Claims
- 1. A magnetic bearing apparatus for rotatably supporting a rotatable body comprising: radial magnetic bearings each having at least two pairs of electromagnets surrounding the rotatable body, and arranged at suitable distances along the rotatable body; radial sensors surrounding the rotatable body and arranged at suitable distances along the rotating body to detect radial deviation of the rotatable body at each sensor; first optimum regulating means for one degree of freedom for extracting the radial deviation of the rotatable body from the output signal of said sensors and for generating a first control signal corresponding to the deviation; second optimum regulating means for two degrees of freedom including inverse symmetrical cross-linking feedback means for extracting the angular deviation of the rotatable body on the perpendicular radial axis from the output signal of said sensors and for generating a second control signal corresponding to gyro action caused by the compensating torque on the perpendicular radial axis for the angular deviation; and control means for controlling the input power applied to said electromagnets in response to said first and second control signals.
- 2. A magnetic bearing apparatus having five degrees of freedom for rotatably supporting an elongate rotationally driven rotatable body comprising: two radial magnetic bearings disposed in spaced relation along the rotatable body for rotatably supporting the body for rotation about a rotary axis, each radial magnetic bearing comprising at least two pairs of energizeable electromagnets with the electromagnets of each pair being disposed opposite one another with the rotatable body disposed in between; radial sensing means for sensing radial deviation of the rotatable body from the rotary axis at two separate and spaced locations along the rotatable body and providing corresponding output signals indicative of the extent of radial deviation at each of the two locations; first optimum regulating means for one degree of freedom for extracting from the output signals information representative of the radial deviation at the two locations and developing a corresponding first control signal; second optimum regulating means for two degrees of freedom including inverse symmetrical cross-linking feedback means for extracting from the output signals information representative of the angular deviation of the rotatable body at the two locations and developing a corresponding second control signal effective to compensate for the gyro-effect; and control means responsive to the first and second control signals for controlling energization of the electromagnets.
Priority Claims (1)
Number |
Date |
Country |
Kind |
56-180712 |
Nov 1981 |
JPX |
|
CROSS-REFERENCE TO RELATED APPLICATIONS
This is a continuation of application Ser. No. 682,811 filed Dec. 18, 1984 (now abandoned) which, in turn, is a continuation of application Ser. No. 439,325 filed Nov. 4, 1982 (now abandoned).
US Referenced Citations (7)
Foreign Referenced Citations (1)
Number |
Date |
Country |
2149644 |
Mar 1973 |
FRX |
Non-Patent Literature Citations (1)
Entry |
J. S. Rao, "Rotor Dynamics"; 1983; John Willey & Sons; New York. |
Continuations (2)
|
Number |
Date |
Country |
Parent |
682811 |
Dec 1984 |
|
Parent |
439325 |
Nov 1982 |
|