The disclosure of Japanese Patent Application No. 2013-175224 filed on Aug. 27, 2013 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
1. Field of the Invention
The invention relates to a control apparatus and a control method for an internal combustion engine.
2. Description of Related Art
There is known a vehicle that is equipped with an internal combustion engine as a driving force source for running. For example, Japanese Patent Application Publication No. 2005-105885 (JP-2005-105885 A) discloses a hybrid vehicle that includes an internal combustion engine. This internal combustion engine is automatically stopped under a certain condition such as motor running or the like, and the stop position of a crankshaft is controlled by a motor-generator in consideration of the startability at the time when the internal combustion engine is restarted. In Japanese Patent Application Publication No. 2004-360549 (JP-2004-360549 A), as for an in-cylinder injection-type internal combustion engine having cylinders into which fuel is directly injected, there is described an art of controlling the stop position of a crankshaft through the generation of a braking force by burning the mixture in a cylinder during a compression stroke in stopping the internal combustion engine. In this in-cylinder injection-type internal combustion engine, ignition-based startup for rotating a crankshaft through the generation of a normal running torque by explosion is made possible by injecting fuel into the cylinder in an expansion stroke of the internal combustion engine that has stopped rotating, and igniting the fuel.
In a six-cylinder four-cycle internal combustion engine having cylinders into which fuel is directly injected, the crank angles of the respective cylinders are offset from one another by 120 crank angle (CA). Therefore, when the engine stops, a crankshaft is generally stopped at a crank angle at which a piston in any one of the cylinders is located at an intermediate position of an expansion stroke, which is advanced by, for example, 45 to 75 CA from a compression top dead center (TDC) as a top dead center after a compression stroke, due to a relationship between potential energy resulting from the pumping action (the action of something like a spring based on the compression of air) and a rotation inertia force. Thus, the ignition-based startup can be appropriately carried out. However, a stop at the TDC, namely, a stop of the piston in any one of the cylinders in the vicinity of the compression TDC may occur with a probability of about 5 to 10%. In this case, the crank angle of the cylinder in the expansion stroke (the cylinder located immediately in front of the cylinder with a stop at the TDC) is about 120 ATDC (a position advanced from the TDC by 120 CA), and an exhaust valve has already been open or will open soon. Therefore, a sufficient running torque is not obtained through ignition-based startup, so the execution of ignition-based startup may be substantially impossible. The aforementioned stop at the TDC is considered to occur due to friction of the engine or the like when the rotation inertia force and the pumping action are substantially balanced with each other. On the other hand, with a view to avoiding this stop at the TDC, it is conceivable to control the stop position of a crankshaft with the aid of an external force of a motor-generator or the like as is the case with, for example, the above-mentioned Japanese Patent Application Publication No. 2005-105885 (JP-2005-105885 A). It is also conceivable to cause a stop of rotation by burning the mixture in the cylinder in the compression stroke, as is the case with Japanese Patent Application Publication No. 2004-360549 (JP-2004-360549 A).
However, in the above-mentioned Japanese Patent Application Publication No. 2005-105885 (JP-2005-105885 A) case, it may be necessary to enlarge the motor-generator for applying the external force or the like. In the Japanese Patent Application Publication No. 2004-360549 (JP-2004-360549 A) case, the piston in the cylinder with a stop at the TDC needs to be stopped in the course of the compression stroke. Accordingly, it may be difficult to reliably prevent a stop at the TDC because of a difficulty in the prediction of a stop at the TDC or the timing of combustion etc. This phenomenon may also arise in a seven-cylinder internal combustion engine or an eight-cylinder internal combustion engine.
The invention provides an art of avoiding a stop of a crankshaft at a TDC without recourse to an external force of a motor-generator or the like, such that an internal combustion engine can be more appropriately restarted through ignition-based startup.
A first aspect of the invention provides a control apparatus for an internal combustion engine that can be a four-cycle engine including cylinders into which fuel is directly injected, the control apparatus includes an electronic control unit. The electronic control unit is configured to execute a fuel injection and an ignition for the cylinder in an expansion stroke on a condition that a stop of the piston in any one of the cylinders at vicinity of a top dead center after a compression stroke is predicted when the electronic control unit is configured to stop the fuel injection and the ignition for the internal combustion engine upon fulfillment of a predetermined stop condition. According to the above-mentioned configuration, a normal running torque through explosion is generated. The vicinity of the aforementioned top dead center (TDC) after a compression stroke (compression TDC) means a predetermined range including the TDC, preferably a range of a total of about 20 CA, namely, the TDC±10 CA.
In the control apparatus, the electronic control unit may be configured to execute the fuel injection and the ignition for the cylinder in the expansion stroke, after a recovery condition is satisfied when the fuel injection and the ignition are executed for the cylinder after the stop at the top dead center has occurred. The recovery condition may be a predetermined condition related to an in-cylinder pressure of each of the cylinder.
The internal combustion engine may further includes a variable valve timing device that changes an opening timing of an exhaust valve of the internal combustion engine. In the control apparatus, the electronic control unit may be configured to retard the opening timing of the exhaust valve by the variable valve timing device before the crankshaft stops rotating, when the stop of the piston at vicinity of the top dead center after the compression stroke has been predicted.
A second aspect of the invention provides a control apparatus for an internal combustion engine that can be a four-cycle engine including cylinders into which fuel is directly injected. The control apparatus includes an electronic control unit that is configured to execute a fuel injection and an ignition for the cylinder in an expansion stroke on a condition that a stop of the piston in any one of the cylinders at vicinity of a top dead center after a compression stroke is occurred when the electronic control unit is configured to stop the fuel injection and the ignition for the internal combustion engine upon fulfillment of a predetermined stop condition
A third aspect of the invention provides a control method for an internal combustion engine that can be a four-cycle engine including cylinders into which fuel is directly injected and an electronic control unit. The control method includes executing a fuel injection and an ignition, by the electronic control unit, for the cylinder in an expansion stroke on a condition that a stop of the piston in any one of the cylinders at vicinity of a top dead center after a compression stroke is predicted when the electronic control unit is configured to stop the fuel injection and the ignition for the internal combustion engine upon fulfillment of a predetermined stop condition.
Features, advantages, and technical and industrial significance of an exemplary embodiment of the invention will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
One embodiment of the invention is preferably applied to a six-cylinder internal combustion engine, but is also applicable to automatic stop control of an internal combustion engine having seven or more cylinders. The embodiment of the invention is preferably applied to a hybrid vehicle having a rotary machine (e. g. electric motor) such as a motor-generator or the like as a driving force source for running in addition to an internal combustion engine that is connected to a power transmission path via a disconnecting/connecting device such as a clutch or the like. Accordingly, the embodiment of the invention is applied to automatic stop control during the driving of the vehicle that is provided with a stop-and-start system of the engine for stopping the internal combustion engine during a motor running mode in which the vehicle runs with only the rotary machine serving as a driving force source, during coasting with an accelerator turned OFF, during deceleration or the like. The embodiment of the invention is applicable to an engine-driven vehicle or the like that is equipped only with an internal combustion engine as a driving force source for running. The embodiment of the invention is not limited to these, and is also applicable to automatic stop control during idling stop for stopping the internal combustion engine when the vehicle is stopped.
The embodiment of the invention is configured, for example, to adjust the stop position of a crankshaft by carrying out fuel injection and ignition for a cylinder in an expansion stroke both if a stop at the top dead center (hereinafter, TDC) has occurred and if a stop at the TDC has been predicted. It is also acceptable to adjust the stop position of the crankshaft only in the case where a stop at the TDC has occurred. In that case, it is not absolutely necessary to predict a stop at the TDC. If a stop at the TDC can be predicted with high accuracy, the stop position of the crankshaft may be adjusted only in the case where a stop at the TDC has been predicted.
The cylinder in the expansion stroke where fuel injection and ignition are carried out to adjust the stop position of the crankshaft is the cylinder located immediately in front of (preceding) the cylinder with a stop at the compression TDC. For example, this cylinder is a cylinder with a stop in the vicinity of 120 ATDC in the case where there are six cylinders, and is a cylinder with a stop in the vicinity of 103 ATDC in the case where there are seven cylinders. In the embodiment of the invention, fuel injection and ignition are carried out after a recovery condition determined in advance on an in-cylinder pressure of the cylinder in the expansion stroke has been attained. However, the invention is not limited to this embodiment thereof. In the case where the amount of pressure leak in a compression stroke is small, it is also acceptable to carry out fuel injection and ignition immediately after the detection of a stop at the TDC, without awaiting the recovery of the in-cylinder pressure. On the other hand, in the case where a stop at the TDC has been predicted, it is also acceptable to carry out fuel injection and ignition after the crankshaft has stopped rotating. However, it is also possible to carry out fuel injection and ignition before the crankshaft stops rotating.
In the embodiment of the invention, if a stop at a TDC has been predicted in an internal combustion engine that is equipped with a variable valve timing device that changes the timing for opening an exhaust valve, the timing for opening the exhaust valve is retarded before the crankshaft stops rotating. However, the invention is not limited to this embodiment thereof. The invention is also applicable to an internal combustion engine that is not equipped with a variable valve timing device. Even in the case where the variable valve timing device for the exhaust valve is provided, it is not absolutely necessary to always carry out retardation, but it is sufficient to carry out retardation as the need arises.
Hereinafter, the embodiment of the invention will be described in detail with reference to the drawings.
The direct-injection engine 12 is a four-cycle gasoline engine having six cylinders. As shown specifically in
The piston 110 is axially slidably fitted in the cylinder 100. The piston 110 is relatively rotatably coupled to a crankpin 116 of a crankshaft 114 via a connecting rod 112, and the crankshaft 114 is rotationally driven as indicated by an arrow R as the piston 110 rectilinearly moves in a reciprocating manner. The crankshaft 114 has a journal portion 118 that is rotatably supported by a bearing, and is integrally equipped with a crank arm 120 that connects the journal portion 118 and the crankpin 116 to each other.
This direct-injection engine 12 undergoes four strokes, namely, an intake stroke, a compression stroke, an expansion (explosion) stroke, and an exhaust stroke while the crankshaft 114 rotates by two turns (720 CA). The crankshaft 114 is continuously rotated through the repetition of this process. The pistons 110 of the six cylinders 100 are configured such that crank angles F thereof are offset from one another by 120 CA respectively. Every time the crankshaft 114 rotates by 120 CA, the six cylinders 100 are sequentially subjected to explosion and combustion, so a running torque is successively generated.
In the direct-injection engine 12, when the piston 110 in any one of the cylinders 100 is stopped within a predetermined angular range of the expansion stroke in which both the intake valve 104 and the exhaust valve 108 are closed, the fuel injector 46 injects gasoline into the cylinder 100, and the igniter 47 ignites the mixture in the cylinder 100, so the mixture in the cylinder 100 is exploded and burned, and the direct-injection engine 12 is started. In this manner, ignition-based startup is made possible. In
Returning to
The hybrid vehicle 10 according to the present embodiment of the invention is controlled by the electronic control unit 70. The electronic control unit 70 is configured to include a so-called microcomputer having a CPU, a ROM, a RAM, an input/output interface and the like. The electronic control unit 70 performs a signal process according to a program that is stored in advance in the ROM, while utilizing a temporary storage function of the RAM. A signal representing an operation amount of an accelerator pedal (an accelerator operation amount) Acc is supplied to the electronic control unit 70 from an accelerator operation amount sensor 48. Signals regarding a rotational speed of the direct-injection engine 12 (an engine rotational speed) NE, a rotational speed of the motor-generator MG (an MG rotational speed) NMG, a rotational speed of the turbine shaft 16 (a turbine rotational speed) NT, a rotational speed of the output shaft 22 (an output shaft rotational speed that corresponds to a vehicle speed V) NOUT, a rotational angle from a top dead center (a TDC) for each of the six cylinders 100 (a crank angle) F are supplied to the electronic control unit 70 from an engine rotational speed sensor 50, an MG rotational speed sensor 52, a turbine rotational speed sensor 54, a vehicle speed sensor 56, and a crank angle sensor 58 respectively. Moreover, various pieces of information required for various kinds of control are supplied to the electronic control unit 70. The aforementioned accelerator operation amount Acc is equivalent to an output request amount.
The aforementioned electronic control unit 70 is equipped with hybrid control means 72, shift control means 74, running control means 76, and engine stop control means 80. The hybrid control means 72 controls the operations of the direct-injection engine 12 and the motor-generator MG. Thus, the vehicle runs while making a switchover among a plurality of predetermined running modes, for example, an engine running mode in which the vehicle runs using only the direct-injection engine 12 as a driving force source, a motor running mode in which the vehicle runs using only the motor-generator MG as a driving force source, an engine+motor running mode in which the vehicle runs using both the direct-injection engine 12 and the motor-generator MG, and the like, in accordance with operation states such as the accelerator operation amount Acc, the vehicle speed V and the like. The shift control means 74 controls the electromagnetically operated oil pressure control valves, the switching valves and the like that are provided in the oil pressure control device 28, thereby making a switchover in the engagement/release states of the plurality of the hydraulic frictional engagement devices.
Thus, a switchover is made among the plurality of the gear stages of the automatic transmission 20 according to a predetermined shift map, using operation states such as the accelerator operation amount Acc, the vehicle speed V and the like as parameters. The running control means 76 releases the K0 clutch 34 under a certain condition, disconnects the direct-injection engine 12 from the power transmission path, stops the operation of the direct-injection engine 12, and performs running control for improving fuel economy, if the vehicle runs in a decelerating manner or a coasting manner with the accelerator turned OFF while running in the engine+motor running mode or the engine running mode.
The engine stop control means 80 stops the direct-injection engine 12 when a switchover in mode is made from the aforementioned engine+motor running mode to the motor running mode or from the engine running mode to the motor running mode, or when running control is performed. The engine stop control means 80 is equipped with engine stop means 82, TDC stop determination means 84, and crankshaft stop position adjustment means 86, and performs a signal process according to a flowchart of
In step S1 of
In step S2, a process of disconnecting the K0 clutch 34 is performed to disconnect the direct-injection engine 12 from the power transmission path. Subsequently in step S3, a process of stopping the direct-injection engine 12 is performed. In this stop process, fuel injection by the fuel injector 46 is stopped (fuel cutoff), and ignition control of the igniter 47 is stopped. Thus, in conjunction with the disconnection of the direct-injection engine 12 from the power transmission path in step S2, the engine rotational speed NE is gradually reduced, so the direct-injection engine 12 is stopped from rotating. As for the process of disconnecting the K0 clutch 34 by step S2, fuel cutoff by step S3 and the like, fuel cutoff may be performed later. However, the process of disconnecting the K0 clutch 34 and fuel cutoff can be performed in parallel substantially at the same time, or fuel cutoff may be performed first.
In step S4, it is predicted whether the stop position of the crankshaft 114 at the time when the direct-injection engine 12 stops rotating coincides with a stop at the TDC. That is, when the crankshaft 114 is stopped from rotating by stopping fuel injection and ignition for the direct-injection engine 12, it can be predicted whether or not a stop at the TDC occurs, from a relationship between the crank angle F and the rotational speed in the case where a stop at the TDC occurs or in the case where a stop at the TDC does not occur. The relationship between the crank angle F and the rotational speed in the case where a stop at the TDC occurs or in the case where a stop at the TDC does not occur can be obtained in advance through an experiment, a simulation or the like.
Subsequently in step S5, it is determined whether or not it is determined in step S4 that a stop at the TDC is likely to occur. If it is determined that a stop at the TDC is likely to occur (or a stop at the TDC may occur), step S7 and step S8 are executed. Besides, if it is determined in step S4 that a stop at the TDC is unlikely to occur (or a stop at the TDC does not occur), it is determined in step S6 whether or not a stop at the TDC has actually occurred. It can be determined whether or not a stop at the TDC has occurred, for example, depending on whether or not the stop position of the crankshaft 114 (the crank angle F in any one of the cylinders 100) is within the range of the TDC±a. It is appropriate that a be, for example, about 5 to 10 CA. If a stop at the TDC has not occurred in step S6, the process is immediately ended. However, if a stop at the TDC has occurred in step S6, step S8 is executed.
In step S7, the timing for opening the exhaust valve 108 is retarded by the exhaust valve VVT device 60 before the crankshaft 114 stops rotating. The determination on the possibility of a stop at the TDC in step S4 is made at, for example, 60 BTDC, and the engine rotational speed NE is low in this stage. Therefore, the timing for opening the exhaust valve 108 can be retarded before the crankshaft 114 stops rotating. In step S8, fuel injection and ignition are carried out for the cylinder 100 in an expansion stroke, and a normal running torque is generated through explosion to prevent the crankshaft 114 from stopping at the TDC. Thus, the piston 110 that has stopped in the vicinity of the compression TDC, or the piston 110 of the cylinder 100 whose piston is estimated to stop in the vicinity of the compression TDC advances to the expansion stroke beyond the compression TDC, and the crankshaft 114 is stopped in a natural manner through the normal running torque resulting from explosion, the pumping action, friction and the like. Thus, the above-mentioned piston 110 is stopped at an intermediate position of the expansion stroke (e.g., in the vicinity of 45 to 75 ATDC). Accordingly, when a request to start the engine is made afterward, ignition-based startup for starting the direct-injection engine 12 through fuel injection and ignition for the cylinder 100 in the expansion stroke is appropriately carried out. Engine automatic stop control according to the present embodiment of the invention is performed while running in the motor running mode or during the driving of a vehicle that is provided with a stop-and-start system of the engine. Therefore, a driver is unlikely to feel a sense of discomfort due to vibrations or the like caused by explosion for avoiding a stop at the TDC.
It should be noted herein that if it is determined in step S5 that a stop at the TDC may occur, the timing for opening the exhaust valve 108 is retarded in step S7. Therefore, the exhaust valve 108 in the cylinder 100 indicated by “the double circle” in
On the other hand, if a stop at the TDC is actually detected in step S6, fuel injection and ignition are carried out in step S8 with the crankshaft 114 completely stopped from rotating. Even if it is determined in step S5 that a stop at the TDC may occur (is likely to occur), fuel injection and ignition can be carried out in step S8 after the crankshaft 114 has completely stopped rotating. In this case, the rotation inertia force of the crankshaft 114 is 0, but the crankshaft 114 can be prevented from stopping at the TDC by being rotated by explosion resulting from fuel injection and ignition for the cylinder 100 indicated by “the double circle” in
The cylinder 100 indicated by “the double circle” in
As described hitherto, in an automatic stop control apparatus for the direct-injection engine 12 according to the present embodiment of the invention, if a stop at the TDC is predicted (the result of the determination in step S5 is YES) or if the stop at the TDC has occurred (the result of the determination in step S6 is YES), fuel injection and ignition are carried out for the cylinder 100 in the expansion stroke (the cylinder indicated by “the double circle” in
In that case, fuel injection and ignition are carried out for the cylinder 100 in the expansion stroke (the cylinder indicated by “the double circle” in
In the case where fuel injection and ignition are carried out for the cylinder 100 in the expansion stroke (the cylinder indicated by “the double circle” in
In the present embodiment of the invention, the exhaust valve VVT device 60 that changes the timing for opening the exhaust valve 108 is provided. The exhaust valve 108 of the cylinder 100 in the expansion stroke (the cylinder indicated by “the double circle” in
The operation and effect of the automatic stop control apparatus for the internal combustion engine presented in the aforementioned embodiment of the invention are as follows. That is, if a stop at the TDC is predicted or if the stop at the TDC has occurred, fuel injection and ignition are carried out for the cylinder in the expansion stroke, and a normal running torque is generated through explosion to rotate the crankshaft. As a result, the crankshaft is prevented from stopping at the TDC. In consequence, the piston of the cylinder whose piston has stopped or is estimated to stop in the vicinity of the compression TDC advances to the expansion stroke beyond the compression TDC due to normal rotation of the crankshaft resulting from explosion, and the crankshaft is stopped in a natural manner due to the normal running torque, potential energy resulting from the pumping action, friction and the like. As a result, the piston is stopped at an intermediate position of the expansion stroke. Thus, when a request to start the internal combustion engine is made afterward, ignition-based startup for starting the internal combustion engine through fuel injection and ignition for the cylinder in the expansion stroke is appropriately carried out.
In the aforementioned embodiment of the invention, if a stop at the TDC is predicted or if the stop at the TDC has occurred, fuel injection and ignition are carried out for the cylinder in the expansion stroke, and the crankshaft is prevented from stopping at the TDC by being rotated in the normal direction through explosion. Therefore, there is no need to enlarge the motor-generator as in the case where the stop position of the crankshaft is controlled through the use of, for example, the motor-generator. As a result, an inexpensive configuration can be realized through the direct use of existing parts and the like. Besides, fuel injection and ignition are carried out for the cylinder in the expansion stroke to prevent the crankshaft from stopping at the TDC. For example, fuel injection and the like can be carried out after a stop at the TDC has occurred. Therefore, in comparison with a case where the crankshaft is stopped from rotating by burning the mixture in the cylinder in the compression stroke, the control is easier to perform, and a stop at the TDC can be avoided with higher accuracy.
In the aforementioned embodiment of the invention, when fuel injection and ignition are carried out for the cylinder in the expansion stroke after a stop at the TDC has occurred, the fuel injection and ignition are carried out after the recovery condition determined in advance on the in-cylinder pressure of the cylinder has been attained. Therefore, a sufficient amount of oxygen is contained in the cylinder, and a large normal running torque is obtained through explosion, so the crankshaft can be reliably prevented from stopping at the TDC. That is, the cylinder whose piston has stopped in the expansion stroke has undergone the compression stroke as the crankshaft rotates through inertia before stopping rotating. Therefore, a pressure leak occurs from the gap of the abutment of the piston ring, and the pressure in the cylinder is likely to be negative immediately after the crankshaft has stopped in the expansion stroke. Even if fuel injection and ignition are immediately carried out, a sufficient running torque may not be obtained due to an insufficiency in oxygen. On the other hand, air flows into the cylinder in which the piston has stopped in the expansion stroke, from the gap of the abutment of the piston ring thereof, so the in-cylinder pressure recovers in a natural manner to the vicinity of the atmospheric pressure. Therefore, a running torque that is neither too small nor too large to prevent the crankshaft from stopping at the TDC can be generated by carrying out fuel injection and ignition after the predetermined recovery condition has been attained.
Besides, in the case where the variable valve timing device that changes the timing for opening the exhaust valve is provided, the exhaust valve of the cylinder in which the piston has stopped in the expansion stroke may already be open at the time of a stop at the TDC. According to the aforementioned embodiment of the invention, when a stop at the TDC is predicted, the timing for opening the exhaust valve is retarded by the variable valve timing device before the crankshaft stops rotating. Therefore, the exhaust valve of the cylinder in the expansion stroke is likely to be held closed at the time of a stop at the TDC. Thus, a running torque that is neither too small nor too large to prevent the crankshaft from stopping at the TDC can be generated through explosion resulting from fuel injection and ignition for the cylinder in the expansion stroke.
Although the embodiment of the invention has been described above in detail based on the drawings, this is nothing more than one embodiment of the invention. The invention can be carried out in a mode that is subjected to various modifications and improvements based on the knowledge of those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
2013-175224 | Aug 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6550457 | Kitagawa | Apr 2003 | B1 |
20050066933 | Kaita et al. | Mar 2005 | A1 |
20050109302 | Tetsuno | May 2005 | A1 |
20060266020 | Okamoto | Nov 2006 | A1 |
20080092841 | Takahashi | Apr 2008 | A1 |
20090037085 | Kojima | Feb 2009 | A1 |
20090125212 | Kurashima | May 2009 | A1 |
20090164101 | Kageyama | Jun 2009 | A1 |
20110132307 | Patterson | Jun 2011 | A1 |
20110208411 | Tsuji | Aug 2011 | A1 |
20110246046 | Ichinose | Oct 2011 | A1 |
20140202407 | Miyamoto | Jul 2014 | A1 |
20140249710 | Nakanishi | Sep 2014 | A1 |
20140303823 | Nakanishi | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2004-360549 | Dec 2004 | JP |
2005-105885 | Apr 2005 | JP |
2006-299997 | Nov 2006 | JP |
WO 2006134439 | Dec 2006 | JP |
2007-187051 | Jul 2007 | JP |
2012-082698 | Apr 2012 | JP |
Number | Date | Country | |
---|---|---|---|
20150059688 A1 | Mar 2015 | US |