This invention relates to an alternating current (AC) relay switch, especially to a relay switch in which a diode and a mechanical contact switch are connected in series to prevent electric arcs generated at a contact of an AC switch when the AC switch is closed or opened, as well as a relay drive circuit and a relay control method, which are classified to international classification Nos. H01H9154 and H01H9/56.
An ideal AC relay switch completes connection or disconnection of its contact at the moment of a zero-crossing point of current. However, due to the time for the movement process of a mechanical contact, a mechanical contact switch cannot be closed or opened at the zero-crossing point theoretically; especially under circumstances of high voltages and high currents, severe sparking and arc discharge phenomenon occur particularly when inductive and capacitive loads are switched on and off, leading to a shortened service life of the switch contact and a potential surge current or voltage harmful to the power grid. Considering that it is impossible for AC relay switches to close or open at the zero-crossing point of current, engineers have attempted to find a way of eliminating the arc discharge at the switch contact from the time when the AC switches were put into use. The emergency of a Silicon Controlled Rectifier (SCR) enables an electronic AC switch which may be closed or opened at a zero-crossing point of current. Nevertheless, due to power consumption and cost problems, the AC switch adopting the SCR cannot be practical and reliable. Meanwhile, numerous researches have performed researches on a low-power-consumption and low-cost composite switch in which an SCR and a relay contact are connected in parallel. However, the SCR is defective for a possible erroneous turning on in the case of high dv/dt and a difficulty in turning off in the case of high di/dt, the SCR composite switch has not been applied practically.
US patents Nos. U.S. Pat. No. 3,223,888 and U.S. Pat. No. 3,284,684 and a Chinese patent application No. 01111050.3 disclose a way of protecting a main relay contact by using a diode, that is, a switch with a mechanical breakpoint upon opening of the switch, where a diode ensures that a contact of the primary switch is applied with merely a forward voltage of the diode at the moment when the contact of the primary switch is connected or disconnected. However, the circuits disclosed in these patents have strict requirements for contact travel time (i.e. duration from the time when the actuation of the contact begins to the time when the actuation of the contact fully stops) of both the secondary relay and the primary relay. For resistive and inductive loads, the switch contact should be connected or disconnected within ½ of an AC cycle; for a capacitive load, it is required that the travel time of the relay contact is less than ¼ of the AC cycle. That is, in the case of 50 Hz AC current, the travel time of the contact is less than 10 mS for the resistive and inductive loads and is less than 5 mS for the capacitive load. In the case of 60 Hz AC current, the desired travel time of the contact is even shorter, and cannot be achieved by general switch relay contacts. Moreover, with the increase of use time of the relay, the contact travel time varies and is prolonged. The existing relays cannot meet the requirements for the switch contact protection by the serial connection between a diode and an auxiliary relay contact as disclosed in the above patents. Therefore, the above patents do not mention which relays are applicable to fulfill the contact protection function, which is also the reason why the circuit of the switch with contact protection based on a diode has not been applied after being proposed more than half a century ago.
With regard to an AC switch relay, jitter sparking takes places at a contact of the AC switch relay when the contact is connected, and arc discharging takes place when the contact is disconnected, while the arc extinguishes at the zero-crossing point of the AC current. The speed of the actuation of the contact is required to ensure that the arc will not be reignited after extinguishing, thus the travel time of the contact of the AC switch relay is required to be short enough. Because jitter happens to the relay contact when the relay contact is connected, damping is generally enhanced in the mechanical system of the relay in order to decrease the number of jitters of the contact. For the purpose of shortening the travel time of the relay contact, a drive current of a relay coil is increased or the damping of the mechanical system is decreased; but the increase of the drive current of the relay coil or the decrease of the damping of the mechanical system makes the jitter upon the connection of the contact more severe, thereby degrading performances of connecting the contact and shortening the mechanical service life of the relay. Thus, it is rather difficult for the AC switch relay to improve its contact actuation speed on the premise that its mechanical service life is guaranteed.
The invention aims to provide a way of implementing a composite switch with contact protection based on a contact, especially a control circuit and a control method for improving the actuation speed of a relay contact and reducing travel time of the relay contact, which can shorten the travel time of the relay contact by more than 2 times. Especially, a control circuit and a control method for a magnetic latching relay are provided.
The aim of the invention is realized by the following scheme: a composite switch with contact protection based on a diode, comprising a primary relay contact protection circuit, a primary relay contact and a relay control circuit, wherein the primary relay contact protection circuit, which is constituted by an auxiliary relay contact K1 and a diode D connected in series, is connected with the primary relay contact K in parallel, a current capacity of the auxiliary relay contact K1 is 1/10 to 1/1000 of that of the primary relay contact K, and when a primary relay is closed or opened, a current flowing through a relay coil varies according to a predefined rule to shorten contact travel time.
Furthermore, in the composite switch with contact protection based on a diode, the relay control circuit is powered by a capacitance step-down rectifier power supply.
Furthermore, in the composite switch with contact protection based on a diode, a plurality of auxiliary relay contacts are connected in series to resolve the problem of an insufficient withstand voltage of a single relay contact, and a plurality of primary relay contacts are connected in parallel to resolve the problem of an insufficient current capacity of a single relay contact.
Furthermore, the relay control circuit is formed by a singlechip, an auxiliary relay drive circuit and a primary relay drive circuit, a drive coil L for the primary relay is connected in parallel with a capacitor C and is connected between output terminals 1 and 2 of an H-bridge constituted by four transistors T3, T4, T5 and T6; wherein two output terminals 3 and 4 of the singlechip are configured to control a width and a polarity of an output voltage pulse from the H-bridge by means of an inverter constituted by transistors T1 and T2; during an actuation of the primary relay contact, a voltage provided by the relay control circuit to the drive coil L for the primary relay is a PWM pulse signal, and a current flowing through the drive coil L is changing.
In the composite switch with contact protection based on a diode, a drive coil L1 for an auxiliary relay is connected to a capacitor C6 via a transistor T11, and when the auxiliary relay contact is actuated, the transistor T11 is turned on under the control of the singlechip, the capacitor C6 discharges to the drive coil through the transistor T11, a current flowing through the drive coil L1 decreases in a logarithmic manner, and when the actuation of the relay contact stops, the singlechip is configured to turn off the transistor T11 and turn on a transistor T10 to charge the capacitor C6.
In the composite switch with contact protection based on a diode, the auxiliary relay and the primary relay are magnetic latching relays.
In the composite switch with contact protection based on a diode, the relay control circuit includes a current measuring circuit and a voltage measuring circuit.
The relay control methods includes: Step 1) to close the relay, the relay control circuit provides a changing current, which has an initial value that is 2-20 times greater than a rated operational current, to the drive coil for the relay, so that a movable contact of the relay is rapidly moved to a stationary contact, subsequently the current flowing through the drive coil for the relay is decreased constantly until zero, and the current to the drive coil is maintained at the level of a closure holding current of the relay after the movable contact contacts the stationary contact; and Step 2) to open the relay, the relay control circuit provides a changing current, which has an initial value that is 2-20 times greater than the rated operational current, to the drive coil for the relay, so that the movable contact of the relay is rapidly moved apart from the stationary contact, subsequently the current flowing through the drive coil for the relay is decreased constantly, and the current to the drive coil become zero after the movable contact arrives at its normally open position.
The present invention is beneficial in that: the actuation speed of the relay contact is improved and a stress received by the contact when the actuation of the relay contact stops is reduced, so as to reduce jitters of the contact, shorten the time for the actuation of the relay contact, and significantly prolong the mechanical service life of the relay. In addition, with the control circuit and the control methods for the relay provided by this invention, it is guaranteed that the contacts of both the auxiliary relay and the primary relay can be connected within ¼ of one AC cycle as required by the diode-based contact protection circuit, so that the switch can be closed or opened at the time of a zero-crossing point of current, thereby actually achieving electrical arc extinguishing of an AC switch to substantially prolong the electrical service life of the switch.
The invention will be further described in detail in combination with the drawings, in which:
As shown in
However, in the case of a switch with a current capacity of hundreds of amperes, it is unpractical to connect hundreds of relays with a low current capacity in parallel. In order to shorten the contact travel time of a relay with a high current capacity, a method to reduce the contact travel time of a relay is put forward in the invention. A single-pole single-throw relay has one movable contact and one stationary contact. To close the relay, the movable contact is moved towards the stationary contact against a spring force, and to open the relay, the movable contact is moved apart from the stationary contact by the spring force. Apparently, an increase of the drive current of the relay coil can enhance the force applied to the movable contact so as to accelerate the speed of connecting the contact. However, if the drive current is too large, the contact is severely impacted at the end of its actuation, and the service life of the relay is shortened. The solution provided in the invention lies in that: a large force is applied to the movable contact of the relay at the initial stage of the close action of the relay contact so that the movable contact begins its movement at an improved acceleration, then the force applied to the movable contact is decreased after a period of the accelerated movement so that the movable contact is decelerated, and the velocity of the moveable contact becomes zero when the movable contact arrives at the stationary contact. After the movable and stationary contacts contact with each other, the force applied to the movable contact is increased to be greater than the spring restoring force applied to the movable contact so as to reduce the contact resistance between the contacts. To disconnect the contacts of the relay, a current is applied to the drive coil so that the movable contact is applied with both the spring restoring force and an electromagnetic force from the drive coil, so that the movable contact can depart from the stationary contact at a more rapid speed; when the movable contact nearly arrives at its normally open position, a reverse current is applied to the drive coil to decelerate the movable contact, so that the speed of the movable contact is zero when the movable contact eventually arrives at its normally open position. In this way, by changing the force applied to the contact of the relay during the movement of the contact, the contact travel time of the relay is shortened without influencing the service life of the relay.
Furthermore, the primary relay of the composite switch with contact protection based on a diode described above can be embodied by a magnetic latching relay. In the magnetic latching relay, the drive coil needs not to be electrified any more after the actuation of the relay is completed, which is beneficial for energy saving and cost reduction of driving power. The magnetic latching relay may be driven by a single coil or double coils. The magnetic latching relay driven by a single coil may adopt a circuit shown in
Furthermore, the relay control circuit for the composite switch with contact protection based on a diode includes a current measuring circuit and a voltage measuring circuit.
The relay control method includes the following steps.
Step 1): to close the relay, the relay control circuit provides an initial drive current, which is 2-20 times greater than the rated operational current, to the drive coil for the relay, so that the movable contact of the relay is rapidly moved to the stationary contact, subsequently the drive current is decreased constantly until zero, and the drive current to the drive coil is maintained at the level of a closure holding current of the relay after the movable contact contacts the stationary contact.
Step 2): to open the relay, the relay control circuit provides an initial drive current, which is 2-20 times greater than the rated operational current, to the drive coil for the relay, so that the movable contact of the relay is rapidly moved apart from the stationary contact, subsequently the drive current is decreased constantly, and the drive current becomes zero when the movable contact arrives at its normally open position.
The basic concept of reducing the contact travel time of the relay disclosed in the invention lies in: moving a contact at a rather fast speed at the beginning of a travel of the contact, and subsequently decelerating the contact, so that the movement speed of the contact is substantially reduced to zero when the actuation of the contact stops. In this way, not only the contact travel time is shortened, but jitters and impacts caused when the contact arrives at the end of its travel can be reduced. An implementation for this is that: when the contact of the relay is actuated, the current provided to the drive coil for the relay is a varying current which has a large initial value and decreases subsequently. For different relays, different current curves give rise to different contact travel speed trajectory. Therefore, a new concept is supposed for researches on shortening the travel time of the relay, and a reform of relay designs is introduced. Although some examples of the drive circuit for the drive coil for the relay have been provided herein, other circuits can be obtained from modifying the control circuits for controlling the current flowing through the relay drive coil as described in the invention, but will not be enumerated in an exhausting way.
The composite switch with contact protection based on a diode is closed or opened at a zero-crossing point of current, employs a capacitance step-down power supply, singlechip control, and over-current and overvoltage protection, so that the AC composite switch has a smaller volume, more intellectualized protection functions and a remote control function, thereby obtaining a real intelligent switch, and leading to a revolution of AC power switches.
The present invention is not limited to the optimal embodiments described as above, and other products and methods of various forms may be derived by any individual under the enlightenment of the present invention. Regardless of any changes in shape or structure, the other products and methods with the same or similar technical solutions as the present invention fall within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201310265141.1 | Jun 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/080785 | 6/26/2014 | WO | 00 |