1. Field of the Invention
The present invention relates to a ceiling fan and more particularly, to a control circuitry of a ceiling fan for controlling rotation direction and speed thereof.
2. Description of the Related Art
The primary objective of the present invention is to provide a control circuitry of a ceiling fan, which may control a rotation direction and speed of the ceiling fan with fewer assembling and repairing problems.
To achieve the objective of the present invention, a control circuitry of a ceiling fan for controlling speed and direction of rotation of the ceiling fan includes a power switch connected to an AC power, an electromagnetic interference reduction circuit connected to the power switch, a power frequency detecting circuit connected to the electromagnetic interference reduction circuit to transfer a sin wave signal to a square wave, a central processor connected to the power frequency detecting circuit to receive the square waves from the power frequency detecting circuit, a motor driving circuit connected to the central processor and a brushless motor, a rectification and filter circuit connected to the electromagnetic interference reduction circuit and the motor driving circuit, and a power supply circuit connected to the power frequency detecting circuit and the central processor to supply the central processor power. When the power switch is operated, it will generate an interruption between the square waves, and the central processor will sense these interruptions and determine which are commands for speed change and which are commands for direction change according to how long of the interruptions to control the brushless motor through the motor driving circuit.
A power switch 20 is connected to an AC power (not shown).
An electromagnetic interference (EMI) reduction circuit 21 is connected to the power switch 20.
A power frequency detecting circuit 22 is connected to the EMI reduction circuit 21 to transfer a sin wave signal to a square wave. For example, the function of the power frequency detecting circuit 22 is set by a central processor to transfer a sin wave of AC120V, 60 Hz to a square wave of 50 Hz or 60 Hz. The power frequency detecting circuit 22 may select optoelectronic devices to get power frequency signals by isolation.
A central processor 23 is connected to the power frequency detecting circuit 22 to receive the square waves of the power frequency detecting circuit 22. The central processor 23 is provided with a control program to detect interrupted times between the square waves and provide control signals according the interrupted times.
A motor driving circuit 24 is connected to the central processor 23 and a brushless motor 25 to control the brushless motor 25 according to the control signals of the central processor 23.
A rectification and filter circuit 26 is connected to the EMI reduction circuit 21 and the motor driving circuit 24.
A power supply circuit 27 is connected to the power frequency detecting circuit 22 and the central processor 23 to supply the central processor 23 power.
In a normal operation of the control circuitry of the present invention, the central processor 23 receives the square waves from the power frequency detecting circuit 22. When the power switch 20 is operated, it will generate interruptions in the square waves, and the central processor 23 will sense them. The control program of the central processor 23 will determine which one is a command for speed change and which one is a command for direction change according to the time of the interruptions, and generate a control signal according to the very command. In the present invention, the central processor 23 determines a command for speed change when the interruption time is less than one second that the central processor 23 will control the brushless motor 25 to speed up or to slow down through the motor driving circuit 24. On the contrary, the central processor 23 will determine a command for direction change when the interruption time is greater than three seconds that the central processor 23 will cut the power of the brushless motor 25 through the motor driving circuit 24 first, and then send a reverse rotation command to the motor driving circuit 24 to drive the brushless motor 25 rotating reversely.
In the control of speed, the present invention provides a circulating control. For example, suppose that the ceiling fan has three levels of speeds, and the speed change will circulate from the first level, the second level, the third level to OFF in sequence and circulation. To keep the central processor 23 in function when the power is interrupted, the power supply circuit 27 is provided with a capacity (not shown) to supply the central processor 23 power. But when the interruption time is too long that the capacity has not enough power, the central processor 23 will determine the power is off, and will reboot when the power is connected.
In conclusion, the control circuitry of the present invention only provides the power switch to be operated for controlling three functions, including speed control, direction control, and power ON/OFF, of the ceiling fan rather than two switches to control the functions as the conventional control circuitry does. The present invention has fewer problems in assembling and has a lower cost also.
Although a particular embodiment of the invention has been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
97126845 | Jul 2008 | TW | national |