The present invention relates to a control apparatus that provides a tilt control.
Surveillance cameras have recently been installed at high places to monitor and photograph pedestrians on a road, a station platform, or the like. Cameras for the surveillance applications are demanded to obtain images with a deep depth of field. For this demand, one known method (Scheimpflug principle) adjusts a surface (focal plane) to be focused in order to obtain an image with a deep depth of field through a control (tilt control) that tilts an imaging plane relative to an imaging optical-axis plane orthogonal to an imaging optical axis used to capture an object image.
During the tilt control, blurring occurs in a direction orthogonal to the focal plane. Thus, when the focal plane is adjusted so that the ground (road) is in focus, the height of the face of the pedestrian on the road is blurred. Hence, the tilt control needs to control the position of the focal plane in the vertical direction.
Japanese Patent Laid-Open No. (“JP”) 2010-130633 discloses an image pickup apparatus that obtains a tilt angle of a camera, focal length information, and object distance information, calculates a tilt angle of an image sensor without inputting parameters, and performs an automatic tilt control. JP 2017-173802 discloses an image pickup apparatus that performs a tilt control using a tilt angle calculated based on focus shift amounts in a plurality of focus detecting areas.
However, the image pickup apparatus disclosed in JP 2010-130633 cannot move the focal plane in the direction vertical to the focal plane. The image pickup apparatus disclosed in JP 2017-173802 may not be able to properly conduct a focus detection for a moving object. In order to move the focal plane in the vertical direction, the tilting control needs to move the focal plane in the vertical direction relative to a reference plane in consideration of respective driving speeds of the focus lens and the image sensor.
The present invention provides a control apparatus, a control method, and a storage medium, each of which can move a focal plane in a vertical direction while keeping a reference plane and the focal plane parallel to each other.
A control apparatus according to one aspect of the present invention includes a tilt driving unit configured to tilt at least one of an image sensor and an imaging optical system relative to a plane orthogonal to an optical axis, a focus driving unit configured to perform focus driving by moving a focus lens that constitutes at least part of the imaging optical system in an optical axis direction, and a controlling unit configured to control the focus driving unit and the tilt driving unit so as to adjust a focal plane to a predetermined surface. The controlling unit moves the focal plane in a vertical direction to the focal plane while maintaining the focal plane substantially parallel to the predetermined plane.
A control method and a storage medium storing a program corresponding to the above control apparatus also constitute another aspect of the present invention.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Referring now to the accompanying drawings, a detailed description will be given of embodiments according to the present invention.
Overall Structure
Referring now to
A zoom lens 101 moves in an optical axis direction and changes a focal length. The focus lens 102 moves in the optical axis direction during focusing. A diaphragm unit (aperture stop unit) 103 adjusts a light amount. The imaging optical system according to this embodiment includes the zoom lens 101, the focus lens 102, and the diaphragm unit 103. However, the present invention is not limited to this embodiment, and may be an imaging optical system that does not include at least one of the zoom lens 101, the focus lens 102, and the diaphragm unit 103.
Light that has passed through the imaging optical system forms an object image as an optical image on an image sensor 106 via a bandpass filter (BPF) 104 and a color filter 105. The BPF 104 is movable to and from the optical path of the imaging optical system. An image sensor 106 has a CMOS sensor or the like, and photoelectrically converts the object image formed via the imaging optical system and outputs an analog electric signal (captured image). An AGC 107 controls a gain of an analog electric signal output from the image sensor 106. An A/D converter 108 converts the analog electric signal into a digital signal (digital imaging signal) and outputs the digital signal to a camera signal processor 109.
The camera signal processor 109 performs various image processing for the digital imaging signal and generates a video signal. The video signal is output to a surveillance apparatus 111 connected to the image pickup apparatus 100 by wire or wireless communications via a communication unit 110. The communication unit 110 receives a command (instruction) from an external device and outputs a control signal, such as a command, to the focal plane controlling unit 117 and a zoom controlling unit 120.
A change instruction receiving unit 112 accepts a focal plane change instruction (shift change instruction), which is one of the commands from the external device. The focal plane is not a plane that is in focus when focusing is made by the focus lens, but a plane that is in focus when the optical system or the image sensor 106 is tilted. The front and back (up and down) of the focal plane are within the depth of field, and the object located in this range is in focus. The change instruction is to change (shift) the position of the focal plane in a substantially vertical direction to the reference plane (or surface) (predetermined plane, such as the ground surface). The target focus-control distance calculator 113 and the target tilt-control angle calculator 114 respectively calculate the position of the focus lens 102 for the focal-plane changing control and the tilt angles of the optical system or the image sensor 106. The focusing speed calculator 115 and the tilting speed calculator 116 move the focal plane in the substantially vertical direction while maintaining the focal plane parallel to the reference plane, and thus calculate the focusing speed (or focus driving speed) and the tilting speed (or tilt driving speed) according to the shift amount.
The focal plane controlling unit 117 acquires the instruction from the communication unit 110 and the calculation results by the target focus-control distance calculator 113, the target tilt-control angle calculator 114, the focusing speed calculator 115, and the tilting speed calculator 116. Then, based on the instruction and the calculation result, the focal plane controlling unit 117 instructs a focus driving unit 118 and an image sensor driving unit (tilt driving unit) 119 in a focus setting position, a tilt angle setting position, a focus setting speed, and a tilt setting speed. The zoom controlling unit 120 instructs a zoom driving unit 121 in the zoom setting position based on the instruction from the communication unit 110.
The focus driving unit 118 drives the focus lens 102 in accordance with the focus setting position and the focus setting speed instructed by the focal plane controlling unit 117. The image sensor driving unit 119 drives (or tilts) the image sensor 106 in accordance with the tilt angle setting position and the tilt setting speed instructed by the focal plane controlling unit 117. The zoom controlling unit 120 drives the zoom lens 101 in accordance with the zoom setting position designated by the zoom controlling unit 120. This embodiment uses the image sensor driving unit 119 as the tilt driving unit for tilt driving, but is not limited to this example and may use the tilt driving unit that drives the imaging optical system for tilt driving. In other words, the tilt driving unit changes the slope of at least one of the image sensor 106 and the imaging optical system (the angle between the imaging plane of the image sensor 106 and the principal plane of the imaging optical system), and performs tilt driving.
The tilt control is to adjust an in-focus plane (focal plane) to a plane such as the ground plane by tilting the imaging plane relative to the imaging optical axis plane (plane orthogonal to the optical axis) that is orthogonal to the imaging optical axis used to capture an object image (for example, by tilting the imaging optical system or the image sensor 106). The tilt control will be described with reference to
Referring now to
The reason why the plane 302 corresponding to the person's face height cannot be in focus in advance is that there is no object at the height to be focused on an image-sensor rotation axis 303 or no focus control is available based on the contrast evaluation value or the like. On the other hand, since the object exists on the image-sensor rotation axis 303 on the plane 301 corresponding to the ground height, it is possible to form the focal plane relatively easily. Hence, in the shift change control of the focal plane, the focus lens 102 may have to be controlled at a distance where there is no object or at a distance outside the angle of view. Then, it is necessary to calculate the target focus-control distance using a parameter that can be acquired from the image, and to perform the focus control based on the calculation result.
Referring now to
D0 is an object distance 406 during a reference plane control, f is a focal length 407, “a” is a camera depression angle 408, and H is a camera height 409. The object distance 406 during the reference plane control may be obtained by converting information obtained from a lens (optical system) during autofocusing (AF) at the image center may be converted into a distance, or by using a value acquired by an external focus detecting sensor. The focal length 407 may use information obtained from the lens. The camera depression angle 408 and the camera height 409 can be acquired by focusing on the reference plane. A relationship among a tilt angle 410(b0) during the reference plane control, a camera depression angle 408(a), and a camera height 409(H) is expressed by the following expression (3):
By focusing on the reference plane, the object distance 406 during the reference plane control and the tilt angle 410 during the reference plane control can be acquired, and the camera depression angle 408 and the camera height 409 can be obtained through calculations. Herein, the method of acquiring the camera depression angle 408 and the camera height 409 by focusing on the reference plane has been shown, but the method of acquiring these parameters is not limited to this embodiment, and they may be acquired, for example, by a gyro sensor, an acceleration sensor, a geomagnetic sensor, or the like.
Referring now to
From
A detailed description will be given of each embodiment.
A description will be given of a first embodiment according to the present invention. As illustrated in
Referring now to
First, in the step S601, the focal plane controlling unit 117 acquires parameters necessary to change the shift of the focal plane by focusing on the reference plane 401. The necessary parameters herein are the object distance 406 during the reference plane control, the focal length 407, the camera depression angle 408, and the camera height 409. The parameter for focusing on the reference plane 401 can be calculated and acquired based on the expression (3) as described above. However, the parameter acquiring method is not limited to this embodiment. For example, any method can be used such as a method of calibrating the image pickup apparatus 100 during installation, a method of using a sensor built in the image pickup apparatus 100 or an external sensor, or a method of using a value input by the user.
Next, in the step S602, the change instruction receiving unit 112 receives a shift change instruction from the user. According to this embodiment, the shift change instruction is given as a value of the shift amount 402.
Next, in the step S603, the focusing speed calculator 115 and the tilting speed calculator 116 calculate a speed coefficient αH at the maximum focusing speed and a speed coefficient βH at the maximum tilting speed, respectively. The focusing speed and the tilting speed with a certain shift amount 402 may be determined based on the slopes in the graphs illustrated in
The object distance 406 during the reference plane control, the focal length 407, the camera depression angle 408 or the camera height 409 acquired in the step S601, and the shift amount set in the step 606 (set value of the shift amount) are substituted for the expressions (4) and (5). Thereby, the focusing speed and the tilting speed at the certain shift amount 402 can be calculated. Regarding the various speed coefficients calculated herein, the speed coefficient αH at the maximum focusing speed and the speed coefficient βH at the maximum tilting speed are values calculated with the maximum shift amount. By calculating the speed coefficient αH at the maximum focusing speed and the speed coefficient βH at the maximum tilting speed, and by setting the speed as fast as possible in the subsequent speed setting, the shift change from the reference plane 401 to the focal plane 403 at the desired height can be completed in a short time.
Next, in the step S604, the focal plane controlling unit 117 determines whether or not the focusing speed (basic speed×αH) and the tilting speed (basic speed×βH) determined based on the speed coefficients αH and βH calculated in the step S603, respectively, are settable speeds. When it is determined in the step S604 that at least one of the focusing speed and the tilting speed is not the settable speed, the flow proceeds to the step S605. In the step S605, the focal plane controlling unit 117 reviews the basic speed and returns to the step S604. On the other hand, if it is determined in the step S604 that the focusing speed and the tilting speed are settable speeds, the flow proceeds to the step S606.
Processing in steps S606 to S609 is repeated until the shift amount received in the step S602 and the current shift amount (set value of the shift amount) coincide with each other. First, in the step S606, the focusing speed calculator 115 and the tilting speed calculator 116 change the shift amount by a predetermined fixed amount (a predetermined amount). Next, in the step S607, the focusing speed calculator 115 and the tilting speed calculator 116 calculate the focusing speed coefficient α and the tilting speed coefficient β at the shift amount set in the step S606, by using the expressions (4) and (5), respectively.
Next, in the step S608, the focusing speed calculator 115 and the tilting speed calculator 116 calculate the focusing speed and the tilting speed by multiplying the basic speed by the focusing speed coefficient α and the tilting speed coefficient β, and sets them to the focal plane controlling unit 117. Next, in the step S609, the focal plane controlling unit 117 drives the focus lens 102 and the image sensor 106, respectively, in accordance with the focusing speed and the tilting speed set in the step S608. When the focus driving and the tilt driving are completed up to the target focus-control distance 404 and the target tilt-control angle 405 calculated by the expressions (1) and (2) in accordance with the current shift amount, the flow returns to the step S606 again to repeat the processing.
This embodiment sets the shift amount every necessary time, but is not limited to this example, and a table showing a relationship among the shift amount, the focusing speed, and the tilting speed may be stored and a control may be made based on the table. Instead of setting the shift amount, either the focus driving or the tilt driving may be made at an arbitrary speed, and the other driving speed may be synchronized so that the focal plane moves in a substantially vertical direction while a substantially parallel state is maintained.
This embodiment considers the driving speeds of the focus lens 102 and the image sensor 106, and controls (moves) the focal plane so that the focal plane is shifted in a substantially vertical direction while it is maintained parallel to the reference plane 401.
Next follows a description of a second embodiment according to the present invention. This embodiment describes a control in which a shift change instruction from the user is received by the user pressing a shift change button 701 as illustrated in
Referring now to
After the focal plane controlling unit 117 acquires the parameters in the step S601, the change instruction receiving unit 112 determines in the step S801 whether or not the shift change button 701 has been pressed. After the subsequent steps S606 and S607, the flow proceeds to the step S802. In the step S802, the focal plane controlling unit 117 determines whether or not the focusing speed and the tilting speed determined based on the focusing speed coefficient α and the tilting speed coefficient β calculated in the step S607 are settable speeds. In this embodiment, the focusing speed and the tilting speed in the shift change of the focal plane by pressing the shift change button 701 may be set to low speeds in order to facilitate the fine adjustment by the user.
If at least one of the focusing speed and the tilting speed is not the settable speed in the step S802, the flow proceeds to the step S605 and returns to the step S802. On the other hand, when the focusing speed and the tilting speed are settable speeds in the step S802, the flow proceeds to the step S608, and returns to the step S801 after the step S609.
This embodiment sets the shift amount every necessary time similar to the first embodiment, but is not limited to this example, and a table showing a relationship among the shift amount, the focusing speed, and the tilting speed may be stored and a control may be made based on the table. Instead of setting the shift amount, either the focus driving or the tilt driving may be made at an arbitrary speed, and the other driving speed may be synchronized so that the focal plane moves in a substantially vertical direction while a substantially parallel state is maintained.
This embodiment can make a control, when the shift change button 701 is pressed, such that the focal plane is shifted in the substantially vertical direction while the focal plane is maintained parallel to the reference plane, and simplifies the shift changing operation of the focal plane.
Next follows a description of a third embodiment according to the present invention. This embodiment makes a control that adds processing for providing a predetermined slope permissible width, when the focal plane in the second embodiment is tilted from the state of being completely parallel to the reference plane 401.
Referring now to
After the steps S601 and S801, in the step S1001, the focal plane controlling unit 117 calculates the current slope of the focal plane. The current slope of the focal plane is calculated based on a shift amount between the current tilt angle and the tilt angle 410 during the reference plane control, and a shift amount between the current focal length and the object distance 406 during the reference plane control. Next, in the step S1002, the focal plane controlling unit 117 determines whether or not the current slope of the focal plane calculated in the step S1001 is within the permissible range (within a range of the slope permissible width). In this embodiment, the slope permissible width is determined in accordance with the conventional depth range calculated based on at least one of the object distance, the focal length, and the F-number. When it is determined that the current slope of the focal plane is not within the permissible range, the flow proceeds to the step S1003.
In the step S1003, the focal plane controlling unit 117 determines whether the front or back of the focal plane rises.
If it is determined in the step S1002 that the slope of the focal plane is within the permissible range, the flow proceeds to the step S1004. In the step S1004, the focal plane controlling unit 117 sets 1 to a focusing acceleration coefficient α′ and a tilting acceleration coefficient β′ (α′=β′=1). When the slope of the focal plane is within the permissible range, it is unnecessary to accelerate the focus driving and tilt driving. Hence, the focal plane controlling unit 117 sets a coefficient that accelerates none of them.
If it is determined in the step S1002 that the slope of the focal plane is not within the permissible range and that the front of the focal plane rises in the step S1003, the focal plane controlling unit 117 sets the focusing acceleration coefficient α′ in the step S1005. The focal plane controlling unit 117 sets 1 to the tilting acceleration coefficient β′ (β′=1). Since the focus driving is later now, a coefficient (α′>1) for accelerating the focus driving is set to the focusing acceleration coefficient α′.
If it is determined in the step S1002 that the slope of the focal plane is not within the permissible range and it is determined in the step S1003 that the front of the focal plane does not rise, the focal plane controlling unit 117 sets 1 to the focus acceleration coefficient α′ in the step S1006. The focal plane controlling unit 117 sets the tilting acceleration coefficient β′. Since the tilt driving is later, a coefficient (β′>1) for accelerating the tilt driving is set to the tilt acceleration coefficient β′.
After any of the steps S1004, S1005, and S1006, the flow proceeds to the step S1007 via the steps S606 and S607. In the step S1007, the focal plane controlling unit 117 determines the focusing speed (basic speed×α×α′) and the tilting speed (basic speed×β×β′) based on the focusing speed coefficient α, the tilting speed coefficient β, the focusing acceleration coefficient α′, and the tilting acceleration coefficient β′. Then, the focal plane controlling unit 117 determines whether or not the focusing speed and the tilting speed are settable speeds. This embodiment may set the focusing speed and the tilting speed to low speeds in order to facilitate the fine adjustment by the user, similar to the second embodiment.
If at least one of the focusing speed and the tilting speed is not the settable speed in the step S1007, the flow proceeds to the step S605 and returns to the step S1007. On the other hand, if the focusing speed and the tilting speed are settable in the step S1007, the flow proceeds to the step S608, and returns to the step S801 via the step S609.
This embodiment sets the shift amount every necessary time similar to the first and second embodiments, but is not limited to this example, and may store a table showing a relationship among the shift amount, the focusing speed, and the tilting speed, and make a control based on the table. Instead of setting the shift amount, either the focus driving or the tilt driving may be made at an arbitrary speed, and the other driving speed may be synchronized so that the focal plane moves in a substantially vertical direction while a substantially parallel state is maintained.
This embodiment can make a shift change of the focal plane in consideration of the depth.
Thus, in each embodiment, the control apparatus (image pickup apparatus 100) includes the tilt driving unit (image sensor driving unit 119), the focus driving unit 118, and the focal plane controlling unit 117. The tilt driving unit changes the tilt of at least one of the image sensor 106 and the imaging optical system to perform tilt driving. The focus driving unit moves the focus lens 102 that constitutes at least part of the imaging optical system in the optical axis direction to perform the focus driving. The focal plane controlling unit 117 controls the focus driving unit and the tilt driving unit to move the focal plane. The focal plane controlling unit moves the focal plane in the vertical (or perpendicular) direction (substantially vertical direction) of the focal plane while maintaining the focal plane in parallel (substantially parallel) to the predetermined surface (reference plane 401). The term “substantially parallel or substantially vertical” is not limited to being strictly parallel or vertical, but intends to cover being evaluated as substantially parallel or vertical.
Assume that the focal plane at the start of movement is a first focal plane, and the focal plane parallel to the first focal plane and having a different vertical position is the second focal plane. Then, the focal plane controlling unit may change the shift amount of the second focal plane relative to the first focal plane (difference between the position of the first focal plane and the position of the second focal plane) to move the second focal plane in the vertical direction while the state of being parallel to the first focal plane is maintained. The control apparatus may include a focusing speed determining unit (focusing speed calculator 115) that determines the focusing speed, and a tilting speed determining unit (tilting speed calculator 116) that determines the tilting speed. The focusing speed determining unit and the tilting speed determining unit may determine the focusing speed and the tilting speed so as to move the focal plane in the vertical direction while keeping the focal plane parallel to the predetermined surface.
The focusing speed determining unit may calculate the focusing speed coefficient based on the relationship between the shift amount and the target focus-control distance that varies depending on the shift amount, and determines the focusing speed based on the focusing speed coefficient. The tilting speed determining unit may calculate the tilting speed coefficient based on the relationship between the shift amount and the target tilt-control angle that changes depending on the shift amount, and determine the tilting speed based on the tilting speed coefficient. The focusing speed determining unit and the tilting speed determining unit may calculate the focusing speed coefficient and the tilting speed coefficient based on at least one of the height and the depression angle of the image pickup apparatus (camera), the object distance, and the focal length.
The focal plane controlling unit may change the shift amount based on the input value input by the user (first method). The focal plane controlling unit may change the shift amount based on a user's shift amount changing operation (such as pressing the shift change button 701) (second method). The focusing speed determining unit and the tilting speed determining unit respectively may determine the focusing speed and the tilting speed that are higher in the first method than those in the second method.
The focal plane controlling unit may control the second focal plane such that the slope of the second focal plane to the surface parallel to the first focal plane is within the permissible range (within the slope permissible width). The focal plane controlling unit may determine the permissible range (slope permissible width) according to the depth calculated based on at least one of the object distance, the focal length, and the F-number.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processor (CPU), microprocessor (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
The above embodiments can provide a control apparatus, a control method, and a storage medium, each of which can move the focal plane in the vertical direction while keeping the reference plane and the focal plane parallel to each other.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2019-156348, filed on Aug. 29, 2019, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-156348 | Aug 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6359650 | Murakami | Mar 2002 | B1 |
20070071429 | Woehler | Mar 2007 | A1 |
20170272658 | Ito | Sep 2017 | A1 |
20180332236 | Glaser | Nov 2018 | A1 |
20190228195 | Lozano | Jul 2019 | A1 |
20190349530 | Niga | Nov 2019 | A1 |
20200137313 | Sato et al. | Apr 2020 | A1 |
20200191563 | Sato | Jun 2020 | A1 |
20200296296 | Chino et al. | Sep 2020 | A1 |
20210185198 | Attar | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
2010130633 | Jun 2010 | JP |
2017-173802 | Sep 2017 | JP |
2010-130633 | Jun 2020 | JP |
Number | Date | Country | |
---|---|---|---|
20210067702 A1 | Mar 2021 | US |