The present invention relates to electric water heater control, and more particularly to an electric water heater control employing a method for detecting high temperature conditions in electric water heaters.
This application relates to the art of controls and methods for operating electric water heaters. The invention is particularly applicable to a control apparatus and method that uses a control module running software for operation of a water heater. However, it will be appreciated that the invention has broader aspects and can be practiced in other forms.
An electric water heater energizes one or more heating elements located within the water heater tank to heat water. Electrical power to the heating elements is managed through the operation of a control module, which controls the opening and/or closing of electrical relays connected in series between a power source and the heating elements. The thermal energy generated by the heating elements dissipates in the water, thereby heating the water according to a desired or preset water temperature. The control module is operable to interrupt power to the heating elements, limiting the possibility that the water temperature will substantially exceed the desired temperature, by opening one or more of the electrical relays. However, certain circumstances may cause the heating elements to heat the water above the desired water temperature, resulting in a high temperature condition. For example, one or more of the relays may malfunction and/or fuse shut, limiting the ability of the control module to open and/or close the relays. If a relay fuses shut, the control module will not be able to open the relay and the heating elements will continue to heat the water.
It is known that one or more electric water heater components involved with the heating of the water may be designated as “critical” components. Electric water heater components are identified as critical components if failure of that particular component may directly result in a high temperature condition in the water heater. For example, if the failure of a relay would cause a high temperature condition, the relay is identified as a critical component. Critical components are more costly and have very high reliability requirements. It is desirable, therefore, to minimize the number of critical components in an electric water heater, which simultaneously minimizes the potential for a high temperature condition.
A water heater control for an electric water heater operates according to at least one fixed hardware and/or software temperature limit and a variable software temperature limit. The water heater control includes at least one sensor that determines a temperature of water in a tank of the electric water heater and generates a temperature signal indicative of the temperature. A control module receives the temperature signal and generates a first control signal that is indicative of a first relationship between the temperature signal and a first temperature threshold. The first control signal turns OFF and/or turns ON a heating element according to the first relationship. The control module generates a second control signal indicative of a second relationship between the temperature signal and a second temperature threshold. The second control signal turns OFF and/or turns ON a heating element according to the second relationship.
An electric water heater control method comprises sensing a temperature of water in a water heater tank. A first signal is generated at a first control module if the temperature is greater than a first temperature that is indicative of a desired temperature. A second signal is generated at a second control module if the temperature is greater than a second temperature threshold. The first signal and the second signal are received at a switching module that turns OFF one or more heating elements in response to one of the first and/or the second signal.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
With reference to
The upper heating element 16 extends through a side wall 28 of the tank 14 and generally into the inner volume 11. The upper heating element 16 is electrically connected to a building power supply 30 and is disposed near to an upper wall 32 of the tank 14. The upper heating element 16 receives current from the power supply 30 via control module 12 such that the control module 12 regulates the upper heating element 16 between an ON state and an OFF state.
The lower heating element 18 extends through the side wall 28 of the tank 14 and generally into the inner volume 11. The lower heating element 16 is electrically connected to the building power supply 30 and is disposed near to a lower wall 34 of the tank 14 such that the lower heating element 18 is generally closer to the lower wall 34 of the tank 14 than the upper heating element 16 is to the upper wall 32. The lower heating element 18 receives current from the power supply 30 via control module 12 such that the control module 12 regulates the lower heating element 18 between an ON state and an OFF state.
The electric water heater 10 also includes an upper temperature sensor 36 and a lower temperature sensor 38, each in communication with the control module 12. The upper and lower temperature sensors 36 and 38 are in communication with the control module 12 such that readings from the upper and lower temperature sensors 36 and 38 are transmitted to the control module 12 for processing.
The upper temperature sensor 36 is disposed adjacent to the upper heating element 16 to monitor a temperature of water within the tank 14 generally between the upper heating element 16 and the upper wall 32. The lower temperature sensor 38 is disposed adjacent to the lower heating element 18 to monitor a temperature of water within the tank 14 generally between the lower heating element 18 and the upper heating element 16. The temperature sensors 36 and 38 are preferably thermistors, such as an NTC thermistors, but could be any suitable temperature sensor that accurately reads the temperature of the water within the tank 14.
During operation, the control module 12 receives information from the sensors 36 and 38 for use in selectively actuating the upper heating element 16 and/or lower heating element 18 to the ON state. Furthermore, a flow sensor 37 could be disposed at the inlet 22 or the outlet 23 of the tank 14 to monitor a flow of water entering or exiting the tank 14. The flow sensor 37 can be used to indicate exactly how much water has been consumed over a predetermined amount of time and can therefore be used in determining when the upper and lower heating elements 16, 18 should be toggled to the ON state to thereby heat water disposed within the tank 14.
An exemplary electric water heater control 50 is shown in
The control module 12 is an electronic circuit and/or memory, such as a processor, that execute one or more software or firmware programs. For example, the control module 12 may include one or more software modules. In particular, the control module 12 includes a fixed software control module 60 that communicates with the relay module 54. The water temperature inputs 56 and 58 are indicative of the temperature of the water inside the water heater tank and communicate the water temperature to the control module 12. The fixed software control module 60 receives the water temperature inputs 56 and 58 and processes the water temperature and any other relevant data in order to generate a software relay control signal 62. The software relay control signal 62 determines a status of the relay module 54. For example, if the water temperature exceeds a particular threshold, the control module 12, by way of the fixed software control module 60 and the software relay control signal 62, opens or closes one or more relays of the relay module 54 in order to power ON or OFF one or more heating elements, represented schematically at 64.
The fixed hardware control module 52 operates similarly to the fixed software control module 60 in order to control the relay module 54. The fixed hardware control module 52 is an electronic circuit that includes one or more electronic components that generate a hardware relay control signal 66. The fixed hardware control module 52 generates the hardware relay control signal 66 in response to the water temperature input 56. The hardware relay control signal 66 determines a status of the relay module 54 in order to power ON or OFF one or more heating elements 64. In this manner, both the fixed software control module 60 and the fixed hardware control module 52 are operable to control power to the heating elements 64. In the event of a failure of one of the fixed software control module 60 or the fixed hardware control module 52, the electric water heater control 50 is nonetheless able to power OFF the heating elements 64.
Referring now to
First and second software relay control signals 96 and 98 are connected to gate nodes 100 and 102 of transistors 88 and 90, respectively. If water temperature inputs 92 and 94 indicate that the water temperature is below the threshold, the transistors 88 and 90 are ON. The relays 80 and 82 include solenoids 104 and 106 and switches 108 and 110. The solenoids 86 and 88 are connected to source nodes 112 and 114, respectively. If the transistors 88 and 90 are ON, the solenoids 104 and 106 are energized, and switches 108 and 110 are closed. Drain nodes 116 and 118 are connected to ground 120. Conversely, when the temperature inputs 92 and 94 indicate that the water temperature exceeds the threshold, the control module 72 turns transistors 88 and 90 OFF, and switches 108 and 110 are open.
The fixed hardware control module 74 includes comparators 122 and 124 and transistors 126 and 128. Output 128 of the comparator 122 is connected to a gate node 130 of the transistor 126. Similarly, output 132 of the comparator 124 is connected to a gate node 134 of the transistor 128. Each of the comparators 122 and 124 receives the water temperature input 92 and a reference voltage 136. Although the comparators 122 and 124 receive the water temperature input 92 from the upper temperature sensor 36, it is to be understood that the water temperature input 94 from the lower temperature sensor 38 might also be used.
The fixed hardware control module 74 opens and closes relays 84 and 86 according to the water temperature input 92. The relays 84 and 86 include solenoids 138 and 140 and switches 142 and 144. If the water temperature exceeds a particular threshold, the fixed hardware control module 74 opens the relays 84 and 86 in order to power OFF the upper and lower heating elements 16 and 18. If the temperature input 92 indicates that the water temperature is below the threshold, transistors 126 and 128 are ON, solenoids 138 and 140 are energized, and switches 142 and 144 are closed. Conversely, if the temperature input 92 indicates that the water temperature exceeds the threshold, transistors 126 and 128 are OFF and switches 142 and 144 are open.
When the switches 108, 142, and 144 are closed, the upper heating element 16 is energized through AC power lines 146 and 148. Conversely, if one or more of the switches 108, 142, and 144 are open, the power through the upper heating element 16 is interrupted. When the switches 110, 142, and 144 are closed, the lower heating element 18 is energized through the AC power lines 146 and 148. If one or more of the switches 110, 142, and 144 are open, the power through the lower heating element 18 is interrupted. Therefore, either the control module 72 or the fixed hardware control module 74 is able to interrupt the power to the upper and lower heating elements 16 and 18. In the event of a component failure that causes the control module 72 to lose its ability to open the switches 108 and/or 110 and interrupt power to the upper and lower heating elements 16 and 18, the fixed hardware control module 74 is still able to open the switches 142 and 144 and de-energize the heating elements 16 and 18. In other words, the control module 72 provides software control over the switches 108 and 110 based on a fixed software limit, and the fixed hardware control module 74 provides hardware control over the switches 142 and 144.
In the event that switches 108 and 110 are fused closed, continuously energizing the upper and lower heating elements 16 and 18, the control module 72 is able to interrupt power by opening switches 108 and 110 as described above. However, the electric water heater control 70 also provides control of switches 142 and 144 with the variable software control module 76. In a preferred embodiment, the variable control module 76 includes a transistor 150. A drain node 152 of the transistor 150 is connected to the fixed hardware control module 74. A source node 154 of the transistor 150 is connected to the switches 142 and 144 through the solenoids 138 and 140, respectively. The control module 72 communicates with a gate node 156 of the transistor 150.
The control module 72 controls the relays 80 and 82 with software relay control signals 96 and 98 according to temperature inputs 92 and 94. Similarly, the fixed hardware control module 74 controls the relays 84 and 86 with an output 158. However, the transistor 150 is either OFF or ON according to a variable control signal 162 of the control module 72. Therefore, the control capabilities of the fixed hardware control module 74 with respect to the relays 84 and 86 are subject to the software control of the control module 72. Under normal operating conditions, temperature inputs 92 and 94 indicate that the water temperature is below the threshold, and therefore one of the switches 108 and 110 is closed, as well as both of the switches 142 and 144. Transistors 88 and 90 are ON as described above. Additionally, the transistor 150 is ON in response to the variable control signal 162, allowing the fixed hardware control module 74 to energize solenoids 138 and 140. If the control module 72 turns the transistor 150 OFF, the switches 142 and 144 are open, regardless of the output 158 of the fixed hardware control module 74. Therefore, the control module 72 is able to control the relays 84 and 86 independently of the fixed hardware control module 74. For example, if the control module 72 malfunctions, the fixed hardware control module 74 may open the switches 142 and 144. Conversely, if the fixed hardware control module 74 malfunctions, the control module 72 can turn the transistor 150 OFF and open the switches 142 and 144.
The fixed hardware control module 74 may operate in accordance with limitations in the accuracy of the components used. For example, a fixed hardware temperature threshold may be set at 170° F. However, the fixed hardware control module 74 opens the switches 142 and 144 according to plus or minus 5° F. of accuracy. Therefore, the fixed hardware control module 74 may open the switches 142 and 144 at as low as 165° F. or as high as 175° F.
Similarly, the control module 72 controls the relays 80 and 82 according to a 170° F. fixed software temperature threshold. Additionally, the control module 72 may implement a variable software temperature threshold. For example, the outputs 96, 98, and 162 control the relays 80, 82, 84, and 86 according to comparison between the temperature inputs 92 and 94 and one of the fixed hardware temperature threshold and/or the fixed software temperature threshold. However, the output 162 may control the transistor 150, and therefore relays 84 and 86, according to the variable software temperature threshold, such as a limit set by a user. If the user sets the desired temperature of the water heater lower than the 170° F. fixed temperature thresholds, the variable software temperature threshold is determined according to this desired temperature and an offset. For example, the variable software temperature threshold may be an offset of 5° F. higher than the desired temperature. Therefore, if the water temperature exceeds the desired temperature by 5° F., the control module 72 turns OFF the transistor 150, opening the switches 142 and 144. Additionally, the fixed hardware control module 74 is operable to open the switches 142 and 144 if the water temperature exceeds the fixed temperature threshold of 170° F.
The control module software implements a fixed high limit software algorithm 170 as shown in
The control module software implements a variable high limit software algorithm 190 as shown in
At step 196, the algorithm 190 determines if the variable software temperature threshold is enabled. If the variable software temperature threshold is enabled, the algorithm 190 continues to step 200. If the variable software temperature threshold is not enabled, the algorithm 190 determines if the water temperature sensor reading is less than or equal to the set point at step 202. If the sensor reading is not less than or equal to the set point, the algorithm 190 continues to step 198 and repeats. If the sensor reading is less than or equal to the set point, the algorithm 190 continues to step 204. At step 204, the algorithm 190 enables the variable software temperature threshold, and then repeats at step 198.
Steps 202, 204, and 198 operate to re-enable the variable software temperature threshold after the variable software temperature threshold has been disabled due to a high temperature condition. In other words, steps 202, 204, and 198 re-enable the variable software temperature threshold after the water temperature drops below the variable software temperature threshold.
The algorithm 190 determines if the sensor reading is greater than a temperature offset, such as 5° F., above the variable software temperature threshold at step 200. If the sensor reading is not greater than the temperature offset above the variable software temperature threshold, the algorithm 190 continues to step 198 and repeats. If the sensor reading is greater than the temperature offset above the variable software temperature threshold, the algorithm 190 continues to step 206. At step 206, a variable software temperature threshold fault occurs. The water heater control controls the heating elements according to the variable software temperature threshold fault. In the preferred embodiment, the control module opens the appropriate switches in order to interrupt power to the heating elements. Therefore, it can be seen that steps 196, 200, and 206 operate to turn OFF the heating elements if the water temperature exceeds the user set point by more than the temperature offset. The heating elements remain OFF until the water heater is powered down or reset.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5168546 | Laperriere et al. | Dec 1992 | A |
5808277 | Dosani et al. | Sep 1998 | A |
6137955 | Krell et al. | Oct 2000 | A |
6242720 | Wilson et al. | Jun 2001 | B1 |
6293471 | Stettin et al. | Sep 2001 | B1 |
6308009 | Shellenberger et al. | Oct 2001 | B1 |
6363216 | Bradenbaugh | Mar 2002 | B1 |
6633726 | Bradenbaugh | Oct 2003 | B2 |
6795644 | Bradenbaugh | Sep 2004 | B2 |