This invention relates to a control arrangement, for example, for use in controlling the operation of an aircraft engine. It may, however, be suitable for use in other applications or environments.
The control arrangement typically used in controlling the operation of an aircraft engine is a centralised arrangement (see
Many of the sensors 2 and effectors 3 are located remotely from the control unit 1 and are connected thereto by wires, cables or other conductors, generally referred to as harnesses 4.
As a large number of sensors 2 and effecters 3 are typically provided, the harnesses 4 used are typically relatively complex, requiring a large number of individual conductors, each of which needs to be correctly connected to the control unit. By way of example, 700 or more conductors and associated connectors are typically required. It will be appreciated that such harnesses are relatively large, complex and heavy.
Rather than separately connecting each effecter and each sensor to the control unit as in such a centralised arrangement, it is known to provide distributed arrangements (see
The use of such a distributed arrangement is advantageous in that the harnesses connected to the control unit are simplified, including fewer conductors, and are thus of reduced weight and size. Further, the number of connections, and hence the number of required connection pins, to the control unit is reduced. The use of such a distributed arrangement does not significantly alter the software associated with the control unit.
Although advantageous compared to a centralised system, such a distributed arrangement still has disadvantages. For example, the series connections of the effecters and sensors associated with each bus lead to difficulties in identifying or diagnosing the occurrence of faults and in effectively providing lightning strike protection (LSP). Further, bandwidth capacity problems may be encountered, limiting the speed of data transmission to or from at least some of the nodes, which in turn can limit the number of available nodes and have a detrimental affect on system flexibility.
It is an object of the present invention to provide an alternative control arrangement in which at least some of the disadvantages outlined hereinbefore are reduced.
According to the present invention there is provided an aerospace control arrangement comprising a control unit connected to a plurality of connecting node sets, each connecting node set having associated therewith a plurality of connecting nodes, and each node having associated therewith at least one effecter and/or sensor, resulting in at least some of the nodes being connected to the control unit in a fault isolated star, point to point, arrangement.
The use of such a control arrangement in an aerospace environment in which the arrangement, or at least part thereof, is exposed to high temperature conditions and/or significant vibrations would not be thought to be practical as the circuits incorporated into the nodes would most likely be incapable of withstanding the adverse environmental conditions.
Preferably, a plurality of effectors and/or sensors are associated with each node.
Such a fault isolated star, or point-to-point, connection arrangement enhances the ability of the control arrangement to detect and isolate an electrical/electronic failure condition, such as an open circuit or short circuit fault, in the control unit, an individual node, an individual effecter and/or sensor or associated harness. Further, bandwidth capacity limitations affecting data transfer to or from the control unit and individual nodes are alleviated as separate connections between the control unit and individual nodes are provided. Further, LSP can be incorporated into the design of each individual node, which enhances the overall lightning strike capability of the control arrangement. The advantages or benefits outlined hereinbefore of a conventional distributed arrangement are also maintained.
The harnesses used to connect each individual node to the control unit conveniently include power supply lines and means for transmitting data between the control unit and the node. The data transmission means may include separate data links. Alternatively, data may be transmitted over the power supply lines. Separate relatively high and low voltage, for example 40V and 12V, power supply lines may be provided. Alternatively, just relatively high voltage, for example 40V, power supply lines may be provided, a balanced DC to DC device or arrangement being incorporated in the node to provide a relatively low voltage, for example 12V, power supply. As a further alternative, just relatively low voltage, for example 12V, power supply lines may be provided, negating the need for the aforementioned DC to DC device. It will be appreciated that the use of such arrangements permits a reduction in the number of conductors required in the harness. For example, six, four or even just two conductor harnesses may be used. The number of connections to the control unit are thus reduced. Consequently, it may be possible to provide a triplex, rather than the more typical duplex, system architecture without requiring the control arrangement to be of overly complex form, or resulting in a significant harness weight penalty. Alternatively, it may be possible to provide a local triplex architecture in a critical node of the system. Furthermore, it is recognised that with the use of a relatively low voltage power supply line, for example 12V, the effectors and/or sensors need to be redesigned to operate at the lower voltage. Advantageously, if the physical size of these fine wire devices remains unchanged then with this lower voltage the diameter of the wires can be increased to provide a more robust and reliable device.
Preferably, each individual node includes control circuitry for each associated sensor and/or effecter. By providing the control circuitry remotely of the control unit, the control unit can be of less complex form. Further, if changes to the control circuitry are required, they can be achieved without requiring changes to the entire control unit. Conveniently the control unit can be designed to allow changes in the numbers of nodes or control circuits to be accommodated. Again, this may allow design changes to be incorporated without requiring the control unit to be modified.
The control circuitry is preferably constructed in the form of a multi-chip module (MCM). The MCM conveniently includes silicon on insulator (SOI) based integrated circuits (ICs) mounted upon a multilayer substrate and located within a hermetically sealed housing. Such a module is advantageous in that its capability to withstand high temperature operating conditions and thermal cycles, as occur in aerospace applications, is good. Further, the so called Physics of Failure (P of F) of such a module that consists of SOI based ICs, is more easily understood that the P of F of a conventional complementary metal oxide semiconductor (CMOS) IC. Hence the wear out mechanisms and operational lifespan of these modules can be predicted more easily, thereby allowing planned maintenance or replacement to be undertaken more effectively. The control circuitry in each individual node preferably makes use of state machines rather than microprocessors, high temperature SOI state machines being known which can operate reliably in high temperature environments. A high temperature SOI state machine adapted for use in a high temperature environment, for example at around 200° C., is described in U.S. Pat. No. 7,017,662.
The invention will further be described, by way of example, with reference to the accompanying drawings, in which:
Referring firstly to
The control unit 10 is connected by wiring harnesses 16, 18 to a node 20 in the form of a line replaceable unit (LRU) containing control circuits 22 for controlling the operation of a series of valves, actuators or other forms of effecter 24 for use in controlling the operation of an associated engine, and sensor circuits 26 controlling and sensing the outputs of a series of sensors 28 arranged to monitor the operation of the engine, components associated therewith or the conditions under which the engine is operating. Both the effecters 24 and sensors 28 are electrically integrated into the design of the node 20. The node 20 receives electrical power from the control unit 10 through the harnesses 16, 18 and data or control signals are transmitted through the harnesses 16, 18 between the control unit 10 and the node 20 such that signal data from the sensor circuits 26 can be supplied to the control unit 10 for use thereby in producing control signals which are used by the control circuits 22 in controlling the operation of the effecters 24, and hence the operation of the engine. It will be understood that, if desired, the control circuits 22 and sensor circuits 26 in each lane can be combined into single circuits that provide a simplified single loop control arrangement within each lane of the LRU.
The point to point distributed arrangement of the present invention has the additional benefit of providing enhanced fault management capabilities. The occurrence of electrical/electronic failure conditions, such as an open circuit or a short circuit fault, in the control unit 10, the individual nodes 20, the individual sensors and/or effectors or the associated harnesses 16, 18 and sub-harnesses 21b can be readily detected, isolated and accommodated with minimal disruption to the ability of the control arrangement to perform its desired functionality.
Further, the use of point to point connections between the control unit 10 and the individual nodes 20 ensures that the usage of the available communications bandwidth is optimised, hence providing for improved data transmission rates.
Another benefit is that LSP functionality can be incorporated into the design of each individual node 20 in the form of a LSP MCM 42 (
Furthermore, it is recognised that with the increasing use of composite materials in modern aerospace engines, the energy sink available to provide adequate protection for the increasing number of micro-electronic devices in engine mounted safety critical systems is diminishing. Hence the need to provide a distributed system with individual nodes having integrated LSP functionality.
Although
The control and sensor circuits 22, 26 or combination thereof are preferably incorporated into multi-chip modules (MCMs) 32. Similarly, MCMs may be used to provide LSP circuitry, and in the serial data line and power line management circuits, and in the control unit 10. Each MCM 32, as illustrated in
The processing function 36 conveniently makes use of HTSOI wafer technology to provide state machines capable of operating reliably at high temperatures, as occur in aircraft engine operating environments. Such SOI components differ from conventional silicon based devices in that the silicon junction is located above an electrical insulator. The insulator materials used include silicon dioxide and sapphire, sapphire being used in radiation sensitive applications and silicon dioxide being preferred where improved performance is required.
The MCM 32 including HTSOI components is hermetically sealed in a nitrogen environment within a housing 38. The multilayered substrate 34 of the MCM 32 conveniently includes, for example, fourteen layers and has, for example, embedded tungsten tracks. The substrate is preferably double-sided. Matched metal wire bonds, of short length, are used to provide electrical connections within the MCM 32. Such a device is, as described hereinbefore, particularly suitable for use in high temperature environments. Further, the operating characteristics and abilities of the MCM 32 to withstand adverse operating conditions, in particular the high operating temperatures, can be derived, thereby allowing planned maintenance or replacement thereof to be undertaken as the likelihood of failure and conditions causing failure, hereinbefore referred to as the Physics of Failure, are well understood. Conveniently each node 20 incorporates a temperature sensor, the output of which can be used in a suitable prognosis scheme/algorithm for each MCM 32, which enables determination of when to replace one or more of the MCMs 32 before failure occurs. It can also be used to monitor any drift associated with corresponding node sensor outputs and hence be used to facilitate the re-calibration of these sensor outputs by the processing function incorporated into the corresponding MCM 32.
As outlined hereinbefore, the MCMs 32 are configurable for use in a range of functions within the control arrangement. One advantage of the use of such modules is that modifications can be made to the control arrangement without having to replace the entire control unit 10, but rather just one or more of the MCMs 32 can be replaced. Further, maintenance operations may be quicker and easier to perform, and the replacement of obsolete components can be achieved relatively easily. As modifications can be made by simply replacing or reconfiguring one or more of the MCMs 32, it may be possible to introduce modifications to the control arrangement in a timely manner without having to seek repeated approval or certification for each changed component. Further, tailoring of the control arrangement to suit specific applications is possible. In order to accommodate changes to the control arrangement, it may be desirable to incorporate additional harness channels in the control unit 10 and/or nodes 20 so as to allow expansion of the number of nodes 20 and/or sensors in order to meet future application requirements.
The MCMs 32 are of compact form, the double sided nature thereof enhancing the compactness, and the sealing of the components thereof in a nitrogen environment enables the MCMs 32 to remain operative over an extended period of time, at both high and low temperature conditions.
It will be appreciated that a large number of modifications and alterations to the arrangement described hereinbefore are possible without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
0711922.5 | Jun 2007 | GB | national |