within the operation of the variable speed drive 32, a single phase AC current from a source power supply is converted (e.g., broken) into a three-phase DC current. Any suitable technique and associated construction/configuration may be used to provide the three-phase DC current. For example, the construction may include capacitors to correct line supply over or under voltages. The variable speed drive supplies the DC electric power at a changeable frequency to the pump motor to drive the pump motor. The construction and/or configuration of the pump 16, the pump motor 24, the controller 30 as a whole, and the variable speed drive 32 as a portion of the controller 30, are not limitations on the present invention. In one possibility, the pump 16 and the pump motor 24 are disposed within a single housing to form a single unit, and the controller 30 with the variable speed drive 32 are disposed within another single housing to form another single unit. In another possibility, these components are disposed within a single housing to form a single unit.


The pumping system 10 has means used for control of the operation of the pump. In accordance with one aspect of the present invention, the pumping system 10 includes means for sensing, determining, or the like one or more parameters indicative of the operation performed upon the water. Within one specific example, the system includes means for sensing, determining or the like one or more parameters indicative of the movement of water within the fluid circuit.


The ability to sense, determine or the like one or more parameters may take a variety of forms. For example, one or more sensors 34 may be utilized. Such one or more sensors 34 can be referred to as a sensor arrangement. The sensor arrangement 34 of the pumping system 10 would sense one or more parameters indicative of the operation performed upon the water. Within one specific example, the sensor arrangement 34 senses parameters indicative of the movement of water within the fluid circuit. The movement along the fluid circuit includes movement of water through the filter arrangement 22. As such, the sensor arrangement 34 includes at least one sensor used to determine flow rate of the water moving within the fluid circuit and/or includes at least one sensor used to determine flow pressure of the water moving within the fluid circuit. In one example, the sensor arrangement 34 is operatively connected with the water circuit at/adjacent to the location of the filter arrangement 22. It should be appreciated that the sensors of the sensor arrangement 34 may be at different locations than the locations presented for the example. Also, the sensors of the sensor arrangement 34 may be at different locations from each other. Still further, the sensors may be configured such that different sensor portions are at different locations within the fluid circuit. Such a sensor arrangement 34 would be operatively connected 36 to the controller 30 to provide the sensory information thereto.


It is to be noted that the sensor arrangement 34 may accomplish the sensing task via various methodologies, and/or different and/or additional sensors may be provided within the system 10 and information provided therefrom may be utilized within the system. For example, the sensor arrangement 34 may be provided that is associated with the filter arrangement and that senses an operation characteristic associated with the filter arrangement. For example, such a sensor may monitor filter performance. Such monitoring may be as basic as monitoring filter flow rate, filter pressure, or some other parameter that indicates performance of the filter arrangement. Of course, it is to be appreciated that the sensed parameter of operation may be otherwise associated with the operation performed upon the water. As such, the sensed parameter of operation can be as simplistic as a flow indicative parameter such as rate, pressure, etc.


Such indication information can be used by the controller 30, via performance of a program, algorithm or the like, to perform various functions, and examples of such are set forth below. Also, it is to be appreciated that additional functions and features may be separate or combined, and that sensor information may be obtained by one or more sensors.


With regard to the specific example of monitoring flow rate and flow pressure, the information from the sensor arrangement 34 can be used as an indication of impediment or hindrance via obstruction or condition, whether physical, chemical, or mechanical in nature, that interferes with the flow of water from the aquatic application to the pump such as debris accumulation or the lack of accumulation, within the filter arrangement 34. As such, the monitored information is indicative of the condition of the filter arrangement.


Within another example (FIG. 2) of a pumping system 110 that includes means for sensing, determining, or the like one or more parameters indicative of the operation performed upon the water, the controller 130 can determine the one or more parameters via sensing, determining or the like parameters associated with the operation of a pump 116 of a pump unit 112. Such an approach is based upon an understanding that the pump operation itself has one or more relationships to the operation performed upon the water.


It should be appreciated that the pump unit 112, which includes the pump 116 and a pump motor 124, a pool 114, a filter arrangement 122, and interconnecting lines 118 and 120, may be identical or different from the corresponding items within the example of FIG. 1.


Turning back to the example of FIG. 2, some examples of the pumping system 110, and specifically the controller 130 and associated portions, that utilize at least one relationship between the pump operation and the operation performed upon the water attention are shown in U.S. Pat. No. 6,354,805, to Moller, entitled “Method For Regulating A Delivery Variable Of A Pump” and U.S. Pat. No. 6,468,042, to Moller, entitled “Method For Regulating A Delivery Variable Of A Pump.” The disclosures of these patents are incorporated herein by reference. In short summary, direct sensing of the pressure and/or flow rate of the water is not performed, but instead one or more sensed or determined parameters associated with pump operation are utilized as an indication of pump performance. One example of such a pump parameter is input power. Pressure and/or flow rate can be calculated/determined from such pump parameter(s).


Although the system 110 and the controller 130 there may be of varied construction, configuration and operation, the function block diagram of FIG. 2 is generally representative. Within the shown example, an adjusting element 140 is operatively connected to the pump motor and is also operatively connected to a control element 142 within the controller 130. The control element 142 operates in response to a comparative function 144, which receives input from a power calculation 146.


The power calculation 146 is performed utilizing information from the operation of the pump motor 124 and controlled by the adjusting element 140. As such, a feedback iteration is performed to control the pump motor 124. Also, it is the operation of the pump motor and the pump that provides the information used to control the pump motor/pump. As mentioned, it is an understanding that operation of the pump motor/pump has a relationship to the flow rate and/or pressure of the water flow that is utilized to control flow rate and/or flow pressure via control of the pump.


As mentioned, the sensed, determined (e.g., calculated, provided via a look-up table, etc.), etc. information is utilized to determine the flow rate and/or the flow pressure. In one example, the operation is based upon an approach in which the pump (e.g., 16 or 116) is controlled to operate at a lowest amount that will accomplish the desired task (e.g., maintain a desired filtering level of operation) via a constant flow rate. Specifically, as the sensed parameter changes, the lowest level of pump operation (i.e., pump speed) to accomplish the desired task will need to change. The controller (e.g., 30 or 130) provides the control to operate the pump motor/pump accordingly. In other words, the controller (e.g., 30 or 130) repeatedly adjusts the speed of the pump motor (e.g., 24 or 124) to a minimum level responsive to the sensed/determined parameter to maintain operation at a specific level. Such an operation mode can provide for minimal energy usage.


Turning to the issue of operation of the system (e.g., 10 or 110) over a course of a long period of time, it is typical that a predetermined volume of water flow is desired. For example, it may be desirable to move a volume of water equal to the volume within the aquatic application (e.g., pool or spa). Such movement of water is typically referred to as a turnover. It may be desirable to move a volume of water equal to multiple turnovers within a specified time period (e.g., a day). Within an example in which the water operation includes a filter operation, the desired water movement (e.g., specific number of turnovers within one day) may be related to the necessity to maintain a desired water clarity.


Within the water operation that contains a filter operation, the amount of water that can be moved and/or the ease by which the water can be moved is dependent in part upon the current state (e.g., quality) of the filter arrangement. In general, a dean (e.g., new, fresh) filter arrangement provides a lesser impediment to water flow than a filter arrangement that has accumulated filter matter (e.g., dirty). For a constant flow rate through a filter arrangement, a lesser pressure is required to move the water through a clean filter arrangement than a pressure that is required to move the water through a dirty filter arrangement. Another way of considering the effect of dirt accumulation is that if pressure is kept constant then the flow rate will decrease as the dirt accumulates and hinders (e.g., progressively blocks) the flow.


Turning to one aspect that is provided by the present invention, the system can operate to maintain a constant flow of water within the circuit. Maintenance of constant flow is useful in the example that includes a filter arrangement. Moreover, the ability to maintain a constant flow is useful when it is desirable to achieve a specific flow volume during a specific period of time. For example, it may be desirable to filter pool water and achieve a specific number of water turnovers within each day of operation to maintain a desired water clarity despite the fact that the filter arrangement will progressively increase dirt accumulation.


It should be appreciated that maintenance of a constant flow volume despite an increasing impediment caused by filter dirt accumulation requires an increasing pressure and is the result of increasing motive force from the pump/motor. As such, one aspect of the present invention is to control the motor/pump to provide the increased motive force that provides the increased pressure to maintain the constant flow.


Of course, continuous pressure increase to address the increase in filter dirt impediment is not useful beyond some level. As such, in accordance with another aspect of the present invention, the system (e.g., 10 or 110) controls operation of the motor/pump such that the motive force is not increased and the flow rate is thus not maintained constant. In one example, the cessation of increases in motive force occurs once a specific pressure level (e.g., a threshold) is reached. A pressure level threshold may be related to a specific filter type, system configuration, etc. In one specific example, the specific pressure level threshold is predetermined. Also, within one specific example, the specific pressure level threshold may be a user or technician-entered parameter.


Within another aspect of the present invention, the system (e.g., 10 or 110) may operate to reduce pressure while the pressure is above the pressure level threshold. Within yet another, related aspect of the present invention, the system (e.g., 10 or 110) may return to control of the flow rate to maintain a specific, constant flow rate subsequent to the pressure being reduced below the pressure level threshold.


Within yet another aspect of the present invention, the system (e.g., 10 or 110) may operate to have different constant flow rates during different time periods. Such different time periods may be sub-periods (e.g., specific hours) within an overall time period (e.g., a day) within which a specific number of water turnovers is desired. During some time periods a larger flow rate may be desired, and a lower flow rate may be desired at other time periods. Within the example of a swimming pool with a filter arrangement as part of the water operation, it may be desired to have a larger flow rate during pool-use time (e.g., daylight hours) to provide for increased water turnover and thus increased filtering of the water. Within the same swimming pool example, it may be desired to have a lower flow rate during non-use (e.g., nighttime hours).


Turning to one specific example, attention is directed to the top-level operation chart that is shown in FIG. 3. With the chart, it can be appreciated that the system has an overall ON/OFF status 302 as indicated by the central box. Specifically, overall operation is started 304 and thus the system is ON. However, under the penumbra of a general ON state, a number of modes of operation can be entered. Within the shown example, the modes are Vacuum run 306, Manual run 308, Filter 310, and Cleaning sequence 312.


Briefly, the Vacuum run mode 306 is entered and utilized when a vacuum device is utilized within the pool (e.g., 14 or 114). For example, such a vacuum device is typically connected to the pump (e.g., 16 or 116), possibly through the filter arrangement, (e.g., 22 or 122) via a relative long extent of hose and is moved about the pool (e.g., 14 or 114) to clean the water at various locations and/or the surfaces of the pool at various locations. The vacuum device may be a manually moved device or may autonomously move.


Similarly, the manual run mode 308 is entered and utilized when it is desired to operate the pump outside of the other specified modes. The cleaning sequence mode 312 is for operation performed in the course of a cleaning routine.


Turning to the filter mode 310, this mode is a typical operation mode in order to maintain water clarity within the pool (e.g., 14 or 114). Moreover, the filter mode 310 is operated to obtain effective filtering of the pool while minimizing energy consumption. As one example of the filter mode 310, attention is directed to the flow chart of FIG. 4 that shows an example process 400 for accomplishing a filter function within the filter mode. Specifically, the pump is operated to move water through the filter arrangement. It is noted that the example process is associated with the example of FIG. 2. However, it is to be appreciated that a similar process occurs associated with the example of FIG. 1.


The process 400 (FIG. 4) is initiated at step 402 and proceeds to step 404. At step 404 information is retrieved from a filter menu. The information may take a variety of forms and may have a variety of contents. As one example, the information includes cycles of circulation of the water per day, turnovers per day, scheduled time (e.g., start and stop times for a plurality of cycles), pool size, filter pressure before achieving a service systems soon status, and maximum priming time. It should be appreciated that such information (e.g., values) is desired and/or intended, and/or preselected/predetermined.


Subsequent to step 404, the process 400 proceeds to step 406 in which one or more calculations are performed. For example, a filter flow value is determined based upon a ratio of pool size to scheduled time (e.g., filter flow equals pool size divided by scheduled time). Also, the new off time may be calculated for the scheduled time (e.g., a cut off time). Next, the process 400 proceeds to step 408 in which a “START” is activated to begin repetitive operation of the filter mode.


The process 400 proceeds from step 408 to step 410 in which it is determined whether the flow is above a priming flow value. If the determination at step 410 is negative (e.g., the flow is not above a priming flow value), the process 400 proceeds to step 412. Within step 412, the flow control process is performed. As mentioned above, the flow control process may be similar to the process disclosed within U.S. Pat. No. 6,354,805 or U.S. Pat. No. 6,468,042. It should be noted that step 414 provides input that is utilized within step 412. Specifically, hardware input such as power and speed measurement are provided. This information is provided via a hardware input that can give information in a form of current and/or voltage as an indication of power and speed measurement of the pump motor. Associated with step 414 is step 416 in which shaft power provided by the pump motor is calculated. At step 418, a priming dry alarm step is provided. In one example, if the shaft power is zero for ten seconds, a priming dry alarm is displayed and the process 400 is interrupted and does not proceed any further until the situation is otherwise corrected.


Returning to step 412, it should be appreciated that subsequent to operation of the step 412, the process 400 returns to step 410 in which the query concerning the flow being above a priming flow is repeated. If the determination within step 410 is affirmative (i.e., the flow is above the priming flow value), the process 400 proceeds from step 410 to step 420.


It should be appreciated that steps 408 and 420 provide two bits of information that is utilized within an ancillary step 421. Specifically, step 408 provides a time start indication and step 420 provides a time primed indication. Within step 421, a determination concerning a priming alarm is made. Specifically, if priming control (i.e., the system is determined to be primed), is not reached prior to a maximum priming time allotment, a priming alarm is displayed, and the process 400 is interrupted and does not proceed any further until the situation is addressed and corrected.


Returning to step 420, the process 400 proceeds from step 420 to step 422 in which a flow reference is set equal to the current filter flow value. Subsequent to step 422, the process 400 proceeds to step 424. At step 424, it is determined whether the system is operating at a specified flow reference. The filter flow is defined in terms of volume based upon time. If the determination at step 424 is negative (i.e., the system is not operating at the flow reference level), the process 400 proceeds to step 426. At step 426, the flow control process is performed, similar to step 412. As such, step 414 also provides input that is utilized within step 426. Subsequent to step 426, the process returns to step 424.


If the determination with step 424 is affirmative (i.e., the system is operating at the flow reference level), the process 400 proceeds to step 428 in which pressure is calculated. Pressure can be calculated based upon information derived from operation of the pump. Subsequent to step 428, the process 400 proceeds to step 430. At 430, a determination is made as to whether the pressure is above a maximum filter pressure.


It should be noted that step 432 of the process 400 provides input to the determination within the step 430. Specifically, at step 432 a menu of data that contains a maximum filter pressure value is accessed. If the determination at step 430, is negative (i.e., the pressure is not above the maximum filter pressure), the process 400 proceeds to step 434. At step 434, the filter status is updated in the menu memory. Subsequent to step 434, the process 400 proceeds to step 436.


At step 436, a determination is made as to whether the flow reference is equal to the filter flow. If the determination as step 436 is affirmative (i.e., the flow reference is equal to the filter flow), the process 400 loops back to step 422.


However, if the determination at step 436 is negative (i.e., the flow reference is not equal to the filter flow), the process 400 proceeds to steps 438 and 440.


Within step 438, a determination is made as to whether the filter status is higher than 100%. If so, a service system soon indication is displayed. At step 440, a flow reference at reference N is readjusted to equal a previous flow reference (i.e., N−1 plus a specific value). Within the shown example, the additional value is 1 gallon per minute. Subsequent to the adjustment of the flow reference, the process 400 proceeds to step 428 for repeat of step 428 and at least some of the subsequent process steps.


Focusing again upon step 430, if the determination at step 430 is affirmative (i.e., the pressure is above the maximum filter pressure), the process 400 proceeds from step 430 to step 442. At step 442, the process 400 changes from flow control to pressure control. Specifically, it is to be appreciated that up to this time, the process 400 has attempted to maintain the flow rate at an effectively constant value. However, from step 442, the process 400 will attempt to maintain the flow pressure at effectively a constant value.


The process 400 proceeds from step 442 to step 444. Within step 444, a flow reference value is adjusted. Specifically, the flow reference value for time index N is set equal to the flow reference value for time index N−1 that has been decreased by a predetermined value. Within this specific example, the decreased value is 1 gallon per minute. Subsequent to step 444, the process 400 proceeds to step 446 in which the flow controller, as previously described, performs its function. Similar to the steps 412 and 426, step 446 obtains hardware input. For example, power and speed measuring information is provided for use within the flow controller. Subsequent to step 446, the process 400 proceeds to step 448.


Within the step 448 a determination is made as to whether the flow equals a flow reference. If the determination within step 448 is negative (i.e., the flow does not equal the flow reference), the process 400 proceeds from step 448 back to step 446. However, if the determination within step 448 is affirmative (i.e., the flow is equal to the flow reference), the process 400 proceeds from step 448 to step 450. Within step 450, the status of filter arrangement is updated within the memory of the menu. Subsequent to step 450, the process 400 proceeds back to step 428 and at least some of the subsequent steps are repeated.


One of the advantages provided by the example shown within FIG. 4 is that a minimum amount of energy is extended to maintain a constant flow so long as the filter arrangement does not provide an excessive impediment to flow of water. However, subsequent to the filter arrangement becoming a problem to constant flow (e.g., the filter arrangement is sufficiently clogged), the methodology provides for a constant pressure to be maintained to provide for at least some filtering function despite an associated decrease in flow. Moreover, the process is iterative to constantly adjust the flow or the pressure to maintain a high efficiency coupled with a minimal energy usage.


In accordance with another aspect, it should be appreciated that the filtering function, as a free standing operation, is intended to maintain clarity of the pool water. However, it should be appreciated that the pump (e.g., 16 or 116) may also be utilized to operate other functions and devices such as a separate cleaner, a water slide, or the like. The example of FIG. 1 shows an example additional operation 38 and the example of FIG. 2 shows an example additional operation 138. Such an additional operation (e.g., 38 or 138) may be a cleaner device, either manual or autonomous. As can be appreciated, an additional operation involves additional water movement. Also, within the presented examples of FIGS. 1 and 2, the water movement is through the filter arrangement (e.g., 22 or 122). Such, additional water movement may be used to supplant the need for other water movement, in accordance with one aspect of the present invention and as described further below.


Associated with such other functions and devices is a certain amount of water movement. The present invention, in accordance with one aspect, is based upon an appreciation that such other water movement may be considered as part of the overall desired water movement, cycles, turnover, filtering, etc. As such, water movement associated with such other functions and devices can be utilized as part of the overall water movement to achieve desired values within a specified time frame. Utilizing such water movement can allow for minimization of a purely filtering aspect. This permits increased energy efficiency by avoiding unnecessary pump operation.



FIG. 5A is an example time line that shows a typical operation that includes both filter cycles (C1-C4) and several various other operations and/or devices (F0-F4) that are operated. It should be appreciated that pump operation for all of these cycles, functions, and devices would be somewhat wasteful. As such, the present invention provides a means to reduce a routine filtration cycle (e.g., C1-C4) in response to occurrence of one or more operations (e.g., F0-F4). Below are a series of equations that check for overlap and cutoff based upon utilization of all of the features (routine filtration cycles, C1-C4, and all other operations, F0-F4).














Overlap check and “cutoff” calculations for features for: all F's and C's


case F0 type: (Fx.start < Cx.start & Fx.stop < Cx.start) ∥ (Fx.start >


Cx.stop & Fx.stop > Cx.stop)









cutOff + = 0







case F1 type: Fx.start > Cx.start & Fx.stop < Cx.stop









cutOff + = Fx.stop − Fx.start







case F2 type: Fx.start < Cx.start & Fx.stop < Cx.stop & Fx.stop > Cx.start









cutOff + = Fx.stop − Cx.start







case F3 type: Fx.start > Cx.start & Fx.start < Cx.stop & Fx.stop > Cx.stop









cutOff + = Cx.stop − Fx.start







case F4 type: Fx.start < Cx.start & Fx.stop > Cx.stop









cutOff + = Cx.stop − Cx.start










An example of how the routine filtration cycles are reduced is shown via a comparison of FIGS. 5B and 5C. Specifically, FIG. 5B shows the cycles for routine filtration (C1-C2) and three other pump operation routines (e.g., F3, F4, and F6). As to be appreciated, because the other operations (F3, F4, and F6) will provide some of the necessary water movement, the routine filtration cycles can be reduced or otherwise eliminated. The equations set forth below provide an indication of how the routine filtration cycles can be reduced or eliminated.


















k=q × t ,konst = flow × time




For (all F's with k>0){




 krestF = k




 for (all C's)




 if FTstart > CTstart & FTstart < CTstop)




  krestF + kF − k(CTb − Fta)




 else




  if (krestF < krestC)




  krestC = krestC − krestF




  CTstop = CTstart + (kcrestC/qC)







  
Cq=CkCTstop-CTstart








 else




  krestF = krestF − krestC




  delete C










FIG. 5C shows how the routine filtration cycles C1-C4 are reduced or eliminated. It should be appreciated that the other functions (F3, F4, and F6 remain).


Focusing on the aspect of minimal energy usage, within some know pool filtering applications, it is common to operate a known pump/filter arrangement for some portion (e.g., eight hours) of a day at effectively a very high speed to accomplish a desired level of pool cleaning. With the present invention, the system (e.g., 10 or 110) with the associated filter arrangement (e.g., 22 or 122) can be operated continuously (e.g., 24 hours a day, or some other time amount(s)) at an ever-changing minimum level to accomplish the desired level of pool cleaning. It is possible to achieve a very significant savings in energy usage with such a use of the present invention as compared to the known pump operation at the high speed. In one example, the cost savings would be in the range of 90% as compared to a known pump/filter arrangement.


Accordingly, one aspect of the present invention is that the pumping system controls operation of the pump to perform a first water operation with at least one predetermined parameter. The first operation can be routine filtering and the parameter may be timing and or water volume movement (e.g., flow rate or pressure). The pump can also be operated to perform a second water operation, which can be anything else besides just routine filtering (e.g., cleaning). However, in order to provide for energy conservation, the first operation (e.g., just filtering) is controlled in response to performance of the second operation (e.g., running a cleaner).


Aquatic applications will have a variety of different water demands depending upon the specific attributes of each aquatic application. Turning back to the aspect of the pump that is driven by the infinitely variable motor, it should be appreciated that precise sizing, adjustment, etc. for each application of the pump system for an aquatic application can thus be avoided. In many respects, the pump system is self adjusting to each application.


It is to be appreciated that the controller (e.g., 30 or 130) may have various forms to accomplish the desired functions. In one example, the controller 30 includes a computer processor that operates a program. In the alternative, the program may be considered to be an algorithm. The program may be in the form of macros. Further, the program may be changeable, and the controller 30 is thus programmable.


Also, it is to be appreciated that the physical appearance of the components of the system (e.g., 10 or 110) may vary. As some examples of the components, attention is directed to FIGS. 6-8. FIG. 6 is a perspective view of the pump unit 112 and the controller 130 for the system 110 shown in FIG. 2. FIG. 7 is an exploded perspective view of some of the components of the pump unit 112. FIG. 8 is a perspective view of the controller 130.


It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the scope of the teaching contained in this disclosure. As such it is to be appreciated that the person of ordinary skill in the art will perceive changes, modifications, and improvements to the example disclosed herein. Such changes, modifications, and improvements are intended to be within the scope of the present invention.

Claims
  • 1. A pumping system for a pool or spa application that pumps water, the pumping system comprising: a pump that pumps water through the pool or spa;a motor coupled to the pump; anda controller in communication with the motor, the controller determining a current flow rate based on an input power to the motor,the controller determining whether the current flow rate is above a priming flow value in order to determine whether the pumping system has become initially primed,the controller indicating a priming alarm if the pumping system has not become initially primed before reaching a maximum priming time allotment;wherein the maximum priming time allotment is a fixed time period.
  • 2. The pumping system of claim 1 wherein the controller determines the current flow rate based on the input power to the motor without relying on a flow rate sensor.
  • 3. The pumping system of claim 1 wherein the pump, the motor, and the controller are coupled together in a single pump unit.
  • 4. The pumping system of claim 1 wherein the controller is a variable frequency drive.
  • 5. The pumping system of claim 1 wherein the controller further determines whether the pumping system has lost prime after the pumping system has become initially primed before reaching the maximum priming time allotment, the controller obtaining a hardware input including at least one of input power and motor speed, the controller calculating shaft power based on the hardware input, the controller determining if the pumping system is no longer primed based on the shaft power, the controller indicating a priming dry alarm if the shaft power is at least approaching zero for at least about ten seconds.
  • 6. A pumping system for a pool or spa application that pumps water, the pumping system comprising: a pump that pumps water through the pool or spa;a motor coupled to the pump; anda controller in communication with the motor, the controller determining a current flow rate based on an input power to the motor,the controller determining whether the current flow rate is above a riming flow value in order to determine whether the pumping system has become initially primed,the controller indicating a priming alarm if the pumping system has not become initially primed before reaching a maximum priming time allotment;wherein the maximum priming time allotment is a time period between activating the motor and a fixed time period when the pump is primed.
  • 7. A pumping system for a pool or s a application that pumps water, the pumping system comprising: a pump that pumps water through the pool or spa;a motor coupled to the pump; anda controller in communication with the motor, the controller determining a current flow rate based on an input power to the motor,the controller determining whether the current flow rate is above a priming flow value in order to determine whether the pumping system has become initially primed,the controller indicating a priming alarm if the pumping system has not become initially primed before reaching a maximum priming time allotment;wherein the controller performs a second operation in which the controller determines a priming status and generates a priming dry alarm subsequent to a first operation in which the controller determines that the pump is initially primed.
  • 8. A pumping system for a pool or spa application that pumps water, the pumping system comprising: a pump that pumps water through the pool or spa;a motor coupled to the pump; anda controller in communication with the motor, the controller determining a current flow rate based on an input power to the motor,the controller adapted to receive a time start indication corresponding to a start time at which a start is activated to begin repetitive operation of a filter mode,a time primed indication corresponding to a primed time at which the current flow rate is determined to be above a priming flow value, and a maximum priming time allotment,the controller indicating a priming alarm if the controller has received the time start indication and has not received the time primed indication prior to the maximum priming time allotment passing after the start time.
  • 9. The pumping system of claim 8 wherein the controller repeatedly compares the current flow rate to the priming flow value after the time start indication and before the passing of the maximum priming time allotment.
  • 10. A method of operating a pumping system for a pool or spa application that pumps water, the pumping system comprising a controller in communication with a motor, the motor coupled to a pump that pumps water through the pool or spa, the method comprising the following sequential steps: a) activating a start to begin operation of a filter mode;b) determining whether the pumping system is primed and proceeding to step c) if the pumping system is primed and step d) if the pumping system is not primed;c) if the pumping system is primed in step b), continuing operation of the filter mode without displaying a priming alarm;orif the pumping system is not primed in step b), performing the following sequential steps:d) performing a flow control process and determining whether the pumping system has become primed;e) repeating step d) if the pumping system has not become primed as a result of step d); andf) after a maximum priming time allotment has passed from step a), displaying a priming alarm if the pumping system has not become primed as a result of step d),
  • 11. The method of claim 10, the method comprising the following additional sequential steps: g) if the pumping system is determined to be primed as a result of steps a) through f), such that the priming alarm has not been displayed, calculating a shaft power based on a hardware input including at least one of input power and motor speed; andh) if the shaft power is at least approaching zero for at least about ten seconds, indicating a priming dry alarm that the pumping system has lost the prime determined in steps a) through f).
RELATED APPLICATIONS

This application is continuation of U.S. application Ser. No. 13/230,678, filed Sep. 12, 2011, which is a continuation of U.S. patent application Ser. No. 11/286,888, filed Nov. 23, 2005 and now U.S. Pat. No. 8,019,479, which is a continuation-in-part of U.S. patent application Ser. No. 10/926,513 filed Aug. 26, 2004 and now U.S. Pat. No. 7,874,808, the entire disclosures of which are hereby incorporated herein by reference.

US Referenced Citations (923)
Number Name Date Kind
981213 Mollitor Jan 1911 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3116445 Wright Dec 1963 A
3191935 Uecker Jun 1965 A
3204423 Resh, Jr. Sep 1965 A
3213304 Landerg et al. Oct 1965 A
3226620 Elliott et al. Dec 1965 A
3227808 Morris Jan 1966 A
3291058 McFarlin Dec 1966 A
3316843 Vaughan May 1967 A
3481973 Wygant Dec 1969 A
3530348 Connor Sep 1970 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3562614 Gramkow Feb 1971 A
3566225 Paulson Feb 1971 A
3573579 Lewus Apr 1971 A
3581895 Howard et al. Jun 1971 A
3593081 Forst Jul 1971 A
3594623 LaMaster Jul 1971 A
3596158 Watrous Jul 1971 A
3613805 Lindstad Oct 1971 A
3624470 Johnson Nov 1971 A
3634842 Niedermeyer Jan 1972 A
3652912 Bordonaro Mar 1972 A
3671830 Kruger Jun 1972 A
3712511 Magnasco Jan 1973 A
3726606 Peters Apr 1973 A
1061919 Miller May 1973 A
3735233 Ringle May 1973 A
3737749 Schmit Jun 1973 A
3753072 Jurgens Aug 1973 A
3761750 Green Sep 1973 A
3761792 Whitney Sep 1973 A
3777232 Woods et al. Dec 1973 A
3778804 Adair Dec 1973 A
3780759 Yahle et al. Dec 1973 A
3781925 Curtis Jan 1974 A
3787882 Fillmore Jan 1974 A
3792324 Suarez Feb 1974 A
3800205 Zalar Mar 1974 A
3814544 Roberts et al. Jun 1974 A
3838597 Montgomery et al. Oct 1974 A
3867071 Hartley Feb 1975 A
3882364 Wright May 1975 A
3902369 Metz Sep 1975 A
3910725 Rule Oct 1975 A
3913342 Barry Oct 1975 A
3916274 Lewus Oct 1975 A
3936231 Douglas Feb 1976 A
3941507 Niedermeyer Mar 1976 A
3947530 Marder Mar 1976 A
3949782 Athey et al. Apr 1976 A
3953777 McKee Apr 1976 A
3956760 Edwards May 1976 A
3963375 Curtis Jun 1976 A
3972647 Niedermeyer Aug 1976 A
3976919 Vandevier Aug 1976 A
3987240 Schultz Oct 1976 A
4000446 Vandevier Dec 1976 A
4021700 Ellis-Anwyl May 1977 A
4037598 Georgi Jul 1977 A
4041470 Slane et al. Aug 1977 A
4061442 Clark et al. Dec 1977 A
4087204 Niedermeyer May 1978 A
4108574 Bartley et al. Aug 1978 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4142415 Jung et al. Mar 1979 A
4151080 Zuckerman et al. Apr 1979 A
4168413 Halpine Sep 1979 A
4169377 Scheib Oct 1979 A
4182363 Fuller et al. Jan 1980 A
4185187 Rogers Jan 1980 A
4187503 Walton Feb 1980 A
4206634 Taylor Jun 1980 A
4215975 Niedermeyer Aug 1980 A
4222711 Mayer Sep 1980 A
4225290 Allington Sep 1980 A
4228427 Niedermeyer Oct 1980 A
4233553 Prince Nov 1980 A
4241299 Bertone Dec 1980 A
4255747 Bunia Mar 1981 A
4263535 Jones Apr 1981 A
4276454 Zathan Jun 1981 A
4286303 Genheimer et al. Aug 1981 A
4303203 Avery Dec 1981 A
4307327 Streater et al. Dec 1981 A
4309157 Niedermeyer Jan 1982 A
4314478 Beaman Feb 1982 A
4319712 Bar Mar 1982 A
4322297 Bajka Mar 1982 A
4330412 Frederick May 1982 A
4334535 Wilson et al. Jun 1982 A
4353220 Curwein Oct 1982 A
4366426 Turlej Dec 1982 A
4369438 Wilhelmi Jan 1983 A
4370098 McClain et al. Jan 1983 A
4370690 Baker Jan 1983 A
4371315 Shikasho Feb 1983 A
4375613 Fuller et al. Mar 1983 A
4384825 Thomas et al. May 1983 A
4399394 Ballman Aug 1983 A
4402094 Sanders Sep 1983 A
4409532 Hollenbeck Oct 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4425836 Pickrell Jan 1984 A
4427545 Arguilez Jan 1984 A
4428434 Gelaude Jan 1984 A
4429343 Freud Jan 1984 A
4437133 Rueckert Mar 1984 A
4448072 Tward May 1984 A
4449260 Whitaker May 1984 A
4453118 Phillips Jun 1984 A
4456432 Mannino Jun 1984 A
4462758 Speed Jul 1984 A
4463304 Miller Jul 1984 A
4468604 Zaderej Aug 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4496895 Kawate et al. Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4514989 Mount May 1985 A
4520303 Ward May 1985 A
4529359 Sloan Jul 1985 A
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4552512 Gallup et al. Nov 1985 A
4564041 Kramer Jan 1986 A
4564882 Baxter Jan 1986 A
4581900 Lowe Apr 1986 A
4604563 Min Aug 1986 A
4605888 Kim Aug 1986 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4622506 Shemanske Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio et al. Mar 1987 A
4651077 Woyski Mar 1987 A
4652802 Johnston Mar 1987 A
4658195 Min Apr 1987 A
4658203 Freymuth Apr 1987 A
4668902 Zeller, Jr. May 1987 A
4670697 Wrege Jun 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham Aug 1987 A
4695779 Yates Sep 1987 A
4697464 Martin Oct 1987 A
4703387 Miller Oct 1987 A
4705629 Weir Nov 1987 A
4716605 Shepherd Jan 1988 A
4719399 Wrege Jan 1988 A
4728882 Stanbro Mar 1988 A
4751449 Chmiel Jun 1988 A
4751450 Lorenz Jun 1988 A
4758697 Jeuneu Jul 1988 A
4761601 Zaderej Aug 1988 A
4764417 Gulya Aug 1988 A
4764714 Alley Aug 1988 A
4766329 Santiago Aug 1988 A
4767280 Markuson Aug 1988 A
4780050 Caine et al. Oct 1988 A
4781525 Hubbard Nov 1988 A
4782278 Bossi Nov 1988 A
4786850 Chmiel Nov 1988 A
4789307 Sloan Dec 1988 A
4795314 Prybella et al. Jan 1989 A
4801858 Min Jan 1989 A
4804901 Pertessis Feb 1989 A
4806457 Yanagisawa Feb 1989 A
4820964 Kadah Apr 1989 A
4827197 Giebler May 1989 A
4834624 Jensen May 1989 A
4837656 Barnes Jun 1989 A
4839571 Farnham Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4843295 Thompson Jun 1989 A
4862053 Jordan Aug 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4896101 Cobb Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4949748 Chatrathi Aug 1990 A
4958118 Pottebaum Sep 1990 A
4963778 Jensen Oct 1990 A
4967131 Kim Oct 1990 A
4971522 Butlin Nov 1990 A
4975798 Edwards et al. Dec 1990 A
4977394 Manson et al. Dec 1990 A
4985181 Strada et al. Jan 1991 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs, Jr. Mar 1991 S
4998097 Noth et al. Mar 1991 A
5015151 Snyder, Jr. et al. May 1991 A
5015152 Greene May 1991 A
5017853 Chmiel May 1991 A
5026256 Kuwabara Jun 1991 A
5041771 Min Aug 1991 A
5051068 Wong Sep 1991 A
5051681 Schwarz Sep 1991 A
5076761 Krohn Dec 1991 A
5076763 Anastos et al. Dec 1991 A
5079784 Rist et al. Jan 1992 A
5091817 Alley Feb 1992 A
5098023 Burke Mar 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata Mar 1992 A
RE33874 Miller Apr 1992 E
5103154 Dropps Apr 1992 A
5117233 Hamos et al. May 1992 A
5123080 Gillett Jun 1992 A
5129264 Lorenc Jul 1992 A
5135359 Dufresne Aug 1992 A
5145323 Farr Sep 1992 A
5151017 Sears et al. Sep 1992 A
5154821 Reid Oct 1992 A
5156535 Budris Oct 1992 A
5158436 Jensen Oct 1992 A
5159713 Gaskell Oct 1992 A
5164651 Hu Nov 1992 A
5166595 Leverich Nov 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe Apr 1993 S
5206573 McCleer et al. Apr 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5234286 Wagner Aug 1993 A
5234319 Wilder Aug 1993 A
5235235 Martin Aug 1993 A
5238369 Farr Aug 1993 A
5240380 Mabe Aug 1993 A
5245272 Herbert Sep 1993 A
5247236 Schroeder Sep 1993 A
5255148 Yeh Oct 1993 A
5272933 Collier Dec 1993 A
5295790 Bossart et al. Mar 1994 A
5295857 Toly Mar 1994 A
5296795 Dropps Mar 1994 A
5302885 Schwarz Apr 1994 A
5319298 Wanzong et al. Jun 1994 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5347664 Hamza et al. Sep 1994 A
5349281 Bugaj Sep 1994 A
5351709 Vos Oct 1994 A
5351714 Barnowski Oct 1994 A
5352969 Gilmore et al. Oct 1994 A
5361215 Tompkins Nov 1994 A
5363912 Wolcott Nov 1994 A
5394748 McCarthy Mar 1995 A
5418984 Livingston, Jr. May 1995 A
D359458 Pierret Jun 1995 S
5422014 Allen et al. Jun 1995 A
5423214 Lee Jun 1995 A
5425624 Williams Jun 1995 A
5443368 Weeks et al. Aug 1995 A
5444354 Takahashi Aug 1995 A
5449274 Kochan, Jr. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5450316 Gaudet et al. Sep 1995 A
D363060 Hunger Oct 1995 S
5457373 Heppe et al. Oct 1995 A
5464327 Horwitz Nov 1995 A
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5483229 Tamura et al. Jan 1996 A
5495161 Hunter Feb 1996 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512809 Banks et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein May 1996 A
5519848 Wloka May 1996 A
5520517 Sipin May 1996 A
5522707 Potter Jun 1996 A
5528120 Brodetsky Jun 1996 A
5529462 Hawes Jun 1996 A
5532635 Watrous Jul 1996 A
5540555 Corso et al. Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5549456 Burrill Aug 1996 A
5550497 Carobolante Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559418 Burkhart Sep 1996 A
5559720 Tompkins Sep 1996 A
5559762 Sakamoto Sep 1996 A
5561357 Schroeder Oct 1996 A
5562422 Ganzon et al. Oct 1996 A
5563759 Nadd Oct 1996 A
D375908 Schumaker Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmerman Nov 1996 A
5577890 Nielson et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5582017 Noji et al. Dec 1996 A
5589753 Kadah Dec 1996 A
5592062 Bach Jan 1997 A
5598080 Jensen Jan 1997 A
5601413 Langley Feb 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5616239 Wandell et al. Apr 1997 A
5618460 Fowler Apr 1997 A
5622223 Vasquez Apr 1997 A
5624237 Prescott et al. Apr 1997 A
5626464 Schoenmeyr May 1997 A
5628896 Klingenberger May 1997 A
5629601 Feldstein May 1997 A
5632468 Schoenmeyr May 1997 A
5633540 Moan May 1997 A
5640078 Kou et al. Jun 1997 A
5654504 Smith et al. Aug 1997 A
5654620 Langhorst Aug 1997 A
5669323 Pritchard Sep 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5708348 Frey et al. Jan 1998 A
5711483 Hays Jan 1998 A
5712795 Layman et al. Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris et al. Mar 1998 A
5730861 Sterghos et al. Mar 1998 A
5731673 Gilmore Mar 1998 A
5736884 Ettes et al. Apr 1998 A
5739648 Ellis et al. Apr 1998 A
5744921 Makaran Apr 1998 A
5754036 Walker May 1998 A
5754421 Nystrom May 1998 A
5767606 Bresolin Jun 1998 A
5777833 Romillon Jul 1998 A
5780992 Beard Jul 1998 A
5791882 Stucker Aug 1998 A
5796234 Vrionis Aug 1998 A
5802910 Krahn et al. Sep 1998 A
5804080 Klingenberger Sep 1998 A
5808441 Nehring Sep 1998 A
5814966 Williamson Sep 1998 A
5818708 Wong Oct 1998 A
5818714 Zou Oct 1998 A
5819848 Ramusson Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman et al. Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Saski Nov 1998 A
5845225 Mosher Dec 1998 A
5856783 Gibb Jan 1999 A
5863185 Cochimin et al. Jan 1999 A
5863421 Peter et al. Jan 1999 A
5883489 Konrad Mar 1999 A
5892349 Bogwicz Apr 1999 A
5894609 Barnett Apr 1999 A
5898375 Patterson Apr 1999 A
5898958 Hall May 1999 A
5906479 Hawes May 1999 A
5907281 Miller, Jr. et al. May 1999 A
5909352 Klabunde et al. Jun 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5941690 Lin Aug 1999 A
5944444 Motz et al. Aug 1999 A
5945802 Konrad Aug 1999 A
5946469 Chidester Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959534 Campbell Sep 1999 A
5961291 Sakagami et al. Oct 1999 A
5969958 Nielsen Oct 1999 A
5973465 Rayner Oct 1999 A
5973473 Anderson Oct 1999 A
5977732 Matsumoto Nov 1999 A
5983146 Sarbach Nov 1999 A
5986433 Peele et al. Nov 1999 A
5987105 Jenkins et al. Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida Apr 2000 A
6048183 Meza Apr 2000 A
6056008 Adams et al. May 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6081751 Luo Jun 2000 A
6091604 Plougsgaard Jul 2000 A
6092992 Imblum Jul 2000 A
D429699 Davis Aug 2000 S
D429700 Liebig Aug 2000 S
6094764 Veloskey et al. Aug 2000 A
6098654 Cohen et al. Aug 2000 A
6102665 Centers et al. Aug 2000 A
6109050 Zakryk Aug 2000 A
6110322 Teoh et al. Aug 2000 A
6116040 Stark Sep 2000 A
6121746 Fisher Sep 2000 A
6121749 Wills et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6125883 Creps et al. Oct 2000 A
6142741 Nishihata Nov 2000 A
6146108 Mullendore Nov 2000 A
6150776 Potter et al. Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6164132 Matulek Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6184650 Gelbman Feb 2001 B1
6188200 Maiorano Feb 2001 B1
6198257 Belehradek et al. Mar 2001 B1
6199224 Versland Mar 2001 B1
6203282 Morin Mar 2001 B1
6208112 Jensen et al. Mar 2001 B1
6212956 Donald Apr 2001 B1
6213724 Haugen Apr 2001 B1
6216814 Fujita et al. Apr 2001 B1
6222355 Ohshima Apr 2001 B1
6227808 McDonough May 2001 B1
6232742 Wacknov May 2001 B1
6236177 Zick May 2001 B1
6238188 Lifson May 2001 B1
6247429 Hara Jun 2001 B1
6249435 Vicente et al. Jun 2001 B1
6251285 Clochetti Jun 2001 B1
6253227 Tompkins Jun 2001 B1
D445405 Schneider Jul 2001 S
6254353 Polo Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6257833 Bates Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Trizenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6282370 Cline et al. Aug 2001 B1
6298721 Schuppe et al. Oct 2001 B1
6299414 Schoenmeyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6318093 Gaudet et al. Nov 2001 B2
6320348 Kadah Nov 2001 B1
6326752 Jensen et al. Dec 2001 B1
6329784 Puppin Dec 2001 B1
6330525 Hays Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6350105 Kobayashi et al. Feb 2002 B1
6351359 Jager Feb 2002 B1
6354805 Moeller Mar 2002 B1
6356464 Balakrishnan Mar 2002 B1
6356853 Sullivan Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364620 Fletcher et al. Apr 2002 B1
6364621 Yamauchi Apr 2002 B1
6366053 Belehradek Apr 2002 B1
6366481 Balakrishnan Apr 2002 B1
6369463 Maiorano Apr 2002 B1
6373204 Peterson Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6374854 Acosta Apr 2002 B1
6375430 Eckert et al. Apr 2002 B1
6380707 Rosholm Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6406265 Hahn Jun 2002 B1
6411481 Seubert Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai Jul 2002 B1
6426633 Thybo Jul 2002 B1
6443715 Mayleben et al. Sep 2002 B1
6445565 Toyoda et al. Sep 2002 B1
6447446 Smith et al. Sep 2002 B1
6448713 Farkas et al. Sep 2002 B1
6450771 Centers Sep 2002 B1
6462971 Balakrishnan et al. Oct 2002 B1
6464464 Sabini Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain et al. Oct 2002 B2
6474949 Arai Nov 2002 B1
6481973 Struthers Nov 2002 B1
6483278 Harvest Nov 2002 B2
6483378 Blodgett Nov 2002 B2
6490920 Netzer Dec 2002 B1
6493227 Nielson et al. Dec 2002 B2
6496392 Odel Dec 2002 B2
6499961 Wyatt Dec 2002 B1
6501629 Mariott Dec 2002 B1
6503063 Brunsell Jan 2003 B1
6504338 Eichorn Jan 2003 B1
6520010 Bergveld Feb 2003 B1
6522034 Nakayama Feb 2003 B1
6523091 Tirumala Feb 2003 B2
6527518 Ostrowski Mar 2003 B2
6534940 Bell et al. Mar 2003 B2
6534947 Johnson Mar 2003 B2
6537032 Horiuchi Mar 2003 B1
6538908 Balakrishnan et al. Mar 2003 B2
6539797 Livingston Apr 2003 B2
6543940 Chu Apr 2003 B2
6548976 Jensen Apr 2003 B2
6564627 Sabini May 2003 B1
6570778 Lipo et al. May 2003 B2
6571807 Jones Jun 2003 B2
6590188 Cline Jul 2003 B2
6591697 Henyan Jul 2003 B2
6591863 Ruschell Jul 2003 B2
6595051 Chandler, Jr. Jul 2003 B1
6595762 Khanwilkar et al. Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6607360 Fong Aug 2003 B2
6616413 Humphries Sep 2003 B2
6623245 Meza et al. Sep 2003 B2
6626840 Drzewiecki Sep 2003 B2
6628501 Toyoda Sep 2003 B2
6632072 Lipscomb et al. Oct 2003 B2
6636135 Vetter Oct 2003 B1
6638023 Scott Oct 2003 B2
D482664 Hunt Nov 2003 S
6643153 Balakrishnan Nov 2003 B2
6651900 Yoshida Nov 2003 B1
6663349 Discenzo et al. Dec 2003 B1
6665200 Goto Dec 2003 B2
6672147 Mazet Jan 2004 B1
6675912 Carrier Jan 2004 B2
6676382 Leighton et al. Jan 2004 B2
6676831 Wolfe Jan 2004 B2
6687141 Odell Feb 2004 B2
6687923 Dick Feb 2004 B2
6690250 Moller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6700333 Hirshi et al. Mar 2004 B1
6709240 Schmalz Mar 2004 B1
6709241 Sabini Mar 2004 B2
6709575 Verdegan Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiasssen Apr 2004 B1
6732387 Waldron May 2004 B1
6737905 Noda May 2004 B1
D490726 Eungprabhanth Jun 2004 S
6742387 Hamamoto Jun 2004 B2
6747367 Cline et al. Jun 2004 B2
6761067 Capano Jul 2004 B1
6768279 Skinner Jul 2004 B1
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6776038 Horton et al. Aug 2004 B1
6776584 Sabini et al. Aug 2004 B2
6778868 Imamura et al. Aug 2004 B2
6779205 Mulvey Aug 2004 B2
6779950 Hutchins Aug 2004 B1
6782309 Laflamme Aug 2004 B2
6783328 Lucke Aug 2004 B2
6789024 Kochan, Jr. et al. Sep 2004 B1
6794921 Abe Sep 2004 B2
6797164 Leaverton Sep 2004 B2
6798271 Swize Sep 2004 B2
6806677 Kelly et al. Oct 2004 B2
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847130 Belehradek et al. Jan 2005 B1
6847854 Discenzo Jan 2005 B2
6854479 Harwood Feb 2005 B2
6863502 Bishop et al. Mar 2005 B2
6867383 Currier Mar 2005 B1
6875961 Collins Apr 2005 B1
6882165 Ogura Apr 2005 B2
6884022 Albright Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Benson May 2005 B2
6895608 Goettl May 2005 B2
6900736 Crumb May 2005 B2
6906482 Shimizu Jun 2005 B2
D507243 Miller Jul 2005 S
6914793 Balakrishnan Jul 2005 B2
6922348 Nakajima Jul 2005 B2
6925823 Lifson Aug 2005 B2
6933693 Schuchmann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
6943325 Pittman Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
6966967 Curry Nov 2005 B2
D512440 Wang Dec 2005 S
6973794 Street Dec 2005 B2
6973974 McLoughlin et al. Dec 2005 B2
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6981399 Nybo Jan 2006 B1
6981402 Bristol Jan 2006 B2
6984158 Satoh Jan 2006 B2
6989649 Melhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
6998807 Phillips et al. Feb 2006 B2
6998977 Gregori et al. Feb 2006 B2
7005818 Jensen Feb 2006 B2
7012394 Moore et al. Mar 2006 B2
7015599 Gull et al. Mar 2006 B2
7040107 Lee et al. May 2006 B2
7042192 Mehlhorn May 2006 B2
7050278 Poulsen May 2006 B2
7055189 Goettl Jun 2006 B2
7070134 Hoyer Jul 2006 B1
7077781 Ishikawa Jul 2006 B2
7080508 Stavale Jul 2006 B2
7081728 Kemp Jul 2006 B2
7083392 Meza Aug 2006 B2
7089607 Barnes et al. Aug 2006 B2
7100632 Harwood Sep 2006 B2
7102505 Kates Sep 2006 B2
7112037 Sabini et al. Sep 2006 B2
7114926 Oshita Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
7141210 Bell Nov 2006 B2
7142932 Spria et al. Nov 2006 B2
D533512 Nakashima Dec 2006 S
7163380 Jones Jan 2007 B2
7172366 Bishop, Jr. Feb 2007 B1
7178179 Barnes Feb 2007 B2
7183741 Mehlhorn Feb 2007 B2
7195462 Nybo et al. Mar 2007 B2
7201563 Studebaker Apr 2007 B2
7221121 Skaug May 2007 B2
7244106 Kallaman Jul 2007 B2
7245105 Joo Jul 2007 B2
7259533 Yang et al. Aug 2007 B2
7264449 Harned et al. Sep 2007 B1
7281958 Schuttler et al. Oct 2007 B2
7292898 Clark et al. Nov 2007 B2
7307538 Kochan, Jr. Dec 2007 B2
7309216 Spadola et al. Dec 2007 B1
7318344 Heger Jan 2008 B2
D562349 Bulter Feb 2008 S
7327275 Brochu Feb 2008 B2
7339126 Niedermeyer Mar 2008 B1
D567189 Stiles, Jr. Apr 2008 S
7352550 Mladenik Apr 2008 B2
7375940 Bertrand May 2008 B1
7388348 Mattichak Jun 2008 B2
7407371 Leone Aug 2008 B2
7427844 Mehlhorn Sep 2008 B2
7429842 Schulman et al. Sep 2008 B2
7437215 Anderson et al. Oct 2008 B2
D582797 Fraser Dec 2008 S
D583828 Li Dec 2008 S
7458782 Spadola et al. Dec 2008 B1
7459886 Potanin et al. Dec 2008 B1
7484938 Allen Feb 2009 B2
7514884 Potucek et al. Apr 2009 B2
7516106 Ehlers Apr 2009 B2
7525280 Fagan et al. Apr 2009 B2
7528579 Pacholok et al. May 2009 B2
7542251 Ivankovic Jun 2009 B2
7542252 Chan et al. Jun 2009 B2
7572108 Koehl Aug 2009 B2
7612510 Koehl Nov 2009 B2
7612529 Kochan, Jr. Nov 2009 B2
7623986 Miller Nov 2009 B2
7641449 Iimura et al. Jan 2010 B2
7652441 Ho Jan 2010 B2
7686587 Koehl Mar 2010 B2
7686589 Stiles et al. Mar 2010 B2
7690897 Branecky Apr 2010 B2
7700887 Niedermeyer Apr 2010 B2
7704051 Koehl Apr 2010 B2
7727181 Rush Jun 2010 B2
7739733 Szydlo Jun 2010 B2
7746063 Sabini et al. Jun 2010 B2
7751159 Koehl Jul 2010 B2
7755318 Panosh Jul 2010 B1
7775327 Abraham Aug 2010 B2
7777435 Aguilar Aug 2010 B2
7780406 Sloan et al. Aug 2010 B2
7788877 Andras Sep 2010 B2
7795824 Shen et al. Sep 2010 B2
7808211 Pacholok et al. Oct 2010 B2
7815420 Koehl Oct 2010 B2
7821215 Koehl Oct 2010 B2
7845913 Stiles et al. Dec 2010 B2
7854597 Stiles et al. Dec 2010 B2
7857600 Koehl Dec 2010 B2
7874808 Stiles Jan 2011 B2
7878766 Meza Feb 2011 B2
7900308 Erlich Mar 2011 B2
7925385 Stavale et al. Apr 2011 B2
7931447 Levin et al. Apr 2011 B2
7945411 Kernan et al. May 2011 B2
7976284 Koehl Jul 2011 B2
7983877 Koehl Jul 2011 B2
7990091 Koehl Aug 2011 B2
8011895 Ruffo Sep 2011 B2
8019479 Stiles et al. Sep 2011 B2
8032256 Wolf et al. Oct 2011 B1
8043070 Stiles Oct 2011 B2
8049464 Muntermann Nov 2011 B2
8098048 Hoff Jan 2012 B2
8104110 Caudill et al. Jan 2012 B2
8126574 Discenzo et al. Feb 2012 B2
8133034 Mehlhorn et al. Mar 2012 B2
8134336 Michalske et al. Mar 2012 B2
8177520 Mehlhorn May 2012 B2
8281425 Cohen Oct 2012 B2
8303260 Stavale et al. Nov 2012 B2
8313306 Stiles et al. Nov 2012 B2
8316152 Geltner et al. Nov 2012 B2
8317485 Meza et al. Nov 2012 B2
8337166 Meza et al. Dec 2012 B2
8380355 Mayleben et al. Feb 2013 B2
8405346 Trigiani Mar 2013 B2
8405361 Richards et al. Mar 2013 B2
8444394 Koehl May 2013 B2
8465262 Stiles et al. Jun 2013 B2
8469675 Stiles et al. Jun 2013 B2
8480373 Stiles et al. Jul 2013 B2
8500413 Stiles et al. Aug 2013 B2
8540493 Koehl Sep 2013 B2
8547065 Trigiani Oct 2013 B2
8573952 Stiles et al. Nov 2013 B2
8579600 Vijayakumar et al. Nov 2013 B2
8602745 Stiles Dec 2013 B2
8641383 Meza Feb 2014 B2
8641385 Koehl Feb 2014 B2
8669494 Tran Mar 2014 B2
8756991 Edwards Jun 2014 B2
8763315 Hartman Jul 2014 B2
8774972 Rusnak Jul 2014 B2
20010002238 McKain May 2001 A1
20010029407 Tompkins Oct 2001 A1
20010041139 Sabini et al. Nov 2001 A1
20020000789 Haba Jan 2002 A1
20020002989 Jones Jan 2002 A1
20020010839 Tirumalal et al. Jan 2002 A1
20020018721 Kobayashi Feb 2002 A1
20020032491 Imamura et al. Mar 2002 A1
20020035403 Clark et al. Mar 2002 A1
20020050490 Pittman et al. May 2002 A1
20020070611 Cline et al. Jun 2002 A1
20020070875 Crumb Jun 2002 A1
20020082727 Laflamme et al. Jun 2002 A1
20020089236 Cline et al. Jul 2002 A1
20020093306 Johnson Jul 2002 A1
20020101193 Farkas Aug 2002 A1
20020111554 Drzewiecki Aug 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020150476 Lucke Oct 2002 A1
20020163821 Odell Nov 2002 A1
20020172055 Balakrishnan Nov 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030000303 Livingston Jan 2003 A1
20030017055 Fong Jan 2003 A1
20030030954 Bax et al. Feb 2003 A1
20030034284 Wolfe Feb 2003 A1
20030034761 Goto Feb 2003 A1
20030048646 Odell Mar 2003 A1
20030061004 Discenzo Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030174450 Nakajima et al. Sep 2003 A1
20030186453 Bell Oct 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040016241 Street et al. Jan 2004 A1
20040025244 Lloyd et al. Feb 2004 A1
20040055363 Bristol Mar 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040064292 Beck Apr 2004 A1
20040071001 Balakrishnan Apr 2004 A1
20040080325 Ogura Apr 2004 A1
20040080352 Noda Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040095183 Swize May 2004 A1
20040116241 Ishikawa Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040118203 Heger Jun 2004 A1
20040149666 Leaverton Aug 2004 A1
20040205886 Goettel Oct 2004 A1
20040213676 Phillips Oct 2004 A1
20040265134 Iimura et al. Dec 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050069421 Basora Mar 2005 A1
20050086957 Lifson Apr 2005 A1
20050095150 Leone et al. May 2005 A1
20050097665 Goettel May 2005 A1
20050123408 Koehl Jun 2005 A1
20050133088 Bologeorges Jun 2005 A1
20050137720 Spira et al. Jun 2005 A1
20050156568 Yueh Jul 2005 A1
20050158177 Mehlhorn Jul 2005 A1
20050167345 De Wet et al. Aug 2005 A1
20050170936 Quinn Aug 2005 A1
20050180868 Miller Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050195545 Mladenik Sep 2005 A1
20050226731 Mehlhorn et al. Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050248310 Fagan et al. Nov 2005 A1
20050260079 Allen Nov 2005 A1
20050281679 Niedermeyer Dec 2005 A1
20050281681 Anderson Dec 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060078435 Burza Apr 2006 A1
20060078444 Sacher Apr 2006 A1
20060090255 Cohen May 2006 A1
20060093492 Janesky May 2006 A1
20060127227 Mehlhorn Jun 2006 A1
20060138033 Hoal et al. Jun 2006 A1
20060146462 McMillian et al. Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060204367 Meza Sep 2006 A1
20060226997 Kochan, Jr. Oct 2006 A1
20060235573 Guion Oct 2006 A1
20060269426 Llewellyn Nov 2006 A1
20070001635 Ho Jan 2007 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070080660 Fagan et al. Apr 2007 A1
20070093920 Tarpo et al. Apr 2007 A1
20070113647 Mehlhorn May 2007 A1
20070114162 Stiles et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070154319 Stiles Jul 2007 A1
20070154320 Stiles Jul 2007 A1
20070154321 Stiles Jul 2007 A1
20070154322 Stiles et al. Jul 2007 A1
20070154323 Stiles Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20070163929 Stiles Jul 2007 A1
20070183902 Stiles Aug 2007 A1
20070187185 Abraham et al. Aug 2007 A1
20070188129 Kochan, Jr. Aug 2007 A1
20070212210 Kernan et al. Sep 2007 A1
20070212229 Stavale et al. Sep 2007 A1
20070212230 Stavale et al. Sep 2007 A1
20070258827 Gierke Nov 2007 A1
20080003114 Levin et al. Jan 2008 A1
20080031751 Littwin et al. Feb 2008 A1
20080031752 Littwin et al. Feb 2008 A1
20080039977 Clark et al. Feb 2008 A1
20080041839 Tran Feb 2008 A1
20080063535 Koehl Mar 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos Apr 2008 A1
20080131286 Koehl Jun 2008 A1
20080131289 Koehl Jun 2008 A1
20080131291 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080131296 Koehl Jun 2008 A1
20080140353 Koehl Jun 2008 A1
20080152508 Meza Jun 2008 A1
20080168599 Caudill Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181788 Meza Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080181790 Meza Jul 2008 A1
20080189885 Erlich Aug 2008 A1
20080229819 Mayleben et al. Sep 2008 A1
20080249352 Dancu Oct 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20080298978 Schulman et al. Dec 2008 A1
20090014044 Hartman Jan 2009 A1
20090038696 Levin et al. Feb 2009 A1
20090052281 Nybo Feb 2009 A1
20090104044 Koehl Apr 2009 A1
20090129942 Dorado et al. May 2009 A1
20090143917 Uy et al. Jun 2009 A1
20090204237 Sustaeta et al. Aug 2009 A1
20090204267 Sustaeta et al. Aug 2009 A1
20090208345 Moore et al. Aug 2009 A1
20090210081 Sustaeta et al. Aug 2009 A1
20090269217 Vijayakumar Oct 2009 A1
20100154534 Hampton Jun 2010 A1
20100166570 Hampton Jul 2010 A1
20100197364 Lee Aug 2010 A1
20100303654 Petersen et al. Dec 2010 A1
20100306001 Discenzo Dec 2010 A1
20100312398 Kidd et al. Dec 2010 A1
20110036164 Burdi Feb 2011 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20110077875 Tran Mar 2011 A1
20110084650 Kaiser et al. Apr 2011 A1
20110110794 Mayleben et al. May 2011 A1
20110280744 Ortiz et al. Nov 2011 A1
20110311370 Sloss et al. Dec 2011 A1
20120020810 Stiles, Jr. et al. Jan 2012 A1
20120100010 Stiles et al. Apr 2012 A1
Foreign Referenced Citations (73)
Number Date Country
3940997 Feb 1998 AU
2005204246 Mar 2006 AU
2007332716 Jun 2008 AU
2007332769 Jun 2008 AU
2548437 Jun 2005 CA
2731482 Jun 2005 CA
2517040 Feb 2006 CA
2528580 May 2007 CA
2672410 Jun 2008 CA
2672459 Jun 2008 CA
101165352 Apr 2008 CN
3023463 Feb 1981 DE
2946049 May 1981 DE
29612980 Oct 1996 DE
19736079 Aug 1997 DE
19645129 May 1998 DE
29724347 Nov 2000 DE
10231773 Feb 2004 DE
19938490 Apr 2005 DE
0150068 Jul 1985 EP
0226858 Jul 1987 EP
0246769 Nov 1987 EP
0306814 Mar 1989 EP
0314249 Mar 1989 EP
0709575 May 1996 EP
0735273 Oct 1996 EP
0833436 Apr 1998 EP
0831188 Feb 1999 EP
0978657 Feb 2000 EP
1134421 Sep 2001 EP
0916026 May 2002 EP
1315929 Jun 2003 EP
1585205 Oct 2005 EP
1630422 Mar 2006 EP
1698815 Sep 2006 EP
1995462 Nov 2008 EP
2102503 Sep 2009 EP
2122171 Nov 2009 EP
2122172 Nov 2009 EP
2273125 Jan 2011 EP
2529965 Jan 1984 FR
2703409 Oct 1994 FR
2124304 Feb 1984 GB
55072678 May 1980 JP
5010270 Jan 1993 JP
2009006258 Dec 2009 MX
9804835 Feb 1998 WO
0042339 Jul 2000 WO
0127508 Apr 2001 WO
0147099 Jun 2001 WO
0218826 Mar 2002 WO
03025442 Mar 2003 WO
03099705 Dec 2003 WO
2004006416 Jan 2004 WO
2004073772 Sep 2004 WO
2004088694 Oct 2004 WO
2005011473 Feb 2005 WO
2005011473 Feb 2005 WO
2005055694 Jun 2005 WO
2005111473 Nov 2005 WO
2006069568 Jul 2006 WO
2008073329 Jun 2008 WO
2008073330 Jun 2008 WO
2008073386 Jun 2008 WO
2008073413 Jun 2008 WO
2008073418 Jun 2008 WO
2008073433 Jun 2008 WO
2008073436 Jun 2008 WO
200506869 May 2006 ZA
200509691 Nov 2006 ZA
200904747 Jul 2010 ZA
200904849 Jul 2010 ZA
200904850 Jul 2010 ZA
Non-Patent Literature Citations (84)
Entry
Flotec Owner's Manual, dated 2004. 44 pages.
Glentronics Home Page, dated 2007. 2 pages.
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007.
ITT Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages.
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages.
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages.
The Basement Watchdog A/C-D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages.
The Basement Watchdog Computer Controlled A/C-D/C Sump Pump System Instruction Manual, dated 2010. 17 pages, date Nov. 2010.
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages.
54DX18-STMICROELECTRONICS; “AN1946—Sensorless BLOC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-004590.
54DX19-STMICROELECTRONICS; “AN1276 BLOC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-004590.
54DX22-Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011.
54DX23-Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-004590.
540X30-Sabbagh et al.; “A Model for OptimaL.Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-004590.
540X33-PENTAIR; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-004590.
540X34-PENTAIR; “Compool3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-004590.
5540X36-Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
540X37-Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590.
540X38-0ANFOSS; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in Civil Action 5:11-cv-004590.
9PX-42-Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010, 3 pages.
205-24-Exh23-Piaintiff's Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in Civil Action 5:11-cv-00459; Feb. 21, 2012, 1 page.
9PX10-PENTAIR; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D.
Robert S. Carrow; “Electrician's Technical Reference-Variable Frequency Drives;” 2001; pp. 1-194.
Baldor; “Balder Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92.
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74.
Dinverter; “Dinverter 2B User Guide;” Nov. 1998; pp. 1-94.
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71.
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45.
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide,” 2002; pp. 1-4.
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118.
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 17, 2013, 19 pages.
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21.
Danfoss, VLT® Aqua Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16.
Danfoss, Salt Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16.
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page.
Pent Air; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60.
Allen-Bradley; “1336 Plus II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212.
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Nov. 1999, 216 pages.
Waterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7.
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A.
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of DH House Stations, presented by 7. Dresdner Femwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003.
Texas Instruments, Electronic Copy of TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages.
Decision on Appeal issued in Appeal No. 2015-007909, regarding Hayward Industries, Inc. v. Pentair Ltd., mailed Apr. 1, 2016, 19 pages.
Bibliographic Data Sheet—U.S. Appl. No. 10/730,747 Applicant: Robert M. Koehl Reasons for Inclusion: Printed publication US 2005/0123408 A1 for U.S. Appl. No. 10/730,747 has incorrect filing date, 1 pages.
Shabnam Moghanrabi; “Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 1-5; www/poolspanews.com.
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; Undated.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA, 1 page.
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan. 2001; USA.
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Undated Advertisement; Residential water system 8 pages.
Amtrol Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Mar. 2002; West Warwick, RI USA.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Undated Brochure; pp. 1-14; Denmark.
Grundfos; “JetPaq—The Complete Pumping System;” Undated Brochure; pp. 1-4; Clovis, CA USA.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec 19, 2001.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000, 1 page.
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Undated Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA.
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999.
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA.
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA.
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA.
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; Undated.
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com.
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA.
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12.
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA.
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA.
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com.
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012.
7—Motion for Preliminary Injunction by Danfoss Drives AIS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011, 7 pages.
23—Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011, 36 page.
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-004590; Oct. 12, 2011, 18 pages.
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, Case IPR2013-00285, U.S. Pat. No. 8,019,479 B2, Nov. 19, 2014, 39 pages.
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages.
Related Publications (1)
Number Date Country
20140322030 A1 Oct 2014 US
Continuations (2)
Number Date Country
Parent 13230678 Sep 2011 US
Child 14325887 US
Parent 11286888 Nov 2005 US
Child 13230678 US
Continuation in Parts (1)
Number Date Country
Parent 10926513 Aug 2004 US
Child 11286888 US