The present invention relates generally to control valves, and more particularly to, control ball valves for subsea operations.
Conventional valve designs for use in subsea control modules include soft or metal seal poppet and metal shear seal valve designs. Valves based upon these designs have been employed to control the flow of control fluids to hydraulic actuators. Control fluids have typically been water-based fluids. A poppet valve design tends to be employed in applications for which replacement of the valve during the application is acceptable. Poppet valves are also used in low cost applications and/or applications having low flow rates including pilot sections of subsea control valves. Poppet valves have conventionally been used with shallow water subsea blowout preventer (“BOP”) control systems.
Another valve design is a metal shear seal valve. Metal shear seal valves have also been used in applications requiring higher performance and/or low and high flow rates. Metal shear seal valve designs have been commonly used in deepwater BOP control systems and production control systems (“PCS”). BOP systems may require high flow rate valves, whereas PCS systems generally require low flow rate valves. Metal shear seal valves have been problematic because they are susceptible to sea water corrosion and gauling, and they exhibit low reliability.
Both metal seal poppet and metal shear seal valve applications, including PCS applications, may include one or more valves having a pilot valve to operate the main valve stage between the open and closed states or positions of the valves. The pilot valve is usually small in size and flow area. The pilot valve typically requires a very clean control fluid, for example, an NAS 1638 Class 6 or better. If the system fluid is not clean, the pilot valves may become clogged, and consequently, may fail. Pilot valves may also fail due to corrosion that may be induced by sea water contamination. As a result, it may be necessary to continually maintain and monitor fluid cleanliness in the presence of variable operation conditions. Thus, pilot valves may be an unreliable component in a subsea control system and, therefore they may be problematic for equipment suppliers and customers.
Besides fluid cleanliness, another issue in control valve design, especially in subsea applications, is power consumption. Many valves, whether they are slab gate valves, poppet valves, or metal shear sealing valves, require a power source with sufficient energy to change the valve from an open state to a closed state. Subsea control valves that require a low energy source are desirable for system designs because the amount of power required to be delivered is reduced.
In one aspect, the present invention is directed to a control ball valve disposed in a flow path coupled to a subsea assembly. The control ball valve includes a ball having an outer surface, at least a portion of which is spherically-shaped, and a channel that is part of the flow path. The control ball valve also includes a drive trunion connected to the ball that rotates the ball between a first position where the channel is aligned with the flow path and a second position where the flow path is not aligned with the flow path. The control ball valve also includes a seat having a sealing surface that mates with the spherically-shaped portion of the outer surface of the ball to form a seal and a carrier seat into which the sealing seat is placed. A spring is also provided, which is disposed within the carrier seat and acts on the sealing seat to force the sealing seat into engagement with the spherically-shaped portion of the ball. The control ball valve further includes an o-ring disposed between the sealing seat and the carrier seat and an o-ring disposed between the carrier seat and a body of the control ball valve.
The control ball valve also includes a ball assembly carrier and a thrust bearing disposed between the drive trunion and the ball assembly carrier that facilitates rotation of the drive trunion relative to the ball assembly carrier. In one embodiment, a rotary solenoid connected to the drive trunion rotates the drive trunion. In another embodiment, an ROV adapter is connected to the drive trunion which enables an ROV to engage the adapter and rotate the drive trunion. In yet another embodiment, an adapter is connected to the drive trunion which is capable of being attached to a manually operated device that can rotate the drive trunion.
In another aspect, the present invention is directed to a control ball valve that includes a first ball having an outer surface, at least a portion of which is spherically-shaped and a channel that is part of the flow path, the first ball having a first position where the channel is aligned with the flow path and a second position where the channel is not aligned with the flow path and a second ball having an outer surface, at least a portion of which is spherically-shaped and a channel that is part of the flow path, the second ball having a first position where the channel is aligned with the flow path and a second position where the channel is not aligned with the flow path. In one embodiment of this aspect of the invention, the control ball valve further includes a drive trunion connected to the first ball and the second ball so that as the trunion rotates it rotates the first ball between its first position and its second position and rotates the second ball between its first position and its second position, wherein when the first ball is in the first position the second ball is in the second position. In another embodiment of this aspect of the invention, the first and second balls are driven independently by first and second rotary solenoids, respectively. The control ball valve may further include an actuator connected to the flow path. In this embodiment, when the first ball is in the first position and the second ball is in the second position pressurized fluid is supplied to the actuator through the first ball and vented through the second ball.
In the second aspect of the present invention, the control ball valve further includes a first seat having a sealing surface that mates with the spherically-shaped portion of the outer surface of the first ball to form a seal and a second seat having a sealing surface that mates with the spherically-shaped portion of the outer surface of the second ball to form a seal. A first carrier seat is also provided into which the first sealing seat is placed and a second carrier seat is provided into which the second sealing seat in placed. The control ball valve also includes a spring, which is disposed within the second carrier seat and acts on the second sealing seat to force the second sealing seat into engagement with the spherically-shaped portion of the second ball. The drive trunion can be rotated either by a rotary solenoid, an ROV, using a manually-operated device or other similar mechanism. The control ball valve may also include an o-ring disposed between the first sealing seat the first carrier seat, an o-ring disposed between the first carrier seat and a body of the control ball valve, an o-ring disposed between the second sealing seat and the second carrier seat, and an o-ring disposed between the second carrier seat and a ball of the control valve.
Another embodiment of the present invention is a method of testing for a leak in a subsea control valve assembly. The subsea control valve assembly may comprise a first valve, a second valve, an actuator, and a flow path. Each valve includes an open and a closed state. Each valve includes an upstream and downstream side. The upstream side of the first valve may be coupled to a pressure source, and the downstream side of the second valve may be coupled to a vent. The flow path may couple the actuator, the downstream side of the first valve, and the upstream side of the second valve. The method may comprise the steps of placing the first valve in the open state, placing the second valve in the closed state, applying pressure to the first valve and thereby causing actuator to open placing the first valve in the second state, and monitoring pressure in the flow path to test for a leak.
Another embodiment of the present invention is a method of flushing a subsea control valve assembly. The subsea control valve assembly may comprise a first valve and a second valve, an actuator, and a flow path. Each valve includes an open and a closed state. Each valve includes an upstream and downstream side. The upstream side of the first valve may be coupled to a pressure source, and the downstream side of the second valve may be coupled to a vent. The flow path may couple the actuator, the downstream side of the first valve, and the upstream side of the second valve. The method may comprise the steps of placing the first valve in the open state, placing the second valve in the open state, and applying hydraulic fluid to the first valve.
A more complete understanding of the present disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings wherein:
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, as the invention may admit to other equally effective embodiments.
The details of the present invention will now be described with reference to the figures. One example of a control valve according to the present invention is control ball valve 100 shown in
A sealing surface of the upstream sealing seat 125 mates with a spherical portion of ball 135 to create a seal. Depending on the sealing configuration, a seal may be formed at the interface between ball 135 and upstream sealing seat 125 in response to an application of pressure to the ball or to the seat. Control ball valve 100 is depicted in the upstream sealing configuration. A valve is characterized as being in the upstream sealing configuration if pressure applied to the seat side of the ball creates a seal between the ball and seat interface. In other words, pressure applied to upstream sealing seat 125 causes its surface to mate with a portion of the surface of ball 135. Ball 135 of control valve 100 is depicted in the open state in
Ball 135 shown in
One of ordinary skill in the art with the benefit of this disclosure will recognize that ball 135 may include more than one channel for hydraulic fluid flow. In another embodiment, ball 135 may include three channels equally spaced around the sphere. The channels may intersect at the center point of ball 135, with one end of each channel being the center point of the sphere and the other end of the channel exiting the surface of the ball 135. Furthermore, each of the channels may be centered about an axis, and the three axes may intersect in approximately a planar region. In this case, a rotation of 120 degrees maintains the open or closed state of ball 135. And a rotation of 60 degrees would change the state of ball 135 from an open to a closed state, or vice versa. In another embodiment, ball 135 may include other channel configurations.
An enlarged view of a portion of control valve 100 is shown in
A control valve 200 having a downstream sealing configuration is shown in
An enlarged view of a portion of control valve 200 is shown in
Control valves may also be configured with a bi-directional sealing seat assembly as shown in
An enlarged view of part of control valve 300 is shown in
Another example of a control ball valve includes a pair of balls and seats comprising a three way valve. In one embodiment, the balls are actuated by a common actuator. The two balls may be placed in opposite states, e.g., one ball is in the open state and the other ball is in the closed state. The actuator may undergo intermittent rotation in a single direction or undergo incremental reverse rotation to achieve a change in the state of the 3-way valve.
Control ball valve 400 also includes upstream carrier seats 420 and 421, upstream sealing seats 425 and 440, and spring 415. The interface between ball 435 and upstream sealing seat 425 of control valve 400 shown in
One embodiment of the operation of a three way control valve is shown in
One of ordinary skill in the art with the benefit of this disclosure will recognize that additional balls may be added to the system shown in
In another embodiment, a pair of two-state, two way valves may be connected as shown in
Finally,
Although the previous embodiments have used an electric solenoid, one skilled in the art with the benefit of this disclosure will recognize that the states of a control valve may be changed by other mechanisms.
As shown in
As previously discussed, control valves, including control ball valves, typically may control a variety of subsea operators. In the embodiment depicted in
In the embodiment shown in
Some embodiments of control valves according to the present invention, including control ball valves, may be implemented with a solenoid having a small electrical source. These types of devices may be sufficient to change the state of a control ball valve in one step. In some embodiments, however, a solenoid that produces small incremental rotation on the control ball valve may be used. By reducing the amount of movement produced by the solenoid on the ball, e.g, a solenoid effects a 10 degree movement rather than a 30 degree movement per step, the amount of energy consumed by the solenoid is reduced. Consequently, an electrical source having low power may be used in a control ball valve according to the present invention, thereby resulting in energy conservation.
In one embodiment, the control ball valve is operated in steps by an actuator. Each step contributes to the total of 90 degrees that may be required in one embodiment to change the valve from its open to closed state. The ball may rotate in one direction (e.g., clockwise or counterclockwise). Furthermore, the metal materials are less susceptible to corrosion, due in part, to the inclusion of the valve in a control pod. Additionally, the size of the ball valve flow path may be modified as necessary for various applications. In general, however, the control ball valve according to the present invention may be larger than conventional valve designs.
Conventional valves, including control valves, typically include a small orifice. Because particles in the hydraulic fluid may lead to orifice clogging, these types of valves may require a fluid having a minimum desired cleanliness. For example, some valves may require, at a minimum, a class 6 fluid. A control ball valve according to the present invention does not include a small orifice that may become clogged in the presence of contamination in the hydraulic fluid. Specifically, the ball valve does not require a pilot valve and is not required to operate on NAS 1638 Class 6 clean fluid. Consequently, the cleanliness of the hydraulic fluid need not be as stringent as that for a conventional valve with a small orifice. In one embodiment, the hydraulic fluid may include particles that are of a much larger size than class 6. In another embodiment, a control ball valve of the present invention may be designed to work with a fluid having a cleanliness ranging from about Class 12 to about Class 7.
The invention, therefore, is well adapted to carry out the objects and to attain the ends and advantages mentioned, as well as others inherent therein. While the invention has been depicted, described and is defined by reference to exemplary embodiments of the invention, such references do not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts and having the benefit of this disclosure. For example, an electric motor may be used in place of a solenoid. Additionally, the control valves may encompass valves other than control ball valves. Furthermore, the control valves need not be limited to subsea applications but may be used in land-based applications. Moreover, the valves of the present invention are not limited to control valves, but may be any type of ball valve. The depicted and described embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.
This application claims the benefit of U.S. Provisional Application No. 60/567,261, filed Apr. 30, 2004, which is incorporated by reference herein for all purposes. This application is also a divisional patent application of commonly-owned U.S. patent application Ser. No. 11/114,500, filed Apr. 26, 2005, entitled “Control Ball Valve,” by Alfred Moore Williams, et al., which is incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
60567261 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11114500 | Apr 2005 | US |
Child | 11741459 | Apr 2007 | US |