Control architecture for reduced pressure wound therapy apparatus

Information

  • Patent Grant
  • 11633533
  • Patent Number
    11,633,533
  • Date Filed
    Friday, April 3, 2020
    4 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
Embodiments of a reduced pressure system and methods for operating the system are disclosed. In some embodiments, the system can include one or more processors responsible for various functions associated with various levels of responsiveness, such as interfacing with a user, controlling a vacuum pump, providing network connectivity, etc. The system can present GUI screens for controlling and monitoring its operation. The system can determine and monitor flow of fluid in the system by utilizing one or more of the following: monitoring the speed of a pump motor, monitoring flow of fluid in a portion of a fluid flow path by using a calibrated fluid flow restrictor, and monitoring one or more characteristics of the pressure pulses. The system can provide external connectivity for accomplishing various activities, such as location tracking of the system, compliance monitoring, tracking of operational data, remote selection and adjustment of therapy settings, etc.
Description
BACKGROUND

Embodiments of the present disclosure relate to methods and apparatuses for dressing and treating a wound with reduced pressure therapy or topical negative pressure (TNP) therapy. In particular, but without limitation, embodiments disclosed herein relate to negative pressure therapy devices, methods for controlling the operation of TNP systems, and method of using TNP systems.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described hereinafter, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 illustrates a reduced pressure wound therapy system according to some embodiments.



FIGS. 2A-2F illustrate a pump assembly and canister according to some embodiments.



FIGS. 3A-3H illustrate a pump assembly according to some embodiments.



FIGS. 4A-4H illustrate a canister according to some embodiments.



FIGS. 5A-5C illustrate a kickstand in operation according to some embodiments.



FIGS. 6A-6F illustrate a canister according to some embodiments.



FIGS. 7A-7E illustrate a canister according to various embodiments.



FIGS. 8A-8G illustrate a pump assembly and canister according to certain embodiments.



FIGS. 9A-9C illustrate a canister bulkhead according to some embodiments.



FIG. 10 illustrates a canister filter stack according to some embodiments.



FIG. 11 illustrates a connection between a canister and pump assembly according to some embodiments.



FIG. 12 illustrates a strap mount attachment according to some embodiments.



FIGS. 13A-13B illustrate an attachment according to some embodiments.



FIG. 14 illustrates an electrical component schematic of a pump assembly according to some embodiments.



FIG. 15 illustrates a firmware and/or software diagram according to some embodiments.



FIGS. 16A-16S illustrate remote interface screens according to some embodiments



FIGS. 17A-17V illustrate graphical user interface screens according to some embodiments.



FIG. 18 illustrates a process of operating a device according to some embodiments.



FIGS. 19A-19B illustrate graphs of pressure pulses according to some embodiments.



FIG. 20 illustrates a graph of vacuum level according to some embodiments.





DETAILED DESCRIPTION OF SOME EMBODIMENTS
Overview

Embodiments disclosed herein relate to systems and methods of treating a wound with reduced pressure. As is used herein, reduced or negative pressure levels, such as −X mmHg, represent pressure levels relative to normal ambient atmospheric pressure, which can correspond to 760 mmHg (or 1 atm, 29.93 inHg, 101.325 kPa, 14.696 psi, etc.). Accordingly, a negative pressure value of −X mmHg reflects absolute pressure that is X mmHg below 760 mmHg or, in other words, an absolute pressure of (760−X) mmHg. In addition, negative pressure that is “less” or “smaller” than X mmHg corresponds to pressure that is closer to atmospheric pressure (e.g., −40 mmHg is less than −60 mmHg). Negative pressure that is “more” or “greater” than −X mmHg corresponds to pressure that is further from atmospheric pressure (e.g., −80 mmHg is more than −60 mmHg). In some embodiments, local ambient atmospheric pressure is used as a reference point, and such local atmospheric pressure may not necessarily be, for example, 760 mmHg.


Embodiments of the present invention are generally applicable to use in topical negative pressure (“TNP”) or reduced pressure therapy systems. Briefly, negative pressure wound therapy assists in the closure and healing of many forms of “hard to heal” wounds by reducing tissue oedema, encouraging blood flow and granular tissue formation, and/or removing excess exudate and can reduce bacterial load (and thus infection risk). In addition, the therapy allows for less disturbance of a wound leading to more rapid healing. TNP therapy systems can also assist in the healing of surgically closed wounds by removing fluid. In some embodiments, TNP therapy helps to stabilize the tissue in the apposed position of closure. A further beneficial use of TNP therapy can be found in grafts and flaps where removal of excess fluid is important and close proximity of the graft to tissue is required in order to ensure tissue viability.


In some embodiments, the pump assembly can include one or more processors or controllers responsible for various system functions associated with various levels of responsiveness, such as interfacing with a user (e.g., patient, physician, nurse, etc.), controlling a negative pressure pump, providing network connectivity, and the like. In some embodiments, levels of responsiveness can correspond to or be associated with levels of risk. For example, controlling a source of negative pressure may be classified as a high risk activity, as delivery of therapy is important for patient safety, healing, etc. Accordingly, controlling the source of negative pressure can be associated with a high level of responsiveness. The pump assembly can also include one or more input/output devices for receiving and providing data. These devices can include screens, touchscreens, buttons, knobs, ports, and the like. The pump assembly can be configured to present graphical user interface (GUI) screens for controlling and monitoring the operation of the TNP system.


In some embodiments, the TNP system can be configured to determine and monitor flow of fluid in the system. This can be accomplished by using one or more pressure transducers or sensors that measure pressure in a fluid flow path and provide feedback to a controller. In various embodiments, determining of fluid flow can be accomplished by utilizing one or more of the following techniques: monitoring the speed of a pump motor, monitoring flow of fluid in a portion of a fluid flow path by placing a calibrated fluid flow restrictor, and monitoring one or more characteristics, such as amplitude, frequency, or slope of detected pressure pulses. Calculated flow rate can be used to determine whether desired therapy is delivered to a patient, whether there are one or more leaks present in the system, and the like.


In some embodiments, the system can be configured to provide indication, alarms, etc. reflecting operating conditions to a user. The system can include visual, audible, tactile, and other types of indicators and/or alarms configured to signal to the user various operating conditions. Such conditions include system on/off, standby, pause, normal operation, dressing problem, leak, error, and the like. The indicators and/or alarms can include speakers, displays, light sources, etc., and/or combinations thereof. In various embodiments, indications, alarms, etc. are guided by one or more applicable standards.


In certain embodiments, a pump assembly can include one or more communications processors for providing external connectivity. Such connectivity can be used for various activities, such as location tracking of the pump assembly, compliance monitoring, tracking of operational parameters, remote selection and adjustment of therapy settings, and the like. Connectivity can include Global Positioning System (GPS) technology, cellular connectivity (e.g., 2G, 3G, LTE, 4G), WiFi connectivity, Internet connectivity, and the like. In some embodiments, wired connectivity can be utilized. In various embodiments, the pump assembly can communicate data to a cloud and receive data from the cloud. The data can include location data, compliance monitoring data, operational parameters, data for remote selection and adjustment of therapy settings, and the like.


Negative Pressure System



FIG. 1 illustrates an embodiment of a negative or reduced pressure wound treatment (or TNP) system 100 comprising a wound filler 130 placed inside a wound cavity 110, the wound cavity sealed by a wound cover 120. The wound filler 130 in combination with the wound cover 120 can be referred to as wound dressing. A single or multi lumen tube or conduit 140 is connected the wound cover 120 with a pump assembly 150 configured to supply reduced pressure. The wound cover 120 can be in fluidic communication with the wound cavity 110. In any of the system embodiments disclosed herein, as in the embodiment illustrated in FIG. 1, the pump assembly can be a canisterless pump assembly (meaning that exudate is collected in the wound dressing or is transferred via tube 140 for collection to another location). However, any of the pump assembly embodiments disclosed herein can be configured to include or support a canister. Additionally, in any of the system embodiments disclosed herein, any of the pump assembly embodiments can be mounted to or supported by the dressing, or adjacent to the dressing. The wound filler 130 can be any suitable type, such as hydrophilic or hydrophobic foam, gauze, inflatable bag, and so on. The wound filler 130 can be conformable to the wound cavity 110 such that it substantially fills the cavity. The wound cover 120 can provide a substantially fluid impermeable seal over the wound cavity 110. In some embodiments, the wound cover 120 has a top side and a bottom side, and the bottom side adhesively (or in any other suitable manner) seals with wound cavity 110. The conduit 140 or any other conduit disclosed herein can be formed from polyurethane, PVC, nylon, polyethylene, silicone, or any other suitable material.


Some embodiments of the wound cover 120 can have a port (not shown) configured to receive an end of the conduit 140. In some embodiments, the conduit 140 can otherwise pass through and/or under the wound cover 120 to supply reduced pressure to the wound cavity 110 so as to maintain a desired level of reduced pressure in the wound cavity. The conduit 140 can be any suitable article configured to provide at least a substantially sealed fluid flow pathway between the pump assembly 150 and the wound cover 120, so as to supply the reduced pressure provided by the pump assembly 150 to wound cavity 110.


The wound cover 120 and the wound filler 130 can be provided as a single article or an integrated single unit. In some embodiments, no wound filler is provided and the wound cover by itself may be considered the wound dressing. The wound dressing may then be connected, via the conduit 140, to a source of negative pressure, such as the pump assembly 150. In some embodiments, though not required, the pump assembly 150 can be miniaturized and portable, although larger conventional pumps such can also be used.


The wound cover 120 can be located over a wound site to be treated. The wound cover 120 can form a substantially sealed cavity or enclosure over the wound site. In some embodiments, the wound cover 120 can be configured to have a film having a high water vapour permeability to enable the evaporation of surplus fluid, and can have a superabsorbing material contained therein to safely absorb wound exudate. It will be appreciated that throughout this specification reference is made to a wound. In this sense it is to be understood that the term wound is to be broadly construed and encompasses open and closed wounds in which skin is torn, cut or punctured or where trauma causes a contusion, or any other surficial or other conditions or imperfections on the skin of a patient or otherwise that benefit from reduced pressure treatment. A wound is thus broadly defined as any damaged region of tissue where fluid may or may not be produced. Examples of such wounds include, but are not limited to, acute wounds, chronic wounds, surgical incisions and other incisions, subacute and dehisced wounds, traumatic wounds, flaps and skin grafts, lacerations, abrasions, contusions, burns, diabetic ulcers, pressure ulcers, stoma, surgical wounds, trauma and venous ulcers or the like. In some embodiments, the components of the TNP system described herein can be particularly suited for incisional wounds that exude a small amount of wound exudate.


Some embodiments of the system are designed to operate without the use of an exudate canister. Some embodiments can be configured to support an exudate canister. In some embodiments, configuring the pump assembly 150 and tubing 140 so that the tubing 140 can be quickly and easily removed from the pump assembly 150 can facilitate or improve the process of dressing or pump changes, if necessary. Any of the pump embodiments disclosed herein can be configured to have any suitable connection between the tubing and the pump.


In some embodiments, the pump assembly 150 can be configured to deliver negative pressure of approximately −80 mmHg, or between about −20 mmHg and −200 mmHg. Note that these pressures are relative to normal ambient atmospheric pressure thus, −200 mmHg would be about 560 mmHg in practical terms. In some embodiments, the pressure range can be between about −40 mmHg and −150 mmHg. Alternatively a pressure range of up to −75 mmHg, up to −80 mmHg or over −80 mmHg can be used. Also in other embodiments a pressure range of below −75 mmHg can be used. Alternatively a pressure range of over approximately −100 mmHg, or even 150 mmHg, can be supplied by the pump assembly 150.


In some embodiments, the pump assembly 150 is configured to provide continuous or intermittent negative pressure therapy. Continuous therapy can be delivered at above −25 mmHg, −25 mmHg, −40 mmHg, −50 mmHg, −60 mmHg, −70 mmHg, −80 mmHg, −90 mmHg, −100 mmHg, −120 mmHg, −140 mmHg, −160 mmHg, −180 mmHg, −200 mmHg, or below −200 mmHg. Intermittent therapy can be delivered between low and high negative pressure set points. Low set point can be set at above 0 mmHg, 0 mmHg, −25 mmHg, −40 mmHg, −50 mmHg, −60 mmHg, −70 mmHg, −80 mmHg, −90 mmHg, −100 mmHg, −120 mmHg, −140 mmHg, −160 mmHg, −180 mmHg, or below −180 mmHg. High set point can be set at above −25 mmHg, −40 mmHg, −50 mmHg, −60 mmHg, −70 mmHg, −80 mmHg, −90 mmHg, −100 mmHg, −120 mmHg, −140 mmHg, −160 mmHg, −180 mmHg, −200 mmHg, or below −200 mmHg. During intermittent therapy, negative pressure at low set point can be delivered for a first time duration, and upon expiration of the first time duration, negative pressure at high set point can be delivered for a second time duration. Upon expiration of the second time duration, negative pressure at low set point can be delivered. The first and second time durations can be same or different values. The first and second durations can be selected from the following range: less than 2 minutes, 2 minutes, 3 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes, or greater than 10 minutes. In some embodiments, switching between low and high set points and vice versa can be performed according to a step waveform, square waveform, sinusoidal waveform, and the like.


In operation, the wound filler 130 is inserted into the wound cavity 110 and wound cover 120 is placed so as to seal the wound cavity 110. The pump assembly 150 provides a source of a negative pressure to the wound cover 120, which is transmitted to the wound cavity 110 via the wound filler 130. Fluid (e.g., wound exudate) is drawn through the conduit 140, and can be stored in a canister. In some embodiments, fluid is absorbed by the wound filler 130 or one or more absorbent layers (not shown).


Wound dressings that may be utilized with the pump assembly and other embodiments of the present application include Renasys-F, Renasys-G, Renasys AB, and Pico Dressings available from Smith & Nephew. Further description of such wound dressings and other components of a negative pressure wound therapy system that may be used with the pump assembly and other embodiments of the present application are found in U.S. Patent Publication Nos. 2012/0116334, 2011/0213287, 2011/0282309, 2012/0136325 and U.S. patent application Ser. No. 13/287,897, which are assigned to the assignee of present application and are incorporated by reference in their entirety. In other embodiments, other suitable wound dressings can be utilized.


Pump Assembly and Canister



FIG. 2A illustrates a front view 200A of a pump assembly 230 and canister 220 according to some embodiments. As is illustrated, the pump assembly 230 and the canister are connected, thereby forming a device. The pump assembly 230 comprises one or more indicators, such as visual indicator 202 configured to indicate alarms and visual indicator 204 configured to indicate status of the TNP system. The indicators 202 and 204 can be configured to alert a user to a variety of operating and/or failure conditions of the system, including alerting the user to normal or proper operating conditions, pump failure, power supplied to the pump or power failure, detection of a leak within the wound cover or flow pathway, suction blockage, or any other similar or suitable conditions or combinations thereof. In some embodiments, the pump assembly 230 can comprise additional indicators. In some embodiments, a single indicator is used. In other embodiments, multiple indicators are used. Any suitable indicator can be used such as visual, audio, tactile indicator, and so on. The indicator 202 can be configured to signal alarm conditions, such as canister full, power low, conduit 140 disconnected, seal broken in the wound seal 120, and so on. The indicator 202 can be configured to display red flashing light to draw user's attention. The indicator 204 can be configured to signal status of the TNP system, such as therapy delivery is ok, leak detected, and so on. The indicator 204 can be configured to display one or more different colors of light, such as green, yellow, etc. For example, green light can be emitted when the TNP system is operating properly and yellow light can be emitted to indicate a warning.


The pump assembly 230 comprises a display or screen 206 mounted in a recess 208 formed in a case of the pump assembly. In some embodiments, the display 206 can be a touch screen display. In some embodiments, the display 206 can support playback of audiovisual (AV) content, such as instructional videos. As explained below, the display 206 can be configured to render a number of screens or graphical user interfaces (GUIs) for configuring, controlling, and monitoring the operation of the TNP system. The pump assembly 230 comprises a gripping portion 210 formed in the case of the pump assembly. The gripping portion 210 can be configured to assist the user to hold the pump assembly 230, such as during removal of the canister 220. In some embodiments, the canister 220 can be replaced with another canister, such as when the canister 220 has been filled with fluid.


The pump assembly 230 comprises one or more keys or buttons 212 configured to allow the user to operate and monitor the operation of the TNP system. As is illustrated, in some embodiments, there buttons 212a, 212b, and 212c are included. Button 212a can be configured as a power button to turn on/off the pump assembly 230. Button 212b can be configured as a play/pause button for the delivery of negative pressure therapy. For example, pressing the button 212b can cause therapy to start, and pressing the button 212b afterward can cause therapy to pause or end. Button 212c can be configured to lock the display 206 and/or the buttons 212. For instance, button 212c can be pressed so that the user does not unintentionally alter the delivery of the therapy. Button 212c can be depressed to unlock the controls. In other embodiments, additional buttons can be used or one or more of the illustrated buttons 212a, 212b, or 212c can be omitted. In some embodiments, multiple key presses and/or sequences of key presses can be used to operate the pump assembly 230.


The pump assembly 230 includes one or more latch recesses 222 formed in the cover. In the illustrated embodiment, two latch recesses 222 can be formed on the sides of the pump assembly 230. The latch recesses 222 can be configured to allow attachment and detachment of the canister 220 using one or more canister latches 221. The pump assembly 230 comprises an air outlet 224 for allowing air removed from the wound cavity 110 to escape. Air entering the pump assembly can be passed through one or more suitable filters (described below, such as in FIG. 10), such as antibacterial filters. This can maintain reusability of the pump assembly. The pump assembly 230 includes one or more strap mounts 226 for connecting a carry strap to the pump assembly 230 or for attaching a cradle. In the illustrated embodiment, two strap mounts 226 can be formed on the sides of the pump assembly 230. In some embodiments, various of these features are omitted and/or various additional features are added to the pump assembly 230.


The canister 220 is configured to hold fluid (e.g., exudate) removed from the wound cavity 110. The canister 220 includes one or more latches 221 for attaching the canister to the pump assembly 230. In the illustrated embodiment, the canister 220 comprises two latches 221 on the sides of the canister. The exterior of the canister 220 can formed from frosted plastic so that the canister is substantially opaque and the contents of the canister and substantially hidden from plain view. The canister 220 comprises a gripping portion 214 formed in a case of the canister. The gripping portion 214 can be configured to allow the user to hold the pump assembly 220, such as during removal of the canister from the apparatus 230. The canister 220 includes a substantially transparent window 216, which can also include graduations of volume. For example, the illustrated 300 mL canister 220 includes graduations of 50 mL, 100 mL, 150 mL, 200 mL, 250 mL, and 300 mL. Other embodiments of the canister can hold different volume of fluid and can include different graduation scale. The canister 220 comprises a tubing channel 218 for connecting to the conduit 140. In some embodiments, various of these features, such as the gripping portion 214, are omitted and/or various additional features are added to the canister 220.



FIG. 2A illustrates a rear view 200B of the pump assembly 230 and canister 220 according to some embodiments. The pump assembly 230 comprises a speaker port 232 for producing sound. The pump assembly 230 includes a filter access door 234 for accessing and replacing one or more filters, such as antibacterial filters. The pump assembly 230 comprises a gripping portion 236 formed in the case of the pump assembly. The gripping portion 236 can be configured to allow the user to hold the pump assembly 230, such as during removal of the canister 220. The pump assembly 230 includes one or more covers 238 configured to as screw covers and/or feet or protectors for placing the pump assembly 230 on a surface. The covers 230 can be formed out of rubber, silicone, or any other suitable material. The pump assembly 230 comprises a power jack 239 for charging and recharging an internal battery of the pump assembly. In some embodiments, the power jack 239 is a direct current (DC) jack. In some embodiments, the pump assembly can comprise a disposable power source, such as batteries, so that no power jack is needed.


The canister 220 includes one or more feet 244 for placing the canister on a surface. The feet 244 can be formed out of rubber, silicone, or any other suitable material and can be angled at a suitable angle so that the canister 220 remains stable when placed on the surface. The canister 220 comprises a tube mount relief 246 configured to allow one or more tubes to exit to the front of the device. The canister 220 includes a stand or kickstand 248 for supporting the canister when it is placed on a surface. As explained below, the kickstand 248 can pivot between an opened and closed position. In closed position, the kickstand 248 can be latched to the canister 220. In some embodiments, the kickstand 248 can be made out of opaque material, such as plastic. In other embodiments, the kickstand 248 can be made out of transparent material. The kickstand 248 includes a gripping portion 242 formed in the kickstand. The gripping portion 242 can be configured to allow the user to place the kickstand 248 in the closed position. The kickstand 248 comprises a hole 249 to allow the user to place the kickstand in the open position. The hole 249 can be sized to allow the user to extend the kickstand using a finger.



FIG. 2C illustrates a view 200C of the pump assembly 230 separated from the canister 220 according to some embodiments. The pump assembly 230 includes a vacuum attachment or connector 252 through which a vacuum pump communicates negative pressure to the canister 220. The pump assembly 230 comprises a USB access door 256 configured to allow access to one or more USB ports. In some embodiments, the USB access door is omitted and USB ports are accessed through the door 234. The pump assembly 230 can include additional access doors configured to allow access to additional serial, parallel, and/or hybrid data transfer interfaces, such as SD, Compact Disc (CD), DVD, FireWire, Thunderbolt, PCI Express, and the like. In other embodiments, one or more of these additional ports are accessed through the door 234.



FIG. 2D illustrates a schematic front view 230D and rear view 230D′ of a pump assembly 200D according to some embodiments.



FIG. 2E illustrates a view 200E of the interior components of the pump assembly 230 according to some embodiments. The pump assembly 230 can include various components, such as a canister connector 252 which includes a sealing ring 253, control printed circuit board (PCB) 260, peripherals PCB 262 (e.g., for USB connectivity), power supply PCB 264, vacuum pump 266, power supply 268 (e.g., rechargeable battery), speaker 270, and light guide or pipe 272 (e.g., for status indication using guided light emitted by one or more LEDs). Further details of status indication are provided in U.S. Pat. No. 8,294,586, which is assigned to the assignee of the present application and is incorporated by reference in its entirety. Other components can be included, such as electrical cables, connectors, tubing, valves, filters, fasteners, screws, holders, and so on. In some embodiments, the pump assembly 230 can comprise alternative or additional components.



FIG. 2F illustrates another view 200F of the interior components of the pump assembly 230 according to some embodiments. As is explained below, the pump assembly 230 includes an antenna 276. The connector 252 between the vacuum pump 266 and the canister 220 includes a flow restrictor 278. As is explained below, the flow restrictor 278 can be a calibrated flow restrictor used for measuring flow in the fluid flow path and for determining various operating conditions, such as leaks, blockages, high pressure (over-vacuum), and the like. In some embodiments, flow across the restrictor 278 can be determined by measuring a pressure differential (or pressure drop) across the flow restrictor. In various embodiments, flow across the restrictor 278 can be characterized as high flow (e.g., due to a leak), low flow (e.g., due to a blockage or canister being full), normal flow, etc. As is illustrated, pressure sensor 284 measures pressure upstream (or on the canister side) of the flow restrictor 278. Pressure sensor 284 can be an electronic pressure sensor mounted on the control PCB 264. Conduit or lumen 286 can connect the upstream side of the flow restrictor 278 with the pressure sensor 284. Pressure sensors 280 and 282 measure pressure downstream (or on the vacuum pump side) of the flow restrictor 278. Pressure sensors 280 and 282 can be electronic pressure sensors mounted on the control PCB 264. Conduit or lumen 288 can connect the downstream side of the flow restrictor 278 with the pressure sensors 280 and 284 via a Y-connector 289.


In some embodiments, one of pressure sensors 280 and 282 can be designated as a primary pressure sensor and the other as a backup pressure sensor in case the primary pressure sensor becomes defective or inoperative. For example, pressure sensor 280 can be the primary pressure sensor and pressure sensor 282 can be the backup pressure sensor. Pressure drop across the flow restrictor 278 can be determined by subtracting pressure measured by sensor 280 and sensor 284. If pressure sensor 280 fails, pressure drop across the flow restrictor can be determined by subtracting pressure measured by sensor 282 and sensor 284. In certain embodiments, the backup pressure sensor can be used for monitoring and indicating high pressure conditions, that is when the pressure in the flow path exceeds a maximum pressure threshold. In some embodiments, one or more differential pressure sensors can be used. For example, a differential pressure sensor connected to the upstream and downstream sides of the flow restrictor 278 can measure the pressure drop across the flow restrictor. In some embodiments, one or more of these components, such as the flow restrictor 278, are omitted and/or additional components, such as one or more flow meters, are used.



FIGS. 3A-3H illustrate a pump assembly according to some embodiments. FIG. 3A illustrates a perspective view 301A of the pump assembly. FIG. 3B illustrates another perspective view 302A of the pump assembly. FIG. 3C illustrates a front view 300B of the pump assembly. FIG. 3D illustrates a right side view 300C of the pump assembly. FIG. 3E illustrates a rear view 300D of the pump assembly. As is illustrated, the pump assembly includes a filter enclosure 302, which can comprise a removable cover for accessing one or more filters (as illustrated in FIG. 10 and described below). FIG. 3F illustrates a top view 300E of the pump assembly. FIG. 3G illustrates a left side view 300F of the pump assembly. FIG. 3H illustrates a bottom view 300G of the pump assembly.



FIGS. 4A-4H illustrate a canister, such as 300 mL canister, according to some embodiments. FIG. 4A illustrates a perspective view 400A of the canister. FIG. 4B illustrates another perspective view 401A of the canister. FIG. 4C illustrates a front view 400B of the canister. FIG. 4D illustrates a right side view 400C of the canister. FIG. 4E illustrates a rear view 400D of the canister. FIG. 4F illustrates a top view 400E of the canister. FIG. 4G illustrates a left side view 400F of the canister. FIG. 4H illustrates a bottom view 400G of the canister.



FIGS. 5A-5C illustrate a kickstand in operation according to some embodiments. FIG. 5A illustrates the kickstand 248 is an extended (or opened) position. As is illustrated, the pump assembly 230 and the canister 220 are connected or assembled together, such as by using the latches 221. The device 500A is supported on a surface by the kickstand 248 and feet 244. In the illustrated embodiment, the kickstand 248 is extended by operating one or more pivots 502. FIG. 5B illustrates positioning the device on the surface. As is illustrated in 500B, the kickstand 248 is extended and the device is placed substantially vertically on the surface and/or improve visibility of the screen 206 (e.g., by reducing glare). In 501B, the device is tilted so that it rests on the surface in a stable manner. The tilt of the device in 501B relative to 501A is illustrated by an indicator 512. In some embodiments, the tilt can be less than 30 degrees, about 30 degrees, or greater than 30 degrees. FIG. 5C illustrates the kickstand 248 that includes the hole 249 and two pivot holes 504. In some embodiments, the tilt of the device is adjustable to accommodate the needs of a user. For example, the kickstand 248 can utilize a ratchet mechanism.



FIGS. 6A-6F illustrate a canister, such as a 300 mL canister, according to some embodiments. FIG. 6A illustrates a perspective view 600A of the canister. The canister comprises a tube 140 configured to connect the canister to the wound cover 120. FIG. 6B illustrates a front view 600B of the canister. FIG. 6C illustrates a side view 600C of the canister. FIG. 6D illustrates another side view 600D of the canister. As is illustrated, the kickstand 248 is in an open position supporting the tilted canister on a surface. FIG. 6E illustrates a top view 600E of the canister. FIG. 6F illustrates a rear view 600F of the canister.



FIGS. 7A-7E illustrate a canister, such as a 800 mL canister, according to various embodiments. FIG. 7A illustrates a perspective view 700A of the canister. The canister comprises a tube 140 configured to connect the canister to the wound cover 120. The canister includes a vacuum attachment or connector 702 through which the canister receives vacuum communicated by the pump assembly 230. In some embodiments, the connector 702 is configured to be connected to or mated with the connector 252 of the pump assembly 230. FIG. 7B illustrates a front view 700B of the canister. FIG. 7C illustrates a side view 700C of the canister. FIG. 7D illustrates a top view 700D of the canister. FIG. 7E illustrates a rear view 700E of the canister. The canister comprises a clip 712 for holding the tube 140.



FIGS. 8A-8G illustrate a device according to certain embodiments. FIG. 8A illustrates a perspective view 800A of the device, which includes a pump assembly 230 and canister 220. The canister 220 can be connected to the pump assembly 230 using one or more latches 221, such as two latches 221 on the sides of the canister 220. FIG. 8B illustrates a front view 800B of the device. FIG. 8C illustrates a right side view 800C of the device. The device comprises a kickstand 248 that is configured to be opened or close via one or more pivots 502. FIG. 8D illustrates a rear view 800D of the device. FIG. 8E illustrates a top view 800E of the device. FIG. 8F illustrates a left side view 800F of the device. The latch 221 can be configured to connect to the recess 702 formed on the pump assembly 230 in order to connect the canister 220 to the pump assembly 230. FIG. 8G illustrates a bottom view 800G of the device. The canister 220 includes feet 244.



FIGS. 9A-9C illustrate a canister bulkhead 910 according to some embodiments. FIG. 9A illustrates a top view 900A of the canister bulkhead 910. FIG. 9B illustrates a perspective view 900B of the canister bulkhead 910. FIG. 9C illustrates a bottom view 900C of the canister bulkhead 910. The canister bulkhead can be configured to connect the canister 220 to a negative pressure source of the pump assembly 230, such as via a pump assembly bulkhead. To facilitate this function, the canister bulkhead 910 comprises a connector or port 902 which attaches to the vacuum connector 252 of the pump assembly 230. The canister bulkhead 910 also includes a gate mark or gate 906 to facilitate connecting the canister 220 to the pump assembly 230. The canister bulkhead 910 includes one or more regions or protrusions 904 configured to limit the capacity of the canister 220 as it fills up or when it becomes full so that the device (and the canister) can be oriented vertically, horizontally, and/or vertically tilted (e.g., when the kickstand 248 is extended). As is shown in FIGS. 9B and 9C, the volume of fluid held by the canister 220 is reduced or limited by the one or more protrusions 904. In some embodiments, the device bulkhead is flat. In other embodiments, the device bulkhead can mate with the features of the canister bulkhead 910.



FIG. 10 illustrates a canister filter stack 1000 according to some embodiments. The canister filter stack 1000 comprises a filter carrier 1002, shutoff 1004, odor filter 1006, and antibacterial filter 1008. The shutoff 1004 operates to stop suction when the canister 220 becomes full such that canister overfill is prevented. The shutoff can be formed out of hydrophilic material. The odor filter 1006 can comprise material that absorbs, reduces or eliminates odor. For example, such material can be active carbon, activated charcoal, or the like. The material can be hydrophobic. The antibacterial filter 1008 can inhibit or eliminate the growth of microorganisms. In some embodiments, the components of the filter stack 1000 can be arranged in any suitable order. For example, the odor filter 1006 can be integrated into the shutoff 1004 as an additive to the material of the shutoff 1004 or as a layer formed on the material of the shutoff 1004. In some embodiments, the filter stack 1000 is placed in the canister. In some embodiments, the filter stack 1000 is placed in the connector between the canister in the pump assembly. In some embodiments, the filter stack 1000 is placed in the pump assembly.



FIG. 11 illustrates a connection 1104 between the canister 220 and pump assembly 230 according to some embodiments. As is illustrated, the connection 1104 is placed between the vacuum attachment 1106 of the pump assembly 230 and the attachment or port 1102 of the canister 220. The connection 1104 can be a washer, ring, or the like which ensures a substantially leak-free seal between the canister 220 and the pump assembly 230.


Strap


In some embodiments, a strap can be attached to the pump assembly 230 for carrying the device of the shoulder, waist, etc. The strap can be adjustable in length. FIG. 12 illustrates a strap mount attachment 1200 according to some embodiments. The attachment 1200 can be detachably clipped onto strap mounts 226 (FIG. 2B) of the pump assembly 230. In operation, a hole 1202 of the attachment 1200 can be aligned with the strap mount, and a portion 1204 can be attached to the mount 226. The inner diameter of the portion 1204 can be selected so that there is a substantially tight fit with the mount 226. A strap (not shown) can be attached to a rod 1210. In some embodiments, two attachments 1200 are clipped onto two mounts 226 located on the opposing sides of the pump assembly 230.


In some embodiments, the device can be placed into a carrying case or carrying bag. The carrying case can be configured for accommodating the pump assembly 230 connected to the canister 220. The carrying case can include a pouch configured to enclose the device, the pouch comprising an upper portion and a lower portion. A lower opening in the lower portion of the pouch can be configured to permit insertion of the device. The lower opening can include a closure configured to close the lower opening and to prevent the apparatus from being displaced from the pouch. The lower opening can also include an aperture (e.g., for the tube 140) that remains open between an interior and exterior of the pouch after the closure closes the lower opening. The lower opening can comprise a flap that can be lifted to permit viewing of the canister 220. The upper portion can also include a flap that can be lifted to permit access to the display 206 and/or buttons 212. Additional details of the carrying bag are provided in U.S. Pat. No. 8,240,470, which is assigned to the assignee of the present application and is incorporated by reference in its entirety. In some embodiments, the pump assembly 230 and/or canister 220 includes a clip for attaching the pump assembly to a patient's belt, pocket, etc.


Cradle



FIGS. 13A-13B illustrate an attachment 1300 according to some embodiments. In operation, the attachment 1300 is used to mount the device on an IV pole, such as an IV pole having a diameter between 0.75 inches and 1.5 inches, a bedrail, such as a bedrail having a width of 1.5 inches or less, and the like. Accordingly, the attachment 1300 can be configured to be adjustable so that a secure connection can be made. As is illustrated in FIG. 13A, the attachment 1300 includes a cradle 1310, which attaches to the device, and a clamp 1330, which is adjusted by a knob 1334. In some embodiments, the cradle 1310 attaches to the device by placing a strap mount 226 into a recess 1302 and activating a closure 1318. The closure 1318 can be a latch, lock, or any other suitable mechanism. The cradle 1310 can include one or more closures 1318, such as two closures.


The attachment 1300 attaches to a pole, rail, or the like by turning the knob 1334 so that a portion of the pole, rail, or the like is placed between the backside of the cradle 1310 and the clamp 1330. The knob 1334 is then turned to provide a relatively tight attachment or sufficient hold of the device to the pole, rail, or the like. In some embodiments, a dual-threaded configuration of the attachment 1300 provides a sufficiently tight hold. The device can be dismounted from the pole, rail, or the like by unscrewing the knob. The device can be removed from the cradle 1310 by deactivating the one or more closures 1318. For example, the one or more closures 1318 can be pressed to allow detachment of the device from the cradle 1310. The attachment 1300 is configured to attach to poles, rails, or the like of various thickness. For example, the attachment 1300 can be attached to a thin tube as well as to a thick bedrail.


As is illustrated in FIG. 13B, the cradle 1310 includes a cradle body 1312 and lead screw for attaching the clamp 1330 and the knob 1334 to the cradle. The cradle 1310 also comprises a left closure 1316 and right closure 1318 for attaching the cradle to the device. The cradle 1310 further includes a bumper 1320, which can be made out of rubber, pin 1322, which can be a coiled spring, and screws 1324 and washers 1326 for attaching the closures 1316 and 1318 to the cradle. The clamp 1330 includes a clamp arm 1332, knob 1334, cap 1336, and pad 1338, such as a rubber pad.


In some embodiments, the rear of the pump assembly 230 can rest against the bumper 1320 when the cradle 1310 is attached. In certain embodiments recess(es) 1302 and/or closure(s) 1318 can be configured such that the cradle 1310 can be attached only such that the rear of the device rests against the bumper 1320. Attaching the device incorrectly, such as backwards so that the front of the device rests against the bumper 1320, would not be allowed.


Electronics and Software



FIG. 14 illustrates an electrical component schematic 1400 of a pump assembly according to some embodiments. Electrical components can operate to accept user input, provide output to the user, operate the pump assembly and the TNP system, provide network connectivity, and so on. Electrical components can be mounted on one or more PCBs, such as the control PCB 260, peripherals PCB 262, and/or power supply PCB 264. As is illustrated, the pump assembly 230 can include multiple processors. It may be advantageous to utilize multiple processors in order to allocate or assign various tasks to different processors. In some embodiments, a first processor can be responsible for user activity and a second processor can be responsible for controlling the pump. This way, the activity of controlling the pump, which may necessitate a higher level of responsiveness (corresponding to higher risk level), can be offloaded to a dedicated processor and, thereby, will not be interrupted by user interface tasks, which may take longer to complete because of interactions with the user.


The pump assembly 230 can comprise a user interface processor or controller 1410 configured to operate one or more components for accepting user input and providing output to the user, such as the display 206, buttons 212, etc. Input to the pump assembly 230 and output from the pump assembly can controlled by an input/output (I/O) module 1420. For example, the I/O module can receive data from one or more ports, such as serial, parallel, hybrid ports, and the like. The processor 1410 also receives data from and provides data to one or more expansion modules 1460, such as one or more USB ports, SD ports, Compact Disc (CD) drives, DVD drives, FireWire ports, Thunderbolt ports, PCI Express ports, and the like. The processor 1410, along with other controllers or processors, stores data in one or more memory modules 1450, which can be internal and/or external to the processor 1410. Any suitable type of memory can be used, including volatile and/or non-volatile memory, such as RAM, ROM, magnetic memory, solid-state memory, Magnetoresistive random-access memory (MRAM), and the like.


In some embodiments, the processor 1410 can be a general purpose controller, such as a low-power processor. In other embodiments, the processor 1410 can be an application specific processor. In some embodiments, the processor 1410 can be configured as a “central” processor in the electronic architecture of the pump assembly 230, and the processor 1410 can coordinate the activity of other processors, such as a pump control processor 1470, communications processor 1430, and one or more additional processors 1480. The processor 1410 can run a suitable operating system, such as a Linux, Windows CE, VxWorks, etc.


The pump control processor 1470 can be configured to control the operation of a negative pressure pump 1490. The pump 1490 can be a suitable pump, such as a diaphragm pump, peristaltic pump, rotary pump, rotary vane pump, scroll pump, screw pump, liquid ring pump, diaphragm pump operated by a piezoelectric transducer, voice coil pump, and the like. In some embodiments, the pump control processor 1470 can measure pressure in a fluid flow path, using data received from one or more pressure sensors, calculate the rate of fluid flow, and control the pump. In some embodiments, the pump control processor 1470 controls the pump motor so that a desired level of negative pressure in achieved in the wound cavity 110. The desired level of negative pressure can be pressure set or selected by the user. In various embodiments, the pump control processor 1470 controls the pump (e.g., pump motor) using pulse-width modulation (PWM). A control signal for driving the pump can be a 0-100% duty cycle PWM signal. The pump control processor 1470 can perform flow rate calculations and detect alarms. The pump control processor 1470 can communicate information to the processor 1410. The pump control processor 1470 can include internal memory and/or can utilize memory 1450. The pump control processor 1470 can be a low-power processor.


A communications processor 1430 can be configured to provide wired and/or wireless connectivity. The communications processor 1430 can utilize one or more antennas 1440 (such as antenna 276) for sending and receiving data. In some embodiments, the communications processor 1430 can provide one or more of the following types of connections: Global Positioning System (GPS) technology, cellular connectivity (e.g., 2G, 3G, LTE, 4G), WiFi connectivity, Internet connectivity, and the like. Connectivity can be used for various activities, such as pump assembly location tracking, asset tracking, compliance monitoring, remote selection, uploading of logs, alarms, and other operational data, and adjustment of therapy settings, upgrading of software and/or firmware, and the like. In some embodiments, the communications processor 1430 can provide dual GPS/cellular functionality. Cellular functionality can, for example, be 3G functionality. In such cases, if the GPS module is not be able to establish satellite connection due to various factors including atmospheric conditions, building or terrain interference, satellite geometry, and so on, the device location can be determined using the 3G network connection, such as by using cell identification, triangulation, forward link timing, and the like. In some embodiments, the pump assembly 230 can include a SIM card, and SIM-based positional information can be obtained.


The communications processor 1430 can communicate information to the processor 1410. The communications processor 1430 can include internal memory and/or can utilize memory 1450. The communications processor 1430 can be a low-power processor.


In some embodiments, the pump assembly 230 can store data illustrated in Table 1. This data can be stored, for example, in memory 1450. In various embodiments, different or additional data can be stored by the pump assembly 230. In some embodiments, location information can be acquired by GPS or any other suitable method, such as cellular triangulation, cell identification forward link timing, and the like.









TABLE 1







Example Data Stored by the Pump Assembly










Category
Item
Type
Source





GPS
Location
Latitude, Longitude,
Acquired from GPS




Altitude



Timestamp Location Acquired
Timestamp


Therapy
Total time therapy ON since device activation
Minutes
Calculated on device



Total time therapy ON since last maintenance reset
Minutes
based on user control



Device Placement; accumulated daily hours
Minutes



starting from first Therapy ON after last



maintenance reset, stopping at last Therapy OFF



before returning for Maintenance and maintenance



reset. (Includes both THERAPY ON and THERAPY



OFF hours)


Device
Serial Number
Alphanumeric
Set by Pump Utility



Controller Firmware Version
Alphanumeric
Unique version





identifier, hard coded in





firmware


Events
Device Event Log (See Table 3 for example)
List of Events (See Table 2)
Generated in response to





various user actions and





detected events









In certain embodiments, the pump assembly 230 can track and log therapy and other operational data. Such data can be stored, for example, in the memory 1450. In some embodiments, the pump assembly 230 can store log data illustrated in Table 2. Table 3 illustrates an example event log according to some embodiments. One or more such event logs can be stored by the pump assembly 230. As is illustrated, the event log can include timestamps indicating the time of occurrence. In some embodiments, additional and/or alternative data can be logged.









TABLE 2







Example Data Tracked by the Pump Assembly











Category
ID
Type
Data Content
Notes














Device
0
Startup (Created DB)

First time, out-of-the-box.



1
Startup (Resumed DB)

Subsequent power-ups.



2
Startup (Corrupt DB, Recreated)

Corrupt configuration was detected. The






database was deleted and recreated, and






next run was in out-of-the-box mode.



3
Shutdown (Signaled)

Normal shutdown, handled/registered by






software.



4
Shutdown (Inferred)

Unexpected shutdown; on next power-up,






last active time registered as shutdown






event.


Therapy
5
Start Delivery (Continuous)
modes, setpoints
Modes are Y-correct status, and intensity.



6
Start Delivery (Intermittent)
modes, setpoints
Modes are Y-correct status, and intensity.



7
Stop Delivery



8
Set Therapy Pressure Setpoint
mmHg
This and other therapy adjustment events






are only recorded while therapy is being






delivered.



9
Set Standby Pressure Setpoint
mmHg



10
Set Intermittent Therapy Duration
setting (30 s, 60 s, etc.)



11
Set Intermittent Standby Duration
setting (30 s, 60 s, etc.)



12
SetMode
cont/intermittent



13
Set Intensity
low/med/high



14
Set Y Connect
yes/no


Alarm
15
Over Vacuum
high mmHg



16
High Vacuum
high deviation mmHg



17
Blocked Full Canister
low airflow lpm



18
High Flow Leak
high airflow lpm



19
Low Vacuum
low mmHg



20
Battery Failure



21
Critical Battery



22
Low Battery



23
Inactivity


Maintenance
24
Maintenance Reset



25
Reset to Defaults



26
Software/Device Warning
Warning code
Any detected, miner unexpected software






behavior will be logged as an event



27
Software/Device Fault
Fault code
Any detected, severe unexpected software






behavior will be logged as an event
















TABLE 3







Example Event Log










Timestamp
Type ID
Type Description
Data













1:23:45 4/2/2012
0
Startup (Created DB)



(UTC-12)


1:29:23 4/2/2012
15
Set Intensity
medium


(UTC-12)


1:29:43 4/2/2012
10
Set Therapy Pressure
120 mmHg


(UTC-12)

Setpoint


1:31:02 4/2/2012
7
Start Delivery
120 mmHg continuous,


(UTC-12)

(Continuous)
medium intensity,





no Y connect


1:44:20 4/2/2012
20
High Flow Leak
4 lpm


(UTC-12)


1:44:24 4/2/2012
9
Stop Delivery


(UTC-12)









In some embodiments, using the connectivity provided by the communications processor 1430, the device can upload any of the data stored, maintained, and/or tracked by the pump assembly 230. In some embodiments, the following information can be uploaded to a remote computer or server: activity log(s), which includes therapy delivery information, such as therapy duration, alarm log(s), which includes alarm type and time of occurrence; error log, which includes internal error information, transmission errors, and the like; therapy duration information, which can be computed hourly, daily, and the like; total therapy time, which includes therapy duration from first applying a particular therapy program or programs; lifetime therapy information; device information, such as the serial number, software version, battery level, etc.; device location information; patient information; and so on. The device can also download various operational data, such as therapy selection and parameters, firmware and software patches and upgrades, and the like. In certain embodiments, the device can provide Internet browsing functionality using one or more browser programs, mail programs, application software (e.g., apps), etc. In various embodiments, additional processors 1480, such as processor for controlling the display 206, can be utilized.



FIG. 15 illustrates a firmware and/or software diagram 1500 according to some embodiments. A pump assembly 1520 includes a user interface processor firmware and/or software 1522, which can be executed by the user interface processor 1410, pump control processor firmware and/or software, which can be executed by the pump control processor 1470, communications processor firmware and/or software 1526, which can be executed by the communications processor 1430, and additional processor(s) firmware and/or software, which can be executed by one or more additional processors 1480. The pump assembly 1520 can be connected to a computer 1510, which can be a laptop, desktop, tablet, smartphone, and the like. A wired or wireless connection can be utilized to connect the computer 1510 to the pump assembly 1520. In some embodiments, a USB connection is used. The connection between the computer 1510 and the pump assembly 1520 can be used for various activities, such as pump assembly location tracking, asset tracking, compliance monitoring, selection, uploading of logs, alarms, and other operational data, and adjustment of therapy settings, upgrading of software and/or firmware, and the like. The pump assembly 1520 and computer 1510 can communicate with a remote computer or server 1540 via the cloud 1530. The remote computer 1540 can include a data storage module 1542 and a web interface 1544 for accessing the remote computer.


The connection between the computer 1510 and pump assembly 1520 can be utilized to perform one or more of the following: initialization and programming of the pump assembly 1520, firmware and/or software upgrades, maintenance and troubleshooting, selecting and adjusting therapy parameters, and the like. In some embodiments, the computer 1510 can execute an application program for communicating the pump assembly 1520.


The pump assembly 1520 can upload various data to the remote computer 1540 via the cloud 1530. In some embodiments, the pump assembly 1520 can upload data to one or more remote computers 1540. As explained above, upload data can include activity log(s), alarm log(s), therapy duration information, total therapy time, lifetime therapy information, device information, device location information, patient information, etc. In addition, the pump assembly 1520 can receive and process commands received from the cloud 1530.


Remote Interface



FIGS. 16A-16S illustrate remote interface screens or pages according to some embodiments. These screens can be generated in the web interface 1544 of the remote computer 1540. The remote computer 1540 can be referred to as a cloud platform. FIG. 16A illustrates a login screen 1600A for accessing data uploaded by one or more devices. The login screen 1600A includes a menu 1610, comprising menu item 1612 for accessing a home page, menu item 1614 for accessing device records, menu item 1616 for accessing fleet status, and menu item 1618 for accessing contacts page. The login screen 1600A also includes a search box 1632 for locating device information, a logout button 1634, and additional information menu 1636 for displaying accessibility information, terms of use, patent, trademark, and copyright notices, and disclaimers. Menu items 1612 through 1618 and the search box 1632 can be deactivated until the cloud platform 1540 successfully verifies user's credentials.


The login screen 1600A comprises a login window 1602 where a user enters credential for verification. If the user has forgotten their password, a link can be sent to the user's email account to allow the user to reset the password. After the cloud platform 1540 has verified the submitted login credentials, the application will display a home page 1600B illustrated in FIG. 16B. The home page 1600B displays an image of the device, a welcome message, the menu 1610, in which menu items have been activated, search box 1632 which has been activated, and logout button 1634. From the home screen 1600B, the user can select the device records 1614 menu item or fleet status menu item 1616 depending on whether the user would like to view one or multiple devices. In some embodiments, various groups of users with various privileges can be supported. For example, a treatment facility user group for facilities that own or rent multiple devices, can have administrator privileges allowing one or more users to add and/or remove devices. To accomplish this, the menu 1610 can have additional and/or alternative menu items, such as administrator item.


The user can select device records menu item 1614, which can bring up a device records screen 1600C illustrated in FIG. 16C. The device records screen 1600C includes a menu 1620 comprising menu items for searching devices 1621, device summary information 1622, device therapy information 1623, device alarms information 1624, device software and/or firmware updates 1625, device error log information 1626, and device location tracking 1627. The device records screen 1600C provide a list or table 1604 of all devices available to the user. The results can be split into separate pages to reduce page upload time. The table 1604 can be filtered by the search menu and can be sorted in ascending or descending order. The user can also select how many entries will be displayed per page.


Upon selecting a device in the table 1604, a device summary screen 1600D illustrated in FIG. 16D. In some embodiments, the user's login privileges will determine which data items will be shown on the page and whether the current device location will be reported. Table 4 illustrates which data items are visible on the device summary screen 1600D, according to the user's user group according to certain embodiments. As is illustrated in the table, the following user groups can be supported: administrator, clinician, billing, distributor/purchaser logistics, distributor/purchaser customer service/technical support, maintenance, customer service, hotline, logistics. In Table 4, FIG. 2-5 corresponds to FIG. 16D, FIG. 2-6 corresponds to FIG. 16E, FIG. 2-7 corresponds to FIG. 16F, FIG. 2-8 corresponds to FIG. 16G, FIG. 2-9 corresponds to FIG. 16H, FIG. 2-10 corresponds to FIG. 16I, and FIG. 2-11 corresponds to FIG. 16J.


Device properties can be shown in table 1605 and location information, including a map 1606a, can be shown in table 1606. All values shown in tables 1605 and 1606 can reflect the latest dataset uploaded from the device. In some embodiments, where appropriate, a tooltip feature can be added to tables 1605 and 1606 to provide more detail (e.g., the definition of “Device Placement”) when a user hovers a pointing device over a particular table item. As is illustrated in table 1606, map 1606a is used to display the latest reported address. The location coordinates, the time that this location was acquired by GPS (or via cellular network data), and the nearest street address are displayed alongside the map. The closest street address can be determined via reverse geo-coding.


According to some embodiments, the device summary screen 1600D corresponds to a summary screen as viewed by a user having administrator (“Admin”) privileges. As shown in Table 4, members of the “Admin” User Group will have access to all data items and navigation choices. All other User Groups will have access to various subsets of this screen, as described in Table 4. For example, FIG. 16E displays the summary screen 1600E as viewed by a user that has been assigned to a “Clinician” user group. Such user can view information listed in table 1607.









TABLE 4





Example Access to Device Information Based on User Credentials



















User interface Accessibility













Summery Screen (FIGS. 2-5, 2-6)


















Edit

Total

Manu-







Device
Serial
Patient
Device
facture
Software
Battery
Battery


User Group
Members
Properties
Number
Therapy
Placement
Date
Version
Charge
life





Admin
Website Administrator (S&N)
Y
Y
Y
Y
Y
Y
Y
Y


Clinician
Clinician

Y
Y







Billing
Customer - Renter (Billing)

Y
Y
Y







Dstributor/Purchaser (Billing)











Billing (S&N)










D/P Logisics
Distributor/Purchaser (Logistics)

Y








D/P CSTS
Distributor/Purchaser

Y
Y

Y
Y
Y




(Cust Serv/Tech Support)










Maintenance
Distributor/Purchaser

Y
Y

Y
Y
Y
Y



(Maintenance)











Quality & Complaints (S&N)











Service & Repair (S&N)










Customer Svc
Customer Service (S&N)

Y








Hotline
Clinical/Technical Hotline

Y
Y

Y
Y
Y




(S&N)










Logistics
Logistics (S&N)

Y


Y
Y

Y














User interface Accessibility
















Summery Screen









(FIGS. 2-5, 2-6)




Location

















Device

Therapy
Alarms
Software Update
Error
Tracking




Lifetime

Log Screen
Log Screen
Log Screen
Log Screen
Screen


User Group
Members
Therapy
Location
(FIG. 2-7)
(FIG. 2-8)
(FIG.2-9)
(FIG. 2-10)
(FIG. 2-11)





Admin
Website Administrator (S&N)
Y
Y
Y
Y
Y
Y
Y


Clinician
Clinician


Y
Y





Billing
Customer - Renter (Billing)


Y







Dstributor/Purchaser (Billing)










Billing (S&N)









D/P Logisics
Distributor/Purchaser (Logistics)

Y




Y


D/P CSTS
Distributor/Purchaser


Y
Y






(Cust Serv/Tech Support)









Maintenance
Distributor/Purchaser
Y
Y
Y
Y
Y
Y




(Maintenance)










Quality & Complaints (S&N)










Service & Repair (S&N)









Customer Svc
Customer Service (S&N)

Y




Y


Hotline
Clinical/Technical Hotline


Y
Y






(S&N)









Logistics
Logistics (S&N)
Y
Y


Y

Y










FIG. 16F illustrates device therapy information screen 1600F. The screen 1600F can be selected via menu item 1623. In some embodiments, events listed in the therapy log 1652 include all therapy ON and OFF events, as well as adjustments to therapy mode and pressure. All past uploaded data can be displayed with each event sorted by its timestamp or in any order selected by the user. Device properties editor 1642 and report generator 1644 can be selected by the user to perform functions explained below.



FIG. 16G illustrates device alarm information screen 1600G. The screen 1600G can be selected via menu item 1624. In some embodiments, alarm logs listed in the table 1654 provide a sequential listing of each alarm event. Each event is described by the alarm type and any relevant data (e.g. over-vacuum high pressure). Different ordering options can be selected by the user. FIG. 16H illustrates device software information screen 1600H. The screen 1600H can be selected via menu item 1625. In some embodiments, the table 1656 lists all past successful (and, optionally, unsuccessful) software updates by their timestamps or in any other order selected by the user.



FIG. 16I illustrates device error information screen 1600I. The screen 1600I can be selected via menu item 1626. In some embodiments, the table 1658 lists each logged error event sequentially in the order selected by the user. The error fault or warning code is provided for each error event. FIG. 16J illustrates device location information screen 1600J. The screen 1600J can be selected via menu item 1627. In some embodiments, the table 1660 lists all past reported locations of the device. A map 1600a illustrates markers at up to N of the most recent reported locations. N can be any suitable integer number. If a row 1660b in the table 1600 is selected, then the corresponding marker on the map 1600a will be highlighted.



FIG. 16K illustrates device properties editor screen 1600K. The screen 1600K can be selected via button 1642. In some embodiments, device properties editor 1662 allows the user to update device data not uploaded by the device, such as, for example, manufacturing date 1664, distributor information 1666, and facility information 1668. The distributor 1666 and facility 1668 fields can be drop down menus that show all distributor device groups stored on the cloud system 1540 and all facilities device groups stored under the selected distributor. Updated information can be saved in the cloud system 1540, such as in the data storage muddle 1542, by pressing the update button 1669.



FIG. 16L illustrates report generator screen 1600L. The screen 1600L can be selected via button 1644. In some embodiments, report generator 1670 can be used to download reports of past and current device records in CVS, PDF, or any other suitable format. The format of the report can be selected in 1672, report dates can be selected in 1676, properties for including in the report can be selected in 1676, and report can be generated and downloaded by pressing button 1678.


In some embodiments, a user, such as a facility user, can view multiple devices owned and/or leased. These devices can be referred to as a fleet. Fleet management can be selected via menu item 1616, which brings up a set of menus that displays the latest data from multiple devices in the user's current fleet.


In certain embodiments, to access fleet records, the user should first select one or more devices from the fleet search screen 1600M illustrated in FIG. 16M. Screen 1600M can be selected via menu items 1616 and 1621. Screen 1600M includes search menu 1682 and results table 1684. Data associated with one or more devices from the fleet can be displayed by pressing button 1686. Fleet device properties screen 1600N illustrated in FIG. 16N shows a list of summary data for a set of devices selected in the fleet search screen 1600M. Device properties are listed in the table 1690. The properties screen 1600N can be accessed via menu item 1622. Therapy data for the selected devices can be viewed by selecting menu item 1623 to bring up fleet device therapy information screen 1600O illustrated in FIG. 16O. In some embodiments, latest therapy information for all selected devices can be viewed in table 1692.


In various embodiments, fleet device battery information screen 1600P illustrated in FIG. 16P shows the last reported battery life and battery charge for all selected devices. Battery information can be displayed in the table 1694. The fleet battery information screen 1600P can be selected via menu item 1628. Fleet device software information screen 1600Q illustrated in FIG. 16Q shows the current software version, in table 1685, for all selected devices. The fleet device software information screen 1600Q can be selected via menu item 1629. Fleet device location information screen 1600R illustrated in FIG. 16R shows the last reported address for all selected devices. The fleet location information screen 1600Q can be selected via menu item 1629. Device location information can be shown in table 1696 which includes a map 1696a. In some embodiments, the map 1696a includes markers for N past locations of each selected device, where N is a suitable integer number.


Contacts page 1600S illustrated in FIG. 16S can be selected via menu item 16518. Contact information, such as administrative and technical contacts information, can be provided in window 1698.


Graphical User Interface



FIGS. 17A-17V illustrate graphical user interface (GUI) screens according to some embodiments. The GUI screens can be displayed on the screen 206, which can be configured as a touchscreen interface. Information displayed on the screens can be generated by and input received from the user can be processed by the processor 1410. The GUI screens can be utilized for initializing the device, selecting and adjusting therapy settings, monitoring device operation, uploading data to the cloud, and the like. Even though some of the screens 1700A-1700D include an outer Adobe Flash Player 10 window, the screens 1700A-1700D can be executed without Flash Player. In some embodiments, the screens 1700A-1700D can be generated directly by an operating system running on the processor 1410 and/or by a graphical user interface layer running on top of the operating system. For instance, the screens can be developed using Qt framework available from Digia.



FIGS. 17A-17D illustrated GUI screens 1700A-1700D for initializing the device according to various embodiments. In some embodiments, screens 1700A-1700D can be displayed when the device is powered on for the first time, after device reset, etc. Screen 1700A of FIG. 17A allows the user to select language in which the device will display and/or announce information to the user. The scroll bar 1702 allows the user to scroll through available languages. The user can select a desired language by pressing or tapping menu item 1701. After selecting the language, screen 1700B of FIG. 17B can be displayed to allow the user to select the time zone. The user can select the desired time zone by pressing menu item 1704. The user can return to the previous screen by pressing arrow 1703. In screen 1700C of FIG. 17C, the user can confirm the time zone selection by accepting it via button 1705 or rejecting it via button 1706. In screen 1700D of FIG. 17D, the user can complete the initialization by pressing the button 1707.



FIG. 17E illustrates a home screen 1700E according to some embodiments. The home screen 1700E can be displayed after the user has initialized the device. The home screen 1700E includes a status bar 1712 that comprises icons indicating operational parameters of the device. Animated icon 1713 is a therapy delivery indicator. In some embodiments, when therapy is not being delivered, icon 1713 is static and gray. When therapy is being delivered, icon 1713 turns orange and rotates (e.g., clockwise). Other status bar icons include volume indicator, and GPS and 3G connection indicator. The home screen includes a battery indicator 1716 for indicating battery charge level and date/time information 1718. The home screen 1700E includes a menu 1720 comprising menu items 1722 for accessing device settings, 1724 for accessing logs, 1726 for accessing help, and 1728 (see FIG. 17G) for returning to the home screen from other screens. In some embodiments, the device can be configured so that after a period of inactivity, such as not receiving input from the user, home screen 1700E is displayed.


The home screen 1700E includes therapy settings 1730 comprising negative pressure up and down controls 1732 and 1734 and scroll bar 1736 for adjusting the level of negative pressure. In some embodiments, up and down controls 1732 and 1734 adjust reduced pressure by a suitable step size, such as ±5 mmHg. As is indicated by label 1738, the current therapy selection is −80 mmHg. The home screen 1700E includes continuous/intermittent therapy selection 1740. Continuous therapy selection screen can be accessed via control 1742 and intermittent therapy selection screen can be accessed via control 1744. In certain embodiments, home screen 1700E illustrates continuous therapy selection screen. The home screen 1700E includes Y-connector selection 1745 for treating multiple wounds. Control 1746 selects treatment of a single wound, and control 1748 selects treatment of more than one wound by the device.



FIG. 17F illustrates home screen 1700F for selecting intermittent therapy according to some embodiments. Screen 1700F can be accessed via control 1744. Home screen 1700F includes intermittent therapy settings 1750 and 1755. As is illustrated by controls 1752, 1754, 1756, and 1758, current therapy selection is applying −80 mmHg for 5 minutes followed by 2 minutes of applying atmospheric pressure (or turning off the vacuum pump). Negative pressure levels and durations can be adjusted by selecting one of controls 1752, 1754, 1756, or 1758 and operating the up and down controls 1732 and 1736 or scroll bar 1736.



FIG. 17G illustrates settings screen 1700G according to some embodiments. Screen 1700G can be selected via menu item 1722. As is illustrated, wound volume 1760 can be adjusted (currently low wound volume corresponding to a small wound is selected), therapy intensity 1764 can be adjusted (currently low intensity is selected), and wound wizard 1768 can be activated (current selection is low/small). FIG. 17H illustrates wound volume selection screen 1700H, in which low volume (small wound) 1761, medium volume (medium wound) 1762, or high volume (large wound) 1763 can be selected. FIG. 17I illustrates therapy intensity selection screen 1700I, in which low intensity 1765, medium intensity 1766, or high intensity 1767 can be selected. In some embodiments, therapy intensity can be correspond to the volume of wound exudate and default negative pressure levels can be associated with various levels of therapy intensity. FIG. 17J illustrates wound wizard screen 1700J, in which small, low exudating wound 1769 can be selected, medium, moderately exudating wound 1770 can be selected, or large, high exudating wound 1771 can be selected. Therapy settings can be adjusted in accordance with user's selection of a wound type.



FIG. 17K illustrates a flow meter gauge screen 1700K according to some embodiments. The screen 1700K graphically indicates current leak rate in the system. The screen 1700K includes a dial 1775 with markings 1777, 1778, and 1779 and a gauge 1776. Low leak levels are illustrated by position of the gauge 1776. Higher leak rates may trigger an alarm.



FIG. 17L illustrates log screen 1700L for accessing therapy log data, alarm log data, and the like. The log screen 1700L can be selected via menu item 1724. The log screen 1700L includes therapy counter 1783 (e.g., relative to last device reset), log view selection controls 1781 and 1782, and log data viewer 1784. Control 1781 selects detailed view, and control 1782 selects overview presentation of log data. In some embodiments, screen 1700L illustrates detailed view of log data. Log data viewer 1784 illustrates events separated by calendar days 1785 and 1787. Calendar day 1785 shows that on Jan. 1, 2012, −120 mmHg of negative pressure therapy is being delivered starting at 12:30 am. Calendar day 1787 shows that on Dec. 31, 2012, the device experienced a blockage/canister full alarm at 7:33 pm (1788), at 7:45 pm intermitted therapy between −80 mmHg and atmospheric pressure (0 mmHg) was delivered (1789), and that deliver of the therapy was stopped at 11:45 pm (1790).



FIG. 17K illustrates log data overview screen 1700M according to some embodiments. The screen 1700M can be selected via control 1782. The overview screen 1700M includes a graph 1792 displaying log data corresponding to calendar days. Desired month can be selected using controls 1793. Bars, such as 1798, graphically illustrate therapy delivery time corresponding to a calendar day 1794. For example, on December 21 (1794) 15 hours of therapy (1798) was delivered. In addition, alarm events are indicated by lines on the bars, such as lines 1795 and 1796. In some embodiments, pressing or tapping on a particular bar, such as bar 1798, can bring up a detailed view (not shown) of logged events for the corresponding day.



FIG. 17N illustrates help screen 1700N according to some embodiments. The main help screen 1700N can be accessed via control 1726. Help screen 1726 includes a menu of help items for alarms/troubleshooting 1802, reference guide 1804, video guides 1806, user guide 1808, and customer assistance 1810. Each of these items can be selected by pressing on a corresponding control. FIG. 17O illustrates video guides screen 1700O, which can be accessed via control 1806. The screen 1700O includes a list of videos, such as instructional videos for operating the device and/or system. Videos, reference guides, user guides, and the like can be stored in the device memory (e.g., memory 1450), downloaded and/or streamed from a network using a wired or wireless connection. In some embodiments, a list of available videos, reference guides, user guides, etc. is downloaded from a remote server and, in response to the user selecting a particular video or guide for viewing, the selected material is downloaded from the network and/or streamed over the network. A desired video can be selected and viewed, as shown in screen 1700P of FIG. 17P. The selected video can be viewed, paused, stopped, etc. by operating control 1814. FIG. 17Q illustrates a user guide screen 1700Q, which can be accessed via control 1808. User can scroll through information displayed in the screen 1700Q.



FIG. 17R illustrates alarm screens 1700R according to some embodiments. For example, during therapy delivery the device can detect high vacuum condition (e.g., high levels of vacuum are being applied to the wound cavity 110). The device can display a high vacuum alarm as is shown in the left screen of FIG. 17R indicting that high vacuum was detected while delivering therapy (information bar 1822). Because in certain embodiments such alarm cannot be silenced, therapy is paused, as is indicated by information bar 1822 shown on the right screen in FIG. 17R. This screen is displayed after the user presses therapy pause button 212b as prompted by the screen on the left side of FIG. 17R. User can troubleshoot the system by selecting control 1820. If troubleshooting is successfully perform (e.g., leak is mitigated or eliminated), the device can display screen 1700T of FIG. 17T, and user can restart delivery of therapy.



FIG. 17S illustrates alarm screens 1700S according to certain embodiments. A low battery alarm is illustrated. In some embodiments, this alarm can be silenced for a period of time, during which delivery of therapy is being continued. The user can silence the alarm by selecting control 1823. Message 1824 can then be displayed alerting the user to charge the battery.



FIGS. 17U-17V illustrate data upload screens according to some embodiments. As is shown in screens 1700U, user can access data upload window 1830, which includes data upload controls 1832 (for starting the upload) and 1834 (for cancelling). If the user selects control 1832, message 1835 is displayed to the user indicating the data is being sent to the remote computer. If upload is successful, a confirmation screen (not shown) can be displayed. Such conformation screen can automatically fade away after a period of time. However, if the upload is not successful, screen 1700V of FIG. 17V can be displayed. The user can retry the upload by selecting control 1838 or access upload troubleshooting information by selecting control 1836.



FIG. 18 illustrates a process 1850 of operating a device according to some embodiments. The process 1850 can be executed by the processor 1410. In block 1852, the process 1850 provides GUI screens to the user. In block 1854, the process 1850 receives input from the user. In block 1856, the process 1856 performs one or more operations in accordance with input received from the user.


Flow Rate Monitoring


Some embodiments of the system monitor and/or determine a rate of flow of fluid in the system. In certain embodiments, flow rate monitoring can be performed by the pump control processor 1470 alone or in combination with the processor 1410. Monitoring the flow rate can be used, among other things, to ensure that therapy is properly delivered to the wound, to detect blockages, canister full conditions, and/or leaks in the fluid flow path, high pressure, ensure that the flow rate is not unsafe (e.g., dangerously high), etc.


In some embodiments, the system performs flow rate monitoring by measuring and/or monitoring speed of vacuum pump motor, such as, by using a tachometer. The pump control processor 1470 can continuously monitor voltage and/or current at which the pump is being driven using the tachometer feedback from the pump. Tachometer feedback can be used to determine the pump speed. If pump speed falls below a threshold value over a particular period of time, such as 2 minutes, it can be determined that a blockage is present in the flow path. The blockage can be due to a blockage in a tube or lumen, canister being full, etc. An alarm can be triggered and the system can wait for the user to take one or more actions to resolve the blockage.


In various embodiments, tachometer can be read periodically, such as every 100 msec, and periodic readings made over a time duration, such as 32 sec, can be combined (e.g., averaged). Combined tachometer readings can be used for leak detection, blockage detection, limiting the maximum flow rate, etc. Combined tachometer readings (e.g., in counts) can be converted to a flow rate (e.g., in mL/min) using one or more conversion equations and/or tables so that a current flow rate is determined. In some embodiments, the flow rate is determined according to the following equation:

FR=C1*F*P+C2


where FR is the flow rate, F is the frequency of the pump tachometer signal, P is pressure produced by the pump, and C1 and C2 are suitable constants. The determined flow rate can be compared to various flow rate thresholds, such as blockage threshold, leakage threshold, and maximum flow rate threshold, to determine a presence of a particular condition, such as a blockage, leakage, over-vacuum.


In some embodiments, a blockage condition is detected when the determined flow rate falls below a blockage threshold. A blockage alarm can be enabled if the blockage condition is present for a period of time, such as 30 seconds. The blockage alarm can be disabled when the determined flow rate exceeds the blockage threshold. In some embodiments, the system can differentiate between a blockage in a tube or lumen and canister full conditions. In some embodiments, a leakage condition is detected when the determined flow rate exceeds a leakage threshold. A leakage alarm can be enabled if the leakage condition is present for a period of time, such as 30 seconds. The leakage alarm can be disabled when the detected flow rate exceeds the leakage threshold. In some embodiments, in order to prevent an over-vacuum condition, a maximum flow rate is imposed, such as 1.6 liters/min. Pump drive signal, such as voltage or current signal, can be limited not exceed this flow rate threshold.


In certain embodiments, one or more pressure sensors can be placed in suitable locations in the fluid flow path. Pressure measured by the one or more sensors is provided to the system (e.g., pump control processor 1470) so that it can determine and adjust the pump drive signal to achieve a desired negative pressure level. The pump drive signal can be generated using PWM. Additional details of flow rate detection and pump control are provided in U.S. patent application Ser. No. 13/589,021, which is assigned to the assignee of the present application is incorporated by reference in its entirety.


In some embodiments, flow rate monitoring is performed by measuring flow through a flow restrictor placed in a portion of the fluid flow path. In certain embodiments, flow restrictor 278 illustrated in FIG. 2F can be used. The flow restrictor can be calibrated such that it can be used to reliably monitor flow rate for different types of wounds, dressings, and operating conditions. For example, a high precision silicon flow restrictor can be used. The flow restrictor can be located at any suitable location in the flow path, such as between the source of the negative pressure and the canister, such as upstream of the source of the negative pressure and downstream of the canister. A differential pressure sensor or two pressure sensors can be used to measure a pressure drop across the flow restrictor. For example, as explained above in connection with FIG. 2F, the pressure drop across the flow restrictor 278 can be measured using sensors 282 and 284. In certain embodiments, if the pressure drop falls below a pressure differential threshold, which indicates low flow, the measured flow rate is compared to a flow rate threshold. If the measured flow rate falls below the flow rate threshold, blockage condition is detected. Additional details of blockage detection are provided in U.S. Patent Publication No. 2011/0071483, which is assigned to the assignee of the present application is incorporated by reference in its entirety. In some embodiments, the measured flow rate is compared to a leakage threshold. If the measured flow rate exceeds the leakage threshold, a leak is detected. Additional details of leakage detection are provided in U.S. Pat. No. 8,308,714, which is assigned to a subsidiary of the assignee of the present application and is incorporated by reference in its entirety.


In some embodiments, blockages and presence of fluid in one or more tubes or lumens are detected by processing data from one or more pressure sensors, such as sensors 280, 282, and 284. This detection can be enhanced by changing one or more settings of the vacuum pump, such as increasing vacuum level delivered by the pump, decreasing the vacuum level, stopping the pump, changing the pump speed, changing a cadence of the pump, and the like. In some embodiments, as the pump operates, it generates pressure pulses that are propagated through the fluid flow path. The pressure pulses are illustrated in the pressure curve 1902 of FIG. 19A according to some embodiments. Region 1904 illustrates pressure pulses detected during normal operation of the system, and region 1906 illustrates pressure pulses detected when canister becomes full. As is illustrated, canister blockage causes a reduced volume to be seen upstream of the canister, and the amplitude of the pressure pulses increases. In certain embodiments, this change or “bounce” in the pressure pulse signal can be magnified or enhanced by varying the pump speed, varying the cadence of the pump, such as by adjusting PWM parameters, and the like. Such adjustments of pump operation can be performed over a short time duration and the changes can be small such that the operation of the system remains relatively unaffected.


In some embodiments, the increase in the amplitude of pressure pulses (region 1906) can be detected and compared to a blockage threshold in order to determine whether a blockage condition exists. In certain embodiments, the frequency, rate of change of the amplitude (or slope), rate of change of the frequency, etc. of the pressure pulse signal can be monitored in place of or in addition to monitoring the amplitude. For example, curve 1910 of FIG. 19B illustrates pressure sensed by a pressure sensor downstream of the canister filter. As is shown, small or no pressure pulses are detected when the canister filter becomes blocked. A large negative change in the detected pressure signal is observed, as is illustrated by the slope 1912. In some embodiments, signal processing techniques can be utilized, such as converting the detected pressure pulse signal into frequency domain, for example by using the Fast Fourier Transform (FFT), and analyzing the pressure pulse signal in the frequency domain. Additional details of flow rate detection are described in U.S. Patent Publication No. 2012/0078539, which is assigned to the assignee of the present application is incorporated by reference in its entirety.


In some embodiments, temporary blockages caused by slugs of fluid in tubes or lumens are detected by turning off the pump and monitoring the pressure change in the fluid flow path. The pump can be turned off for a short duration of time as to not affect the operation of the system. Presence of temporary blockages in the system due to slugs of fluid can cause vacuum level to decline in a discontinuous “stair and risers” pattern, such as that illustrated by curve 2002 of FIG. 20. This discontinuous decaying pattern is due to slugs of fluid moving through the fluid flow path and arriving at the canister inlet, which can suddenly change the volume seen by the pressure sensor (and the canister). When slugs of fluid are not present, a more continuous decaying pattern, such as illustrated in curve 2004, is observed. In certain embodiments, when the pattern illustrated in curve 2002 is detected, the system can increase the level of vacuum produced by the pump to clear the slugs.


In some embodiments, one or more flow sensors and/or flow meters can be used to directly measure the fluid flow. In some embodiments, the system can utilize one or more of the above flow rate monitoring techniques. For example, the system can utilize one or more of the above-described flow rate monitoring techniques. The system can be configured to suitably arbitrate between flow rates determined using multiple flow rate monitoring techniques if one or more such techniques are executed in parallel. In certain embodiments, the system execute one of the techniques, such as the flow rate determination based on the pump speed, and utilize one or more other techniques as needed. In various embodiments, the system can utilize one or more other techniques in cases the determine flow rate is perceived to be inaccurate or unreliable.


Other Variations

Any value of a threshold, limit, duration, etc. provided herein is not intended to be absolute and, thereby, can be approximate. In addition, any threshold, limit, duration, etc. provided herein can be fixed or varied either automatically or by a user. Furthermore, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass being equal to the reference value. For example, exceeding a reference value that is positive can encompass being equal to or greater than the reference value. In addition, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass an inverse of the disclosed relationship, such as below, less than, greater than, etc. in relations to the reference value.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For example, the actual steps and/or order of steps taken in the disclosed processes may differ from those shown in the figure. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For instance, the various components illustrated in the figures may be implemented as software and/or firmware on a processor, controller, ASIC, FPGA, and/or dedicated hardware. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.


User interface screens illustrated and described herein can include additional and/or alternative components. These components can include menus, lists, buttons, text boxes, labels, radio buttons, scroll bars, sliders, checkboxes, combo boxes, status bars, dialog boxes, windows, and the like. User interface screens can include additional and/or alternative information. Components can be arranged, grouped, displayed in any suitable order.


Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.

Claims
  • 1. An apparatus for applying negative pressure therapy to a wound, the apparatus comprising: a negative pressure source configured to be in fluidic communication via a flow path with a wound dressing covering a wound and provide negative pressure to the wound;a first controller programmed to operate the negative pressure source with a first level of responsiveness; anda second controller separate from and in communication with the first controller, the second controller being programmed to operate a user interface with a second level of responsiveness different from the first level of responsiveness and instruct the first controller to operate the negative pressure source, wherein the first level of responsiveness is more responsive than the second level of responsiveness.
  • 2. The apparatus of claim 1, wherein the second controller is unable to control the negative pressure source except through communication with the first controller.
  • 3. The apparatus of claim 1, wherein the second controller is programmed to receive a plurality of negative pressure therapy parameters via the user interface and instruct the first controller to operate the negative pressure source according to one or more of the plurality of negative pressure therapy parameters.
  • 4. The apparatus of claim 1, further comprising a third controller separate from and in communication with the first controller, the third controller being programmed to perform at least some tasks not performed by the first controller and the second controller.
  • 5. The apparatus of claim 4, wherein the at least some tasks comprises communication of operation data to a remote computing device, the operation data being indicative of operation of the negative pressure source by the first controller.
  • 6. The apparatus of claim 5, wherein the third controller is programmed to cause wireless communication of the operation data to the remote computing device.
  • 7. The apparatus of claim 4, wherein the third controller is programmed to perform the at least some tasks with a third level of responsiveness different from the first level of responsiveness and the second level of responsiveness.
  • 8. The apparatus of claim 1, further comprising the user interface, the user interface being configured to receive a user input to initiate operation of the negative pressure source, the second controller being programmed to instruct the first controller to operate the negative pressure source responsive to the user input.
  • 9. The apparatus of claim 1, further comprising a housing configured to at least partially enclose the negative pressure source, the first controller, and the second controller.
  • 10. The apparatus of claim 1, further comprising the wound dressing, the wound dressing being configured to create a substantially fluid impermeable seal over the wound.
  • 11. A method for applying negative pressure therapy to a wound, the method comprising: operating, by a first controller, a negative pressure source configured to negative pressure via a flow path, to a wound covered by a wound dressing;operating, by a second controller separate from the first controller, a user interface; andinstructing, by the second controller, the first controller to operate the negative pressure source,wherein said operating the negative pressure source to provide negative pressure to the wound is performed with a first level of responsiveness, and said operating the user interface is performed with a second level of responsiveness different from the first level of responsiveness.
  • 12. The method of claim 11, further comprising receiving a plurality of negative pressure therapy parameters via the user interface, and wherein said instructing the first controller to operate the negative pressure source comprises instructing the first controller to operate the negative pressure source according to one or more of the plurality of negative pressure therapy parameters.
  • 13. The method of claim 11, wherein the first level of responsiveness is more responsive than the second level of responsiveness.
  • 14. The method of claim 11, further comprising performing, by a third controller separate from and in communication with the first controller, at least some tasks not performed by the first controller and the second controller.
  • 15. The method of claim 14, wherein the at least some tasks comprises communicating operation data to a remote computing device, the operation data being indicative of operation of the negative pressure source by the first controller.
  • 16. The method of claim 15, wherein said communicating the operation data to the remote computing device comprises wirelessly communicating the operation data to the remote computing device.
  • 17. The method of claim 11, further comprising receiving, by the user interface, a user input to initiate operation of the negative pressure source, and wherein said instructing the first controller to operate the negative pressure source is performed in response to the user input.
  • 18. The method of claim 11, wherein the second controller is unable to control the negative pressure source except through communication with the first controller.
  • 19. The method of claim 14, wherein said performing the at least some tasks is performed with a third level of responsiveness different from the first level of responsiveness and the second level of responsiveness.
  • 20. The apparatus of claim 1, further comprising a canister configured to be positioned in the flow path and store fluid removed from the wound.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/680,542, filed on Aug. 18, 2017, which is a divisional of U.S. patent application Ser. No. 14/210,062, filed on Mar. 13, 2014, which claims the benefit of U.S. Provisional Application No. 61/785,384, filed Mar. 14, 2013; the disclosures of which are hereby incorporated by reference in their entirety.

US Referenced Citations (887)
Number Name Date Kind
695270 Beringer Mar 1902 A
3187601 Glenn Jun 1965 A
3194239 Sullivan et al. Jul 1965 A
4832299 Gorton et al. May 1989 A
4969880 Zamierowski Nov 1990 A
5100396 Zamierowski Mar 1992 A
5158528 Walker et al. Oct 1992 A
5174533 Pryor et al. Dec 1992 A
5215523 Williams et al. Jun 1993 A
5219146 Thompson Jun 1993 A
5219428 Stern Jun 1993 A
5261893 Zamierowski Nov 1993 A
5419768 Kayser May 1995 A
5449347 Preen et al. Sep 1995 A
D364679 Heaton et al. Nov 1995 S
5466229 Elson et al. Nov 1995 A
5473536 Wimmer Dec 1995 A
5527293 Zamierowski Jun 1996 A
5582601 Wortrich et al. Dec 1996 A
5584824 Gillette et al. Dec 1996 A
5599308 Krupa Feb 1997 A
5622429 Heinze Apr 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5656027 Ellingboe Aug 1997 A
5669892 Keogh et al. Sep 1997 A
5687717 Halpern et al. Nov 1997 A
5693013 Geuder Dec 1997 A
5779207 Danby Jul 1998 A
5829723 Brunner et al. Nov 1998 A
D408625 Barker Apr 1999 S
5956023 Lyle et al. Sep 1999 A
5960403 Brown Sep 1999 A
5989234 Valerio et al. Nov 1999 A
6055506 Frasca et al. Apr 2000 A
6071267 Zamierowski Jun 2000 A
6174306 Fleischmann Jan 2001 B1
6228056 Boehringer et al. May 2001 B1
6241739 Waldron Jun 2001 B1
6250482 Want et al. Jun 2001 B1
6336900 Alleckson et al. Jan 2002 B1
6353445 Babula et al. Mar 2002 B1
6375614 Braun et al. Apr 2002 B1
6385622 Bouve et al. May 2002 B2
6406426 Reuss et al. Jun 2002 B1
6434572 Derzay et al. Aug 2002 B2
6460041 Lloyd Oct 2002 B2
6572530 Araki et al. Jun 2003 B1
6574518 Lounsberry et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6605032 Benkowski et al. Aug 2003 B2
6640145 Hoffberg et al. Oct 2003 B2
6640246 Gary et al. Oct 2003 B1
6675131 Hahn Jan 2004 B2
6681003 Linder et al. Jan 2004 B2
6723046 Lichtenstein et al. Apr 2004 B2
6738052 Manke et al. May 2004 B1
6747556 Medema et al. Jun 2004 B2
6779024 Delahuerga Aug 2004 B2
6782285 Birkenbach et al. Aug 2004 B2
6868528 Roberts Mar 2005 B2
6871211 Labounty et al. Mar 2005 B2
6909974 Yung et al. Jun 2005 B2
6912481 Breunissen et al. Jun 2005 B2
6936037 Bubb et al. Aug 2005 B2
6961731 Holbrook Nov 2005 B2
7004915 Boynton et al. Feb 2006 B2
7022113 Lockwood et al. Apr 2006 B2
7051012 Cole et al. May 2006 B2
7066883 Schmidt et al. Jun 2006 B2
7103578 Beck et al. Sep 2006 B2
7108683 Zamierowski Sep 2006 B2
7120488 Nova et al. Oct 2006 B2
7128735 Weston Oct 2006 B2
7133869 Bryan et al. Nov 2006 B2
7167858 Naeymi-Rad et al. Jan 2007 B2
7212829 Lau et al. May 2007 B1
7216651 Argenta et al. May 2007 B2
7264591 Brown Sep 2007 B2
7304573 Postma Dec 2007 B2
7311665 Hawthorne et al. Dec 2007 B2
7333002 Bixler et al. Feb 2008 B2
D565177 Locke et al. Mar 2008 S
7353179 Ott et al. Apr 2008 B2
7361184 Joshi Apr 2008 B2
7384267 Franks et al. Jun 2008 B1
7430598 Raden et al. Sep 2008 B2
D581042 Randolph et al. Nov 2008 S
D581522 Randolph et al. Nov 2008 S
7451002 Choubey Nov 2008 B2
7457804 Uber et al. Nov 2008 B2
7460872 Millard et al. Dec 2008 B2
D590934 Randolph et al. Apr 2009 S
7534240 Johnson May 2009 B1
7546993 Walker Jun 2009 B1
7553306 Hunt et al. Jun 2009 B1
7569742 Haggstrom et al. Aug 2009 B2
7594901 Hopkins et al. Sep 2009 B2
D602582 Pidgeon et al. Oct 2009 S
D602583 Pidgeon et al. Oct 2009 S
7598855 Scalisi et al. Oct 2009 B2
7611500 Lina et al. Nov 2009 B1
7615036 Joshi et al. Nov 2009 B2
7627334 Cohen et al. Dec 2009 B2
7649449 Fenske et al. Jan 2010 B2
7671733 McNeal et al. Mar 2010 B2
7684999 Brown Mar 2010 B2
7699823 Haggstrom et al. Apr 2010 B2
7723560 Lockwood et al. May 2010 B2
7734764 Weiner et al. Jun 2010 B2
7749164 Davis Jul 2010 B2
7753894 Blott et al. Jul 2010 B2
7770855 Locke et al. Aug 2010 B2
7776028 Miller et al. Aug 2010 B2
7779153 Van den Heuvel et al. Aug 2010 B2
7789828 Clapp Sep 2010 B2
D625801 Pidgeon et al. Oct 2010 S
7827148 Mori et al. Nov 2010 B2
7846141 Weston Dec 2010 B2
7857806 Karpowicz et al. Dec 2010 B2
7865375 Lancaster et al. Jan 2011 B2
7889069 Fifolt et al. Feb 2011 B2
7890887 Linardos et al. Feb 2011 B1
7912823 Ferrari et al. Mar 2011 B2
D635588 Sprules Apr 2011 S
7925603 Laidig et al. Apr 2011 B1
7927319 Lawhorn Apr 2011 B2
7933817 Radl et al. Apr 2011 B2
7945452 Fathallah et al. May 2011 B2
7976519 Bubb et al. Jul 2011 B2
7981098 Boehringer et al. Jul 2011 B2
D644250 Barber et al. Aug 2011 S
7988850 Roncadi et al. Aug 2011 B2
8007481 Schuessler et al. Aug 2011 B2
8015443 Adachi Sep 2011 B2
8015972 Pirzada Sep 2011 B2
8019618 Brown Sep 2011 B2
8048046 Hudspeth et al. Nov 2011 B2
8054950 Hung et al. Nov 2011 B1
8061360 Locke et al. Nov 2011 B2
8066243 Svedman et al. Nov 2011 B2
8094009 Allen et al. Jan 2012 B2
8096515 Locke et al. Jan 2012 B2
8100873 Jaeb et al. Jan 2012 B2
8105295 Blott et al. Jan 2012 B2
8126735 Dicks et al. Feb 2012 B2
8130095 Allen et al. Mar 2012 B2
8131472 Chow et al. Mar 2012 B2
8180750 Wilmering et al. May 2012 B2
8190445 Kuth et al. May 2012 B2
8190448 Bajars et al. May 2012 B2
8216198 Heagle et al. Jul 2012 B2
8228188 Key et al. Jul 2012 B2
8235955 Blott et al. Aug 2012 B2
8240470 Pidgeon et al. Aug 2012 B2
8246606 Stevenson et al. Aug 2012 B2
8246607 Karpowicz et al. Aug 2012 B2
8249894 Brown Aug 2012 B2
8255241 Cafer Aug 2012 B2
8257328 Augustine et al. Sep 2012 B2
8260630 Brown Sep 2012 B2
8280682 Vock et al. Oct 2012 B2
8284046 Allen et al. Oct 2012 B2
8290792 Sekura Oct 2012 B2
8291337 Gannin et al. Oct 2012 B2
8298200 Vess et al. Oct 2012 B2
8308714 Weston et al. Nov 2012 B2
8317752 Cozmi et al. Nov 2012 B2
8323263 Wood et al. Dec 2012 B2
8332233 Ott et al. Dec 2012 B2
8333744 Hartwell et al. Dec 2012 B2
8334768 Eaton et al. Dec 2012 B2
8337482 Wood et al. Dec 2012 B2
8360975 Schwieterman et al. Jan 2013 B1
8361043 Hu et al. Jan 2013 B2
8366692 Weston et al. Feb 2013 B2
8372050 Jaeb et al. Feb 2013 B2
8377016 Argenta et al. Feb 2013 B2
8377018 Bendele et al. Feb 2013 B2
8400295 Khaira Mar 2013 B1
8403902 Locke et al. Mar 2013 B2
8409170 Locke et al. Apr 2013 B2
8422377 Weiner et al. Apr 2013 B2
8424517 Sutherland et al. Apr 2013 B2
8436871 Alberte May 2013 B2
8439882 Kelch May 2013 B2
8444392 Turner et al. May 2013 B2
8457740 Osche Jun 2013 B2
8480641 Jacobs Jul 2013 B2
8494349 Gordon Jul 2013 B2
8515776 Schoenberg Aug 2013 B2
8529548 Blott et al. Sep 2013 B2
8532764 Duke Sep 2013 B2
8535296 Blott et al. Sep 2013 B2
8540688 Eckstein et al. Sep 2013 B2
8545483 Schwabe et al. Oct 2013 B2
8552880 Kopp et al. Oct 2013 B2
8554195 Rao Oct 2013 B2
8558964 Bedingfield Oct 2013 B2
8560082 Wei Oct 2013 B2
8577694 Kanaan Nov 2013 B2
8595553 Goertler et al. Nov 2013 B2
8604265 Locke et al. Dec 2013 B2
8617129 Hartwell Dec 2013 B2
8622981 Hartwell et al. Jan 2014 B2
8626342 Williams et al. Jan 2014 B2
8626526 Lemke et al. Jan 2014 B2
8628258 Vogt Jan 2014 B2
8632485 Schlaeper et al. Jan 2014 B2
8641693 Locke et al. Feb 2014 B2
8652111 Pratt et al. Feb 2014 B2
8659420 Salvat et al. Feb 2014 B2
8668677 Eckstein et al. Mar 2014 B2
8676597 Buehler et al. Mar 2014 B2
8689008 Rangadass et al. Apr 2014 B2
8694600 Gaines et al. Apr 2014 B2
8706537 Young et al. Apr 2014 B1
8747376 Locke et al. Jun 2014 B2
8756078 Collins et al. Jun 2014 B2
8757485 Drees et al. Jun 2014 B2
8758315 Chen et al. Jun 2014 B2
8768441 De Zwart et al. Jul 2014 B2
8771259 Karpowicz et al. Jul 2014 B2
8781847 Simms et al. Jul 2014 B2
8791315 Lattimore et al. Jul 2014 B2
8791316 Greener Jul 2014 B2
8795171 Adamczyk Aug 2014 B2
8795244 Randolph et al. Aug 2014 B2
8795257 Coulthard et al. Aug 2014 B2
8798284 Cartwright et al. Aug 2014 B2
8814841 Hartwell Aug 2014 B2
8814842 Coulthard et al. Aug 2014 B2
8838136 Carnes et al. Sep 2014 B2
8843327 Vernon-Harcourt et al. Sep 2014 B2
8845603 Middleton et al. Sep 2014 B2
8845604 Croizat et al. Sep 2014 B2
8858517 Pan et al. Oct 2014 B2
8862393 Zhou et al. Oct 2014 B2
8868794 Masoud et al. Oct 2014 B2
8870812 Alberti et al. Oct 2014 B2
8874035 Sherman et al. Oct 2014 B2
8887100 Cook et al. Nov 2014 B1
8890656 Pendse Nov 2014 B2
8897198 Gaines et al. Nov 2014 B2
8902278 Pinter et al. Dec 2014 B2
8905959 Basaglia Dec 2014 B2
8905985 Allen et al. Dec 2014 B2
8909595 Gandy et al. Dec 2014 B2
8912897 Carnes Dec 2014 B2
8922377 Carnes Dec 2014 B2
8926574 Croizat et al. Jan 2015 B2
8943168 Wiesner et al. Jan 2015 B2
8945073 Croizat et al. Feb 2015 B2
8945074 Buan et al. Feb 2015 B2
8947237 Margon et al. Feb 2015 B2
8961497 Ryu et al. Feb 2015 B2
8974429 Gordon et al. Mar 2015 B2
8978026 Charlton et al. Mar 2015 B2
8996393 Sobie Mar 2015 B2
9017286 Kamen et al. Apr 2015 B2
9019681 Locke et al. Apr 2015 B2
9023002 Robinson et al. May 2015 B2
9047648 Lekutai et al. Jun 2015 B1
9087141 Huang et al. Jul 2015 B2
9092705 Zhuang Jul 2015 B2
9098114 Potter et al. Aug 2015 B2
9105006 Williamson Aug 2015 B2
9135398 Kaib et al. Sep 2015 B2
9141270 Stuart et al. Sep 2015 B1
9159148 Boyer et al. Oct 2015 B2
9215516 Carnes et al. Dec 2015 B2
9215581 Julian et al. Dec 2015 B2
9220821 Croizat et al. Dec 2015 B2
9220822 Hartwell Dec 2015 B2
9230420 Lee et al. Jan 2016 B2
9268827 Fernandez Feb 2016 B2
9286443 Ford et al. Mar 2016 B2
9323893 Berry et al. Apr 2016 B2
9332363 Jain et al. May 2016 B2
9338819 Meng et al. May 2016 B2
9424020 Borges et al. Aug 2016 B2
9427159 Chang Aug 2016 B2
9436800 Forrester Sep 2016 B2
9460431 Curry Oct 2016 B2
9483614 Ash et al. Nov 2016 B2
9539373 Jones et al. Jan 2017 B2
9558331 Orona et al. Jan 2017 B2
9585565 Carnes Mar 2017 B2
9602952 Kang et al. Mar 2017 B2
9658066 Yuen et al. May 2017 B2
9662438 Kamen et al. May 2017 B2
9687618 Steinhauer et al. Jun 2017 B2
9693691 Johnson Jul 2017 B2
9716757 Fernandes Jul 2017 B2
9737649 Begin et al. Aug 2017 B2
9740825 Sansale et al. Aug 2017 B2
9741084 Holmes et al. Aug 2017 B2
9792660 Cannon et al. Oct 2017 B2
9818164 Nolte et al. Nov 2017 B2
9838645 Hyde et al. Dec 2017 B2
9864066 Park et al. Jan 2018 B2
9871866 Borges et al. Jan 2018 B2
9878081 Leiendecker et al. Jan 2018 B2
9928478 Ragusky et al. Mar 2018 B2
9990466 Debusk et al. Jun 2018 B2
9996681 Suarez et al. Jun 2018 B2
10049346 Jensen et al. Aug 2018 B2
10061894 Sethumadhavan et al. Aug 2018 B2
10173008 Simpson et al. Jan 2019 B2
10185834 Adam et al. Jan 2019 B2
20010013822 Nazarian et al. Aug 2001 A1
20010031944 Peterson et al. Oct 2001 A1
20010041831 Starkweather et al. Nov 2001 A1
20010049609 Girouard et al. Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020002368 Tomita et al. Jan 2002 A1
20020013516 Freyre et al. Jan 2002 A1
20020015034 Malmborg Feb 2002 A1
20020026160 Takahashi et al. Feb 2002 A1
20020049562 Hahn Apr 2002 A1
20020065685 Sasaki et al. May 2002 A1
20020082568 Yam Jun 2002 A1
20020087360 Pettit Jul 2002 A1
20020128804 Geva Sep 2002 A1
20020128869 Kuth Sep 2002 A1
20020135336 Zhou et al. Sep 2002 A1
20020161317 Risk et al. Oct 2002 A1
20020177757 Britton Nov 2002 A1
20020184055 Naghavi et al. Dec 2002 A1
20020193679 Malave et al. Dec 2002 A1
20020198505 Want et al. Dec 2002 A1
20030009244 Engleson et al. Jan 2003 A1
20030018395 Crnkovich et al. Jan 2003 A1
20030018736 Christ et al. Jan 2003 A1
20030028175 D'Antonio Feb 2003 A1
20030040687 Boynton et al. Feb 2003 A1
20030093041 Risk, Jr. et al. May 2003 A1
20030105389 Noonan et al. Jun 2003 A1
20030105649 Sheiner et al. Jun 2003 A1
20030128125 Burbank et al. Jul 2003 A1
20030164600 Dunn et al. Sep 2003 A1
20030176183 Drucker et al. Sep 2003 A1
20030182158 Son Sep 2003 A1
20030214412 Ho et al. Nov 2003 A1
20030221687 Kaigler Dec 2003 A1
20030229518 Abraham-Fuchs et al. Dec 2003 A1
20030233071 Gillespie et al. Dec 2003 A1
20040006492 Watanabe Jan 2004 A1
20040019464 Martucci et al. Jan 2004 A1
20040039255 Simonsen et al. Feb 2004 A1
20040054338 Bybordi et al. Mar 2004 A1
20040054775 Poliac et al. Mar 2004 A1
20040059284 Nash et al. Mar 2004 A1
20040064132 Boehringer et al. Apr 2004 A1
20040078223 Sacco et al. Apr 2004 A1
20040102743 Walker May 2004 A1
20040120825 Bouton et al. Jun 2004 A1
20040143458 Pulkkinen et al. Jul 2004 A1
20040158193 Bui et al. Aug 2004 A1
20040167802 Takada et al. Aug 2004 A1
20040167804 Simpson et al. Aug 2004 A1
20040171982 Danchin Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040176983 Birkett et al. Sep 2004 A1
20040181314 Zaleski Sep 2004 A1
20040181433 Blair Sep 2004 A1
20040193449 Wildman et al. Sep 2004 A1
20040204962 Howser et al. Oct 2004 A1
20040227737 Novak et al. Nov 2004 A1
20040249673 Smith Dec 2004 A1
20050011282 Voege et al. Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050033124 Kelly et al. Feb 2005 A1
20050055225 Mehl Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050060211 Xiao et al. Mar 2005 A1
20050065471 Kuntz Mar 2005 A1
20050065817 Mihai et al. Mar 2005 A1
20050097200 Denning, Jr. et al. May 2005 A1
20050102167 Kapoor May 2005 A1
20050108046 Craft May 2005 A1
20050108057 Cohen et al. May 2005 A1
20050114176 Dominick et al. May 2005 A1
20050116126 Ugent et al. Jun 2005 A1
20050119914 Batch Jun 2005 A1
20050124966 Karpowicz et al. Jun 2005 A1
20050187528 Berg Aug 2005 A1
20050201345 Williamson Sep 2005 A1
20050209560 Boukhny et al. Sep 2005 A1
20050222873 Nephin et al. Oct 2005 A1
20050230575 Zelenski et al. Oct 2005 A1
20050240111 Chung Oct 2005 A1
20050256447 Richardson et al. Nov 2005 A1
20050261805 Mori et al. Nov 2005 A1
20050283382 Donoghue et al. Dec 2005 A1
20060004604 White Jan 2006 A1
20060029675 Ginther Feb 2006 A1
20060064323 Alleckson et al. Mar 2006 A1
20060064491 Ebert et al. Mar 2006 A1
20060085393 Modesitt Apr 2006 A1
20060089539 Miodownik et al. Apr 2006 A1
20060089544 Williams et al. Apr 2006 A1
20060095853 Amyot et al. May 2006 A1
20060132283 Eberhart et al. Jun 2006 A1
20060144440 Merkle Jul 2006 A1
20060149171 Vogel et al. Jul 2006 A1
20060155584 Aggarwal Jul 2006 A1
20060161460 Smitherman et al. Jul 2006 A1
20060190130 Fedor et al. Aug 2006 A1
20060195843 Hall Aug 2006 A1
20060224051 Teller et al. Oct 2006 A1
20060229557 Fathallah et al. Oct 2006 A1
20060246922 Gasbarro et al. Nov 2006 A1
20060255935 Scalisi et al. Nov 2006 A1
20070005029 Hopkins et al. Jan 2007 A1
20070016152 Karpowicz et al. Jan 2007 A1
20070021697 Ginther et al. Jan 2007 A1
20070032741 Hibner et al. Feb 2007 A1
20070032762 Vogel Feb 2007 A1
20070032763 Vogel Feb 2007 A1
20070038172 Zamierowski Feb 2007 A1
20070052683 Knott et al. Mar 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070066946 Haggstrom et al. Mar 2007 A1
20070078444 Larsson Apr 2007 A1
20070118096 Smith et al. May 2007 A1
20070136099 Neligh et al. Jun 2007 A1
20070138069 Roncadi et al. Jun 2007 A1
20070156456 McGillin et al. Jul 2007 A1
20070167927 Hunt et al. Jul 2007 A1
20070179460 Adahan Aug 2007 A1
20070180904 Gao Aug 2007 A1
20070197881 Wolf et al. Aug 2007 A1
20070218101 Johnson et al. Sep 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070219826 Brodsky et al. Sep 2007 A1
20070227360 Atlas et al. Oct 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070233022 Henley et al. Oct 2007 A1
20070239139 Weston et al. Oct 2007 A1
20070250009 Barak Oct 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255116 Mehta et al. Nov 2007 A1
20070260226 Jaeb et al. Nov 2007 A1
20070271298 Juang et al. Nov 2007 A1
20070276309 Xu et al. Nov 2007 A1
20070282249 Quisenberry et al. Dec 2007 A1
20080004818 Zaleski Jan 2008 A1
20080005000 Radl et al. Jan 2008 A1
20080009681 Al Hussiny Jan 2008 A1
20080015526 Reiner et al. Jan 2008 A1
20080030345 Austin et al. Feb 2008 A1
20080039761 Heaton et al. Feb 2008 A1
20080041401 Casola et al. Feb 2008 A1
20080051708 Kumar et al. Feb 2008 A1
20080071209 Moubayed et al. Mar 2008 A1
20080071216 Locke et al. Mar 2008 A1
20080071234 Kelch et al. Mar 2008 A1
20080071235 Locke et al. Mar 2008 A1
20080077091 Mulligan Mar 2008 A1
20080082040 Kubler et al. Apr 2008 A1
20080082077 Williams Apr 2008 A1
20080086357 Choubey et al. Apr 2008 A1
20080091175 Frikart et al. Apr 2008 A1
20080091659 McFaul Apr 2008 A1
20080119705 Patel et al. May 2008 A1
20080125697 Gao May 2008 A1
20080125698 Gerg et al. May 2008 A1
20080126126 Ballai May 2008 A1
20080132821 Propp et al. Jun 2008 A1
20080140160 Goetz et al. Jun 2008 A1
20080167534 Young et al. Jul 2008 A1
20080177224 Kelly et al. Jul 2008 A1
20080177579 Dehaan Jul 2008 A1
20080180268 Nissels et al. Jul 2008 A1
20080200868 Alberti et al. Aug 2008 A1
20080200905 Heaton et al. Aug 2008 A1
20080200906 Sanders et al. Aug 2008 A1
20080208147 Argenta et al. Aug 2008 A1
20080209357 Vasta et al. Aug 2008 A1
20080221396 Garces et al. Sep 2008 A1
20080228526 Locke et al. Sep 2008 A1
20080234641 Locke et al. Sep 2008 A1
20080242945 Gugliotti et al. Oct 2008 A1
20080243096 Svedman Oct 2008 A1
20080249377 Molducci et al. Oct 2008 A1
20080272254 Harr et al. Nov 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080307353 Molducci et al. Dec 2008 A1
20080312953 Claus Dec 2008 A1
20090005746 Nielsen et al. Jan 2009 A1
20090037216 Bluemler et al. Feb 2009 A1
20090037220 Chambers et al. Feb 2009 A1
20090043268 Eddy et al. Feb 2009 A1
20090048492 Rantala et al. Feb 2009 A1
20090048865 Breazeale, Jr. Feb 2009 A1
20090082741 Hu Mar 2009 A1
20090097623 Bharadwaj Apr 2009 A1
20090099866 Newman Apr 2009 A1
20090099867 Newman Apr 2009 A1
20090101219 Martini et al. Apr 2009 A1
20090115663 Brown et al. May 2009 A1
20090118591 Kim et al. May 2009 A1
20090125055 Larkin et al. May 2009 A1
20090125331 Pamsgaard et al. May 2009 A1
20090136909 Asukai et al. May 2009 A1
20090144091 Rago Jun 2009 A1
20090157429 Lee et al. Jun 2009 A1
20090163774 Thatha et al. Jun 2009 A1
20090171166 Amundson et al. Jul 2009 A1
20090171288 Wheeler Jul 2009 A1
20090171289 Davis et al. Jul 2009 A1
20090177495 Abousy et al. Jul 2009 A1
20090182266 Gordon et al. Jul 2009 A1
20090182594 Choubey Jul 2009 A1
20090187424 Grabowski Jul 2009 A1
20090204434 Breazeale, Jr. Aug 2009 A1
20090204435 Gale Aug 2009 A1
20090205042 Zhou et al. Aug 2009 A1
20090206017 Rohde et al. Aug 2009 A1
20090224889 Aggarwal et al. Sep 2009 A1
20090227969 Jaeb et al. Sep 2009 A1
20090254362 Choubey et al. Oct 2009 A1
20090270833 Debelser et al. Oct 2009 A1
20090281822 Warner et al. Nov 2009 A1
20090281830 McNames Nov 2009 A1
20090281867 Sievenpiper et al. Nov 2009 A1
20090292264 Hudspeth et al. Nov 2009 A1
20090299306 Buan Dec 2009 A1
20090326339 Horvitz Dec 2009 A1
20090326488 Budig et al. Dec 2009 A1
20090327102 Maniar et al. Dec 2009 A1
20100001838 Miodownik et al. Jan 2010 A1
20100010646 Drew et al. Jan 2010 A1
20100017471 Brown et al. Jan 2010 A1
20100020021 Mills et al. Jan 2010 A1
20100022848 Lee et al. Jan 2010 A1
20100022990 Karpowicz et al. Jan 2010 A1
20100030132 Niezgoda et al. Feb 2010 A1
20100030302 Blowers et al. Feb 2010 A1
20100036333 Schenk, III et al. Feb 2010 A1
20100042021 Hu et al. Feb 2010 A1
20100042059 Pratt et al. Feb 2010 A1
20100049150 Braga et al. Feb 2010 A1
20100056875 Schoenberg et al. Mar 2010 A1
20100063483 Adahan Mar 2010 A1
20100069829 Hutchinson et al. Mar 2010 A1
20100090004 Sands et al. Apr 2010 A1
20100106528 Brackett et al. Apr 2010 A1
20100113908 Vargas et al. May 2010 A1
20100114026 Karratt et al. May 2010 A1
20100121257 King May 2010 A1
20100126268 Baily et al. May 2010 A1
20100137775 Hu et al. Jun 2010 A1
20100145161 Niyato et al. Jun 2010 A1
20100145289 Lina et al. Jun 2010 A1
20100150991 Bernstein Jun 2010 A1
20100168687 Yu Jul 2010 A1
20100191178 Ross et al. Jul 2010 A1
20100191199 Evans et al. Jul 2010 A1
20100200486 Guenther et al. Aug 2010 A1
20100204663 Wudyka Aug 2010 A1
20100207768 Pidgeon et al. Aug 2010 A1
20100211030 Turner et al. Aug 2010 A1
20100222645 Nadler et al. Sep 2010 A1
20100228205 Hu et al. Sep 2010 A1
20100234708 Buck et al. Sep 2010 A1
20100251114 Wehba et al. Sep 2010 A1
20100255876 Jordan et al. Oct 2010 A1
20100268179 Kelch et al. Oct 2010 A1
20100274177 Rybski et al. Oct 2010 A1
20100280435 Raney et al. Nov 2010 A1
20100280536 Hartwell Nov 2010 A1
20100282834 Devergne et al. Nov 2010 A1
20100305490 Coulthard et al. Dec 2010 A1
20100305523 Vess Dec 2010 A1
20100313958 Patel et al. Dec 2010 A1
20100314517 Patzer Dec 2010 A1
20100317933 Colman et al. Dec 2010 A1
20100318043 Malhi et al. Dec 2010 A1
20100318071 Wudyka Dec 2010 A1
20110003610 Key et al. Jan 2011 A1
20110004188 Shekalim Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009824 Yodfat et al. Jan 2011 A1
20110015585 Svedman et al. Jan 2011 A1
20110015587 Tumey et al. Jan 2011 A1
20110015590 Svedman et al. Jan 2011 A1
20110028881 Basaglia Feb 2011 A1
20110028882 Basaglia Feb 2011 A1
20110028921 Hartwell et al. Feb 2011 A1
20110034861 Schaefer Feb 2011 A1
20110038741 Lissner et al. Feb 2011 A1
20110040268 Eckstein et al. Feb 2011 A1
20110040288 Eckstein et al. Feb 2011 A1
20110054810 Turner et al. Mar 2011 A1
20110060204 Weston Mar 2011 A1
20110063117 Turner et al. Mar 2011 A1
20110066096 Svedman Mar 2011 A1
20110066110 Fathallah et al. Mar 2011 A1
20110066123 Tout et al. Mar 2011 A1
20110071415 Karwoski et al. Mar 2011 A1
20110071844 Cannon et al. Mar 2011 A1
20110073107 Rodman et al. Mar 2011 A1
20110077605 Karpowicz et al. Mar 2011 A1
20110092927 Wilkes et al. Apr 2011 A1
20110092958 Jacobs Apr 2011 A1
20110106028 Giezendanner et al. May 2011 A1
20110106561 Eaton, Jr. et al. May 2011 A1
20110107251 Guaitoli et al. May 2011 A1
20110112492 Bharti et al. May 2011 A1
20110112857 Yurko et al. May 2011 A1
20110130712 Topaz Jun 2011 A1
20110137759 Wellington et al. Jun 2011 A1
20110145018 Fotsch et al. Jun 2011 A1
20110152739 Roncadi et al. Jun 2011 A1
20110173028 Bond Jul 2011 A1
20110184754 Park et al. Jul 2011 A1
20110190703 Pratt et al. Aug 2011 A1
20110196321 Wudyka Aug 2011 A1
20110225008 Elkouh et al. Sep 2011 A1
20110245682 Robinson et al. Oct 2011 A1
20110246219 Smith et al. Oct 2011 A1
20110251569 Turner et al. Oct 2011 A1
20110257572 Locke et al. Oct 2011 A1
20110275353 Liu Nov 2011 A1
20110288511 Locke et al. Nov 2011 A1
20110288602 Nachum et al. Nov 2011 A1
20110288878 Blair Nov 2011 A1
20110290979 Henault et al. Dec 2011 A1
20110313789 Kamen et al. Dec 2011 A1
20110319813 Kamen et al. Dec 2011 A1
20120001762 Turner et al. Jan 2012 A1
20120029312 Beaudry et al. Feb 2012 A1
20120029313 Burdett et al. Feb 2012 A1
20120032819 Chae et al. Feb 2012 A1
20120035427 Friedman et al. Feb 2012 A1
20120035560 Eddy et al. Feb 2012 A1
20120035561 Locke et al. Feb 2012 A1
20120046624 Locke et al. Feb 2012 A1
20120046625 Johannison Feb 2012 A1
20120071845 Hu et al. Mar 2012 A1
20120077605 Nakagaito et al. Mar 2012 A1
20120081225 Waugh et al. Apr 2012 A1
20120089369 Abuzeni et al. Apr 2012 A1
20120123323 Kagan et al. May 2012 A1
20120123358 Hall et al. May 2012 A1
20120123796 McFaul May 2012 A1
20120157889 Tanis et al. Jun 2012 A1
20120157941 Luckemeyer et al. Jun 2012 A1
20120176394 Vik et al. Jul 2012 A1
20120181405 Zlatic et al. Jul 2012 A1
20120182143 Gaines et al. Jul 2012 A1
20120184930 Johannison Jul 2012 A1
20120184932 Giezendanner et al. Jul 2012 A1
20120191475 Pandey Jul 2012 A1
20120197196 Halbert et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120209228 Croizat et al. Aug 2012 A1
20120212434 Bluemler et al. Aug 2012 A1
20120212455 Kloeffel Aug 2012 A1
20120215455 Patil et al. Aug 2012 A1
20120220960 Ruland Aug 2012 A1
20120226247 Danei et al. Sep 2012 A1
20120226768 Gaines et al. Sep 2012 A1
20120259283 Haase Oct 2012 A1
20120259651 Mallon et al. Oct 2012 A1
20120271256 Locke et al. Oct 2012 A1
20120289895 Tsoukalis Nov 2012 A1
20120289913 Eckstein et al. Nov 2012 A1
20120289914 Eckstein et al. Nov 2012 A1
20120290217 Shoval et al. Nov 2012 A1
20120293322 Ray et al. Nov 2012 A1
20120295566 Collins et al. Nov 2012 A1
20120302976 Locke et al. Nov 2012 A1
20120302977 Buan et al. Nov 2012 A1
20120302978 Buan et al. Nov 2012 A1
20120310205 Lee et al. Dec 2012 A1
20130018355 Brand et al. Jan 2013 A1
20130019744 Hu Jan 2013 A1
20130023719 Bennett Jan 2013 A1
20130028788 Gronau et al. Jan 2013 A1
20130030394 Locke et al. Jan 2013 A1
20130035615 Hsieh Feb 2013 A1
20130045764 Vik et al. Feb 2013 A1
20130053692 Barron et al. Feb 2013 A1
20130062265 Balschat et al. Mar 2013 A1
20130066285 Locke et al. Mar 2013 A1
20130066301 Locke et al. Mar 2013 A1
20130073303 Hsu Mar 2013 A1
20130076528 Boettner et al. Mar 2013 A1
20130087609 Nichol et al. Apr 2013 A1
20130088452 Glaser-Seidnitzer et al. Apr 2013 A1
20130090613 Kelch et al. Apr 2013 A1
20130090949 Tibebu Apr 2013 A1
20130102836 Millman Apr 2013 A1
20130103419 Beaudry Apr 2013 A1
20130110057 Croteau et al. May 2013 A1
20130110058 Adie et al. May 2013 A1
20130123755 Locke et al. May 2013 A1
20130124227 Ellis May 2013 A1
20130132855 Manicka et al. May 2013 A1
20130133036 Wang et al. May 2013 A1
20130144227 Locke et al. Jun 2013 A1
20130144230 Wu et al. Jun 2013 A1
20130150686 Fronterhouse et al. Jun 2013 A1
20130150698 Hsu et al. Jun 2013 A1
20130150813 Gordon et al. Jun 2013 A1
20130151274 Bage et al. Jun 2013 A1
20130157571 Wondka et al. Jun 2013 A1
20130159456 Daoud et al. Jun 2013 A1
20130160082 Miller Jun 2013 A1
20130165821 Freedman et al. Jun 2013 A1
20130165854 Sandhu et al. Jun 2013 A1
20130165877 Leeson et al. Jun 2013 A1
20130169432 Ozgul et al. Jul 2013 A1
20130176230 Georgiev et al. Jul 2013 A1
20130186405 Krzyzanowski et al. Jul 2013 A1
20130190717 Dollar et al. Jul 2013 A1
20130190903 Balakrishnan et al. Jul 2013 A1
20130191513 Kamen et al. Jul 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130198685 Bernini et al. Aug 2013 A1
20130204106 Bennett Aug 2013 A1
20130204210 Pratt et al. Aug 2013 A1
20130211206 Sands et al. Aug 2013 A1
20130211854 Wagstaff Aug 2013 A1
20130212168 Bonasera et al. Aug 2013 A1
20130214925 Weiss Aug 2013 A1
20130218053 Kaiser et al. Aug 2013 A1
20130223979 Locke et al. Aug 2013 A1
20130226607 Woody et al. Aug 2013 A1
20130227128 Wagstaff Aug 2013 A1
20130231596 Hornbach et al. Sep 2013 A1
20130245387 Patel Sep 2013 A1
20130245580 Locke et al. Sep 2013 A1
20130253952 Burke et al. Sep 2013 A1
20130254717 Al-Ali et al. Sep 2013 A1
20130255681 Batch et al. Oct 2013 A1
20130262730 Al-Ali et al. Oct 2013 A1
20130267917 Pan et al. Oct 2013 A1
20130267918 Pan et al. Oct 2013 A1
20130267919 Caso et al. Oct 2013 A1
20130268283 Vann et al. Oct 2013 A1
20130271556 Ross et al. Oct 2013 A1
20130275145 Moore et al. Oct 2013 A1
20130282395 Rustgi et al. Oct 2013 A1
20130285837 Uchida Oct 2013 A1
20130289536 Croizat et al. Oct 2013 A1
20130293570 Dolgos et al. Nov 2013 A1
20130297350 Gross et al. Nov 2013 A1
20130303975 Gvodas, Jr. Nov 2013 A1
20130304489 Miller Nov 2013 A1
20130310631 Lee et al. Nov 2013 A1
20130310726 Miller et al. Nov 2013 A1
20130310778 Locke et al. Nov 2013 A1
20130310781 Phillips et al. Nov 2013 A1
20130317420 Wehmeyer Nov 2013 A1
20130317463 Yao et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130325508 Johnson et al. Dec 2013 A1
20130327326 Brennan Dec 2013 A1
20130331748 Wright et al. Dec 2013 A1
20130331822 Patel et al. Dec 2013 A1
20130332197 Hinkel Dec 2013 A1
20130335233 Kamar et al. Dec 2013 A1
20130345524 Meyer et al. Dec 2013 A1
20140002234 Alwan Jan 2014 A1
20140028464 Garibaldi Jan 2014 A1
20140031884 Elghazzawi Jan 2014 A1
20140032231 Semen et al. Jan 2014 A1
20140052202 Daynes Feb 2014 A1
20140055588 Bangera et al. Feb 2014 A1
20140058344 Toth Feb 2014 A1
20140058714 Boyer Feb 2014 A1
20140087762 Galvin et al. Mar 2014 A1
20140100516 Hunt et al. Apr 2014 A1
20140108033 Akbay et al. Apr 2014 A1
20140108034 Akbay et al. Apr 2014 A1
20140108035 Akbay et al. Apr 2014 A1
20140114236 Gordon Apr 2014 A1
20140114237 Gordon Apr 2014 A1
20140129250 Daniel et al. May 2014 A1
20140136218 Bolene et al. May 2014 A1
20140148138 Chou May 2014 A1
20140163490 Locke et al. Jun 2014 A1
20140163493 Weston et al. Jun 2014 A1
20140171753 Montejo et al. Jun 2014 A1
20140187888 Hatziantoniou Jul 2014 A1
20140194835 Ehlert Jul 2014 A1
20140222446 Ash et al. Aug 2014 A1
20140235975 Carnes Aug 2014 A1
20140236106 Locke et al. Aug 2014 A1
20140244285 Hinkle et al. Aug 2014 A1
20140244301 Lee et al. Aug 2014 A1
20140244307 Shutko et al. Aug 2014 A1
20140266713 Sehgal et al. Sep 2014 A1
20140275876 Hansen et al. Sep 2014 A1
20140278502 Laskin Sep 2014 A1
20140280882 Lacerte et al. Sep 2014 A1
20140297299 Lester, IV Oct 2014 A1
20140303551 Germain et al. Oct 2014 A1
20140316819 Dunsirn et al. Oct 2014 A1
20140323906 Peatfield et al. Oct 2014 A1
20140350966 Khatana et al. Nov 2014 A1
20140366878 Baron Dec 2014 A1
20140372147 White Dec 2014 A1
20140372522 Orona et al. Dec 2014 A1
20140375470 Malveaux Dec 2014 A1
20140378895 Barack Dec 2014 A1
20150012290 Inciardi et al. Jan 2015 A1
20150019237 Doyle et al. Jan 2015 A1
20150019257 Doyle et al. Jan 2015 A1
20150025486 Hu et al. Jan 2015 A1
20150046137 Zeilinger Feb 2015 A1
20150066531 Jacobson et al. Mar 2015 A1
20150072613 Swanson Mar 2015 A1
20150073363 Kelch et al. Mar 2015 A1
20150094673 Pratt et al. Apr 2015 A1
20150094674 Pratt et al. Apr 2015 A1
20150094830 Lipoma et al. Apr 2015 A1
20150095056 Ryan et al. Apr 2015 A1
20150095059 Yegge et al. Apr 2015 A1
20150095066 Ryan et al. Apr 2015 A1
20150095068 Ryan et al. Apr 2015 A1
20150100340 Folsom et al. Apr 2015 A1
20150112707 Manice et al. Apr 2015 A1
20150112725 Ryan Apr 2015 A1
20150118662 Ellison et al. Apr 2015 A1
20150119652 Hyde et al. Apr 2015 A1
20150120318 Toyama Apr 2015 A1
20150120328 Ryan et al. Apr 2015 A1
20150133829 Debusk et al. May 2015 A1
20150143300 Zhang et al. May 2015 A1
20150159066 Hartwell et al. Jun 2015 A1
20150164323 Holtzclaw Jun 2015 A1
20150164376 Huang Jun 2015 A1
20150186615 Armor et al. Jul 2015 A1
20150189001 Lee et al. Jul 2015 A1
20150227712 Ryan et al. Aug 2015 A1
20150227716 Ryan et al. Aug 2015 A1
20150227717 Ryan et al. Aug 2015 A1
20150228043 Ryan et al. Aug 2015 A1
20150234557 Dorn Aug 2015 A1
20150234995 Casady et al. Aug 2015 A1
20150242578 Siemon Aug 2015 A1
20150242583 Edson Aug 2015 A1
20150254403 Laperna Sep 2015 A1
20150261920 Blick Sep 2015 A1
20150363058 Chung et al. Dec 2015 A1
20150370984 Russell et al. Dec 2015 A1
20160018963 Robbins et al. Jan 2016 A1
20160042154 Goldberg et al. Feb 2016 A1
20160044141 Pfützenreuter et al. Feb 2016 A1
20160055310 Bentley et al. Feb 2016 A1
20160063210 Bardi et al. Mar 2016 A1
20160066864 Frieder et al. Mar 2016 A1
20160080365 Baker et al. Mar 2016 A1
20160110507 Abbo Apr 2016 A1
20160110985 Lee et al. Apr 2016 A1
20160136339 Begin et al. May 2016 A1
20160151015 Condurso et al. Jun 2016 A1
20160154936 Kalathil Jun 2016 A1
20160171866 Dupasquier et al. Jun 2016 A1
20160196399 Bonhomme Jul 2016 A1
20160203275 Benjamin et al. Jul 2016 A1
20160246943 Lake et al. Aug 2016 A1
20160308969 Aihara et al. Oct 2016 A1
20160321422 Albright Nov 2016 A1
20170004271 Ash et al. Jan 2017 A1
20170007748 Locke et al. Jan 2017 A1
20170017765 Yegge et al. Jan 2017 A1
20170068781 Zasowski et al. Mar 2017 A1
20170078396 Haas et al. Mar 2017 A1
20170150939 Shah Jun 2017 A1
20170273116 Elghazzawi Sep 2017 A1
20180139572 Hansen May 2018 A1
20180158545 Blomquist Jun 2018 A1
20180224559 Park et al. Aug 2018 A1
20180233016 Daniel et al. Aug 2018 A1
20180233221 Blomquist Aug 2018 A1
20180234499 Borges et al. Aug 2018 A1
20180318478 Armstrong et al. Nov 2018 A1
20190298577 Locke et al. Oct 2019 A1
20190328943 Deutsch et al. Oct 2019 A1
20200100945 Albert et al. Apr 2020 A1
Foreign Referenced Citations (255)
Number Date Country
2819475 Jun 2012 CA
201921164 Aug 2011 CN
102805894 Dec 2012 CN
102961815 Mar 2013 CN
104721892 Jun 2015 CN
102010036405 Jan 2012 DE
202014101752 Jun 2014 DE
0768071 Apr 1997 EP
0829228 Mar 1998 EP
0566381 Jul 2002 EP
1231965 Aug 2002 EP
1291802 Mar 2003 EP
1309960 May 2003 EP
0904788 Nov 2003 EP
0814864 Dec 2003 EP
1407624 Apr 2004 EP
1011420 Dec 2004 EP
1495713 Jan 2005 EP
1524619 Apr 2005 EP
1540557 Jun 2005 EP
1579367 Sep 2005 EP
1587017 Oct 2005 EP
1684146 Jul 2006 EP
1702649 Sep 2006 EP
1788503 May 2007 EP
1797918 Jun 2007 EP
1839244 Oct 2007 EP
1839615 Oct 2007 EP
1857950 Nov 2007 EP
1870068 Dec 2007 EP
1904964 Apr 2008 EP
1934852 Jun 2008 EP
1975828 Oct 2008 EP
1993435 Nov 2008 EP
2038786 Mar 2009 EP
2040604 Apr 2009 EP
2092470 Aug 2009 EP
2146297 Jan 2010 EP
2172859 Apr 2010 EP
2214552 Aug 2010 EP
2218478 Aug 2010 EP
2246079 Nov 2010 EP
2248545 Nov 2010 EP
1668556 Feb 2011 EP
1404213 Mar 2011 EP
1247229 Apr 2011 EP
1406540 Jun 2011 EP
1812094 Aug 2011 EP
2366721 Sep 2011 EP
2384472 Nov 2011 EP
2226002 Jan 2012 EP
1610494 Mar 2012 EP
1248660 Apr 2012 EP
2023800 Apr 2012 EP
2451513 May 2012 EP
1248661 Aug 2012 EP
2488977 Aug 2012 EP
2503478 Sep 2012 EP
2529765 Dec 2012 EP
2389961 Mar 2013 EP
2619723 Jul 2013 EP
1881784 Oct 2013 EP
2664194 Nov 2013 EP
2674845 Dec 2013 EP
2650027 Jan 2014 EP
1565219 Feb 2014 EP
2743850 Jun 2014 EP
2745204 Jun 2014 EP
2562665 Jul 2014 EP
2795492 Oct 2014 EP
2841895 Mar 2015 EP
2850771 Mar 2015 EP
2066365 Apr 2015 EP
2876567 May 2015 EP
2891999 Jul 2015 EP
2894581 Jul 2015 EP
2906101 Aug 2015 EP
2962266 Jan 2016 EP
2968829 Jan 2016 EP
2973089 Jan 2016 EP
3000082 Mar 2016 EP
3010398 Apr 2016 EP
3078010 Oct 2016 EP
2563437 Mar 2017 EP
3027242 Apr 2017 EP
2556650 May 2017 EP
2632407 Aug 2017 EP
3041571 Sep 2017 EP
2856767 Nov 2017 EP
2320971 May 2018 EP
2335173 May 2018 EP
3100188 Jun 2018 EP
2440112 Oct 2018 EP
2992500 Dec 2018 EP
2597584 Jan 2019 EP
3219340 Jan 2019 EP
2890456 Feb 2019 EP
2881875 May 2019 EP
2836269 Aug 2019 EP
2866851 Sep 2019 EP
2235877 Mar 1991 GB
2279784 Jan 1995 GB
2409951 Jul 2005 GB
2436160 Sep 2007 GB
2449400 Nov 2008 GB
2456708 Jul 2009 GB
2423178 May 2010 GB
2475091 May 2011 GB
2488904 Sep 2012 GB
2446923 May 2013 GB
2499986 Sep 2013 GB
2491946 Aug 2014 GB
WO 9619335 Jun 1996 WO
WO 9627163 Sep 1996 WO
WO 9744745 Nov 1997 WO
WO 9924927 May 1999 WO
WO 9963886 Dec 1999 WO
WO 0060522 Oct 2000 WO
WO 0114048 Mar 2001 WO
WO 0133457 May 2001 WO
WO 0136027 May 2001 WO
WO 0154743 Aug 2001 WO
WO 0181829 Nov 2001 WO
WO 0217075 Feb 2002 WO
WO 0233577 Apr 2002 WO
WO 02078594 Oct 2002 WO
WO 02101713 Dec 2002 WO
WO 03054668 Jul 2003 WO
WO 03055432 Jul 2003 WO
WO 03094090 Nov 2003 WO
WO 03101508 Dec 2003 WO
WO 2004057514 Jul 2004 WO
WO 2004074457 Sep 2004 WO
WO 2005022349 Mar 2005 WO
WO 2005031632 Apr 2005 WO
WO 2005036447 Apr 2005 WO
WO 2005045461 May 2005 WO
WO 2005053793 Jun 2005 WO
WO 2005057466 Jun 2005 WO
WO 2005083619 Sep 2005 WO
WO 2005101282 Oct 2005 WO
WO 2005109297 Nov 2005 WO
WO 2005120097 Dec 2005 WO
WO 2006021154 Mar 2006 WO
WO 2006066583 Jun 2006 WO
WO 2006066585 Jun 2006 WO
WO 2006071711 Jul 2006 WO
WO 2006099120 Sep 2006 WO
WO 2006108858 Oct 2006 WO
WO 2006111109 Oct 2006 WO
WO 2007027490 Mar 2007 WO
WO 2007035646 Mar 2007 WO
WO 2007127879 Nov 2007 WO
WO 2007133478 Nov 2007 WO
WO 2007137869 Dec 2007 WO
WO 2008010012 Jan 2008 WO
WO 2008036344 Mar 2008 WO
WO 2008036360 Mar 2008 WO
WO 2008036361 Mar 2008 WO
WO 2008039314 Apr 2008 WO
WO 2008062382 May 2008 WO
WO 2008104609 Sep 2008 WO
WO 2008116295 Oct 2008 WO
WO 2008132215 Nov 2008 WO
WO 2009021523 Feb 2009 WO
WO-2009023634 Feb 2009 WO
WO 2009047524 Apr 2009 WO
WO 2009089390 Jul 2009 WO
WO 2009093116 Jul 2009 WO
WO 2009140669 Nov 2009 WO
WO 2009151645 Dec 2009 WO
WO 2010017484 Feb 2010 WO
WO-2010021783 Feb 2010 WO
WO 2010025166 Mar 2010 WO
WO 2010025467 Mar 2010 WO
WO 2010039481 Apr 2010 WO
WO 2010078558 Jul 2010 WO
WO 2010085033 Jul 2010 WO
WO 2010089368 Aug 2010 WO
WO 2010132617 Nov 2010 WO
WO 2010126668 Dec 2010 WO
WO 2010145780 Dec 2010 WO
WO 2011023275 Mar 2011 WO
WO 2011023384 Mar 2011 WO
WO 2011039676 Apr 2011 WO
WO 2011046860 Apr 2011 WO
WO 2011047334 Apr 2011 WO
WO 2011107972 Sep 2011 WO
WO 2011123933 Oct 2011 WO
WO 2011124388 Oct 2011 WO
WO 2011137230 Nov 2011 WO
WO 2012009869 Jan 2012 WO
WO 2012027342 Mar 2012 WO
WO 2012027912 Mar 2012 WO
WO 2012027913 Mar 2012 WO
WO 2012027914 Mar 2012 WO
WO 2012027915 Mar 2012 WO
WO 2012027916 Mar 2012 WO
WO 2012051278 Apr 2012 WO
WO 2012100624 Aug 2012 WO
WO 2012107430 Aug 2012 WO
WO 2012127281 Sep 2012 WO
WO 2012156655 Nov 2012 WO
WO 2012160164 Nov 2012 WO
WO 2012172818 Dec 2012 WO
WO 2013014278 Jan 2013 WO
WO 2013025815 Feb 2013 WO
WO 2013026999 Feb 2013 WO
WO 2013029330 Mar 2013 WO
WO 2013036853 Mar 2013 WO
WO 2013054217 Apr 2013 WO
WO 2013061887 May 2013 WO
WO 2013063848 May 2013 WO
WO 2013066775 May 2013 WO
WO 2013089712 Jun 2013 WO
WO 2013102855 Jul 2013 WO
WO 2013109517 Jul 2013 WO
WO 2013119978 Aug 2013 WO
WO 2013123022 Aug 2013 WO
WO 2013126049 Aug 2013 WO
WO 2013138182 Sep 2013 WO
WO 2013140255 Sep 2013 WO
WO 2013141870 Sep 2013 WO
WO 2013150025 Oct 2013 WO
WO 2013155193 Oct 2013 WO
WO 2013136181 Nov 2013 WO
WO 2013175076 Nov 2013 WO
WO 2013182218 Dec 2013 WO
WO 2014012802 Jan 2014 WO
WO 2014015215 Jan 2014 WO
WO 2014018786 Jan 2014 WO
WO 2014075494 May 2014 WO
WO 2014089086 Jun 2014 WO
WO 2014100036 Jun 2014 WO
WO 2014100687 Jun 2014 WO
WO 2014106056 Jul 2014 WO
WO 2014123846 Aug 2014 WO
WO 2014133822 Sep 2014 WO
WO 2014141221 Sep 2014 WO
WO 2014145496 Sep 2014 WO
WO 2014150255 Sep 2014 WO
WO 2014151930 Sep 2014 WO
WO 2014152963 Sep 2014 WO
WO 2014189070 Nov 2014 WO
WO 2014009876 Dec 2014 WO
WO 2015019273 Feb 2015 WO
WO 2015023515 Feb 2015 WO
WO 2015025482 Feb 2015 WO
WO 2015026387 Feb 2015 WO
WO 2015050816 Apr 2015 WO
WO 2015078112 Jun 2015 WO
WO 2015085249 Jun 2015 WO
WO 2015091070 Jun 2015 WO
WO 2015124670 Aug 2015 WO
WO 2015132528 Sep 2015 WO
Non-Patent Literature Citations (17)
Entry
Cinterion., “Cinterion PHS8-P 3G HSPA+,” retrieved from http://www.cinterion.com/tl_files/cinterion/downloads/cinterion_datasheet_PHSS_web.pdf, 2012, 2 pages.
Hartmann Vivano., “Vivano—Product Application Description,” retreived from http://www.vivanosystem.info/20809.php, accessed on Feb. 28, 2013, 3 pages.
Huntleigh Healthcare, “Negative Pressure Positive Outcomes,” WoundASSIST TNP Console and Canister Brochure, 2007, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2014/026692, dated Sep. 24, 2015, 16 pages.
International Search Report and Written Opinion for Application No. PCT/GB2014/050786, dated Jun. 12, 2014, 14 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/026692, dated Mar. 2, 2015, 26 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/050233, dated Jan. 7, 2015, 16 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/065680, dated May 14, 2015, 16 pages.
International Search Report and Written Opinion for Application No. PCT/US2014/066441, dated Jun. 25, 2015, 16 pages.
Invitation to Pay and Partial International Search Report for Application No. PCT/US2014/026692, dated Sep. 26, 2014, 9 pages.
U.S. Appl. No. 14/210,062, U.S. Pat. No. 9,737,649.
U.S. Appl. No. 15/680,542, U.S. Pat. No. 10,610,624.
U.S. Appl. No. 16/031,814, 2018/0318478.
U.S. Appl. No. 14/775,339, U.S. Pat. No. 10,328,188.
U.S. Appl. No. 16/447,509, 2019/0328943.
U.S. Appl. No. 60/845,993, filed Sep. 19, 2006, 438 pages.
Examination Report No. 2 for Australian Application No. 2018250482, dated Oct. 2, 2020, 4 pages.
Related Publications (1)
Number Date Country
20200353135 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
61785384 Mar 2013 US
Divisions (1)
Number Date Country
Parent 14210062 Mar 2014 US
Child 15680542 US
Continuations (1)
Number Date Country
Parent 15680542 Aug 2017 US
Child 16839983 US