The present invention relates generally to batteries and, more particularly, to means for minimizing the flammability risks associated with metal-air cells while increasing metal-air battery pack efficiency through utilization of battery pack effluent.
A metal-air cell is a type of battery that utilizes the same energy storage principles as a more conventional cell such as a lithium ion, nickel metal hydride, nickel cadmium, or other cell type. Unlike such conventional cells, however, a metal-air cell utilizes oxygen as one of the electrodes, typically passing the oxygen through a porous metal electrode. The exact nature of the reaction that occurs in a metal-air battery depends upon the metal used in the anode and the composition of the electrolyte. Exemplary metals used in the construction of the anode include zinc, aluminum, magnesium, iron, lithium and vanadium. The cathode in such cells is typically fabricated from a porous structure with the necessary catalytic properties for the oxygen reaction. A suitable electrolyte, such as potassium hydroxide in the case of a zinc-air battery, provides the necessary ionic conductivity between the electrodes while a separator prevents short circuits between the battery electrodes.
Due to the use of oxygen as one of the reactants, metal-air cells have some rather unique properties. For example, since the oxygen does not need to be packaged within the cell, a metal-air cell typically exhibits a much higher capacity-to-volume, or capacity-to-weight, ratio than other cell types making them an ideal candidate for weight sensitive applications or those requiring high energy densities.
Regardless of the composition and mechanical nature of the elements used in a metal-air battery, oxygen is required for the reaction to take place. Therefore during the discharge cycle, the reaction rate of the cell may be varied by controlling the flow of oxygen into the cell. During the charging cycle, the metal oxides or ions are reduced to form the metal comprising the anode and oxygen is emitted by the cell.
While metal-air cells offer a number of advantages over a conventional rechargeable battery, most notably their extremely high energy density, such cells also have a number of drawbacks. For example, care must be taken to insure a sufficient supply of air to the cells during discharge cycles, and means for handling the oxygen emitted from the cells during the charge cycles, both of these issues becoming increasingly important as the number of metal-air cells and/or the size of the cells increase to meet the demands of larger applications.
Accordingly, while metal-air cells offer some intriguing benefits, such as their high energy densities, their shortcomings must be taken into account in order to successfully integrate the cells into a system.
The present invention provides a system and method for maintaining an ambient oxygen concentration below a preset concentration while charging a metal-air battery pack, the system utilizing an on-board means for collecting and storing the oxygen-rich effluent generated during charging.
In at least one embodiment of the invention, a battery pack control system is disclosed that includes a battery pack with at least one metal-air cell, at least one oxygen sensor, a gas tank, a compressor, an exhaust port and a system controller. The system controller is configured to determine the oxygen concentration level and then pass the oxygen-rich effluent generated during battery pack charging through the exhaust port when the oxygen concentration is below a preset level, and pass the oxygen-rich effluent to the compressor and gas tank for storage when the oxygen concentration is greater than the preset level. The system may also include a state-of-charge (SOC) detection system, wherein the system controller terminates operation of the charging system when the monitored SOC reaches a target SOC. The at least one oxygen sensor may be mounted at one or more locations including (i) proximate to the exhaust port, and (ii) mounted to the vehicle such that external vehicle environmental conditions may be monitored. The system controller may be configured to pass the oxygen-rich effluent through the exhaust port upon initiation of battery pack charging. The system controller may be configured to pass the oxygen-rich effluent to the compressor and tank upon initiation of battery pack charging, and to pass the oxygen-rich effluent through the exhaust port when the oxygen concentration is less than the preset level and the tank is full. The system controller may be configured to pass the oxygen-rich stored in the tank to the battery pack inlet during the battery pack discharge cycle. The system may also include a heat exchanger interposed between the battery pack and the compressor.
In at least one other embodiment of the invention, a method of operating a metal-air battery pack is provided, the method comprising the steps of coupling a metal-air battery pack to an external charging power source via a battery charging system; coupling a battery pack outlet to a gas tank inlet, where a compressor is interposed between the battery pack outlet and the gas tank inlet; compressing oxygen-rich effluent passing through the battery pack outlet with the compressor; storing the oxygen-rich effluent compressed by the compressor in the gas tank; monitoring the fill level of the gas tank; comparing the fill level to a maximum tank level; coupling the battery pack outlet to an ambient air exhaust system when the fill level reaches the maximum tank level; and decoupling the battery pack outlet from the tank inlet and terminating the compressing and storing steps when the fill level reaches the maximum tank level. The method may further comprise the steps of determining the present battery pack state-of-charge (SOC); comparing the present SOC to a target SOC; and terminating charging when the present SOC reaches or exceeds the target SOC. The method may further comprise the steps of determining the oxygen concentration level within a first region; comparing the oxygen concentration level to a preset level; suspending charging if the oxygen concentration exceeds the preset level; and resuming charging when the oxygen concentration falls below the preset level. The method may further comprise the steps of decoupling the battery pack outlet from the ambient air exhaust system and opening an ambient air battery pack inlet during a battery pack discharge cycle. The method may further comprise the steps of decoupling the battery pack outlet from the ambient air exhaust system, coupling the tank outlet to the battery pack inlet, and transferring oxygen-rich effluent from the gas tank to the battery pack during a battery pack discharge cycle.
In at least one other embodiment of the invention, a method of operating a metal-air battery pack is provided, the method comprising the steps of coupling a metal-air battery pack to an external charging power source via a battery charging system; coupling a battery pack outlet to an ambient air exhaust system; exhausting oxygen-rich effluent generated during battery pack charging through the ambient air exhaust system; determining the oxygen concentration level within a first region; comparing the oxygen concentration level to a preset level; decoupling the battery pack outlet from the ambient air exhaust system and coupling the battery pack outlet to the tank inlet of a gas tank mounted within the vehicle if the monitored oxygen concentration exceeds the preset level; and compressing and storing the oxygen-rich effluent in the gas tank. The method may further comprise the steps of comparing the oxygen concentration level to a second preset level, wherein if the oxygen concentration falls below the second preset level, the method further comprises the steps of decoupling the battery pack outlet from the tank inlet; terminating the compression and storage steps; coupling the battery pack outlet to the ambient air exhaust system; and exhausting the oxygen-rich effluent through the ambient air exhaust system. The second preset level may be less than or equal to the preset oxygen concentration level. The method may further comprise the steps of determining the present battery pack state-of-charge (SOC); comparing the present SOC to a target SOC; and terminating charging when the present SOC reaches or exceeds the target SOC. During a battery pack discharge cycle, the method may further comprise the steps of decoupling the battery pack outlet from the ambient air exhaust system, decoupling the battery pack outlet from the tank inlet, and opening an ambient air battery pack inlet. During a battery pack discharge cycle, the method may further comprise the steps of decoupling the battery pack outlet from the ambient air exhaust system, decoupling the battery pack outlet from the tank inlet, coupling a tank outlet to a battery pack inlet, and transferring oxygen-rich effluent stored in the tank to the battery pack inlet.
A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and the drawings.
In the following text, the terms “battery”, “cell”, and “battery cell” may be used interchangeably. The term “battery pack” as used herein refers to one or more individual batteries that are electrically interconnected to achieve the desired voltage and capacity for a particular application, the individual batteries typically contained within a single piece or multi-piece housing. The term “electric vehicle” as used herein refers to an all-electric vehicle, also referred to as an EV, a plug-in hybrid vehicle, also referred to as a PHEV, or a hybrid vehicle (HEV), and/or a hybrid vehicle utilizing multiple propulsion sources one of which is an electric drive system. It should be understood that identical element symbols used on multiple figures refer to the same component, or components of equal functionality. Additionally, the accompanying figures are only meant to illustrate, not limit, the scope of the invention and should not be considered to be to scale.
Given the high energy density and the large capacity-to-weight ratio offered by metal-air cells, they are well suited for use in electric vehicles, either as a stand-alone electrical power source or in conjunction with one or more other power sources, for example, a lithium ion battery pack. Regardless of whether a vehicle uses a metal-air battery pack alone or in combination with another battery pack, the size of the metal-air battery pack in either configuration is likely to be quite large. As a result, during battery charging a large amount of oxygen is expected to be generated. For example, assuming a 100 kWh metal-air battery pack, during charging such a pack will release approximately 19 cubic meters of oxygen. As a consequence, in a relatively small confined region such as a single car garage, the charging of such a battery pack can easily double the oxygen concentration from the normal concentration of 20.95% to over 40%, both concentrations being expressed relative to other compounds within the air. Accordingly, charging a large metal-air battery pack in a confined area can increase the oxygen concentration dramatically, thereby decreasing the lower explosive limit or lower flammable limit (LEL/LFL) of vapors within the confined region (e.g., gasoline used in a lawn mower stored in the garage), decreasing the autoignition temperature (AIT) of combustible materials contained within the same confined region (e.g., garage construction materials as well as various items/materials possibly stored within the garage), and similarly decreasing the flash point of liquids stored within the same confined region (e.g., cleaning supplies stored within the garage). As such it will be appreciated that care must be taken during charging to avoid reaching unsafe oxygen concentrations.
The system disclosed herein may be used to insure that charging the metal-air battery pack does not cause the oxygen concentration in the surrounding environment to increase beyond a preset limit. Additionally, the disclosed system provides a way of utilizing at least a portion of the oxygen generated during charging to enhance operation of the metal-air battery pack during the discharge cycle, improving the metal-air battery pack's power capabilities by providing it with an oxygen-rich source of air.
Battery pack 107 is comprised of metal-air cells and provides the electrical power required by motor 101 and, in some applications, required by various on-board auxiliary systems (e.g., HVAC, lights, entertainment subsystem, navigation subsystem, etc.). While the invention may be used with vehicles that utilize both a metal-air battery pack and at least one other battery pack, e.g., a lithium-ion battery pack, additional battery packs are not shown in the illustrations as they are not necessary for the operation and implementation of the present invention. Additionally, it should be understood that a vehicle may utilize multiple metal-air battery packs, for example to distribute the weight throughout the vehicle, and that the present invention is equally applicable to such configurations.
Battery pack 107 is coupled to motor 101 via a power control module 109, module 109 typically including a DC to AC converter. Power control module 109 insures that the power delivered to motor 101 has the desired voltage, current, waveform, etc. As such, power control module 109 may be comprised of passive power devices (e.g., transient filtering capacitors and/or inductors), active power devices (e.g., semiconductor and/or electromechanical switching devices, circuit protection devices, etc.), sensing devices (e.g., voltage, current, and/or power flow sensors, etc.), logic control devices, communication devices, etc.
During battery pack charging, battery pack 107 is coupled to an external power source 111 (e.g., wall socket, dedicated charging station, etc.) via a charging circuit 113. A controller 115, coupled to charger 113, controls operation of the charger, preferably controlling not only its status (on/off), but also its charge rate. Preferably controller 115 is built-in to charger 113, although it can be separate as shown. Note that charger 113 can be mounted within the vehicle as illustrated in
Battery pack 107 includes an air inlet 117 and an air outlet 119. While the air inlet and air outlet are shown as being separate in this embodiment, it will be appreciated that other configurations may be employed without departing from the invention. For example, each battery pack vent may be used as either an air inlet or an air outlet, depending upon the position (i.e., opened or closed) of the various valves associated with the vents as well as the current operational cycle of the battery pack, i.e., charge cycle or discharge cycle.
In the illustrated embodiment, valve 121 controls the air flow from battery pack 107 to the outside environment (for example, via an exhaust port) and valve 123 controls the air flow into battery pack 107 from the outside environment. Coupled via piping to both battery pack inlet 117 and outlet 119 is high pressure gas tank 125, tank 125 being coupled to inlet 117 via valve 127 and to outlet 119 via valve 129. A compressor 131 is interposed between battery pack outlet 119 and tank 125, compressor 131 preferably receiving power from the external power source 111 via charger 113 as shown. Preferably operation of valves 121, 123, 127 and 129 as well as compressor 131 are automated using a controller, e.g., controller 115. Note that while controller 115 is used in the illustrated embodiment to provide automated control, a different controller that is separate from charge controller 115 may be used to operate the oxygen control system of the invention.
In the preferred embodiment of the invention, tank 125 is too small to hold all of the oxygen-rich effluent generated by battery pack 107 during a full charge cycle. The restrictions on the size of tank 125 may be due to size and/or weight constraints imposed by the vehicle, or simply a design choice. Given the size limitations of tank 125, the presently disclosed system insures that charging the metal-air battery pack does not cause the oxygen concentration in the surrounding environment to increase beyond a preset limit. The limit used herein is a maximum oxygen concentration of 25% in air. It should be appreciated, however, that the invention may be used with other maximum oxygen concentrations, as such concentration limits may be set by regional, state or federal governments or other parties tasked with setting various safety regulations.
In order to provide the intended control over the oxygen concentration of the surrounding environment during charging, controller 115 is coupled to one or more oxygen sensors, controller 115 receiving data signals from the sensors that correspond to oxygen concentration levels. In at least one embodiment, controller 115 is coupled to an oxygen sensor 133 that is mounted in close proximity to battery pack 107, and preferably mounted in close proximity to the channel or channels where the oxygen generated during the charging cycle is emitted, or mounted in close proximity to the battery pack inlet channel or channels. In at least one embodiment, instead of an oxygen sensor 133 which is mounted proximate to the battery pack, or in combination with sensor 133, controller 115 is coupled to an oxygen sensor 135 that is mounted at some distance from the battery pack. The purpose of sensor 135 is to provide a value for the oxygen concentration that is more representative of the ambient environment, rather than the environment immediately surrounding the battery pack. Sensor 135 may be mounted within the passenger compartment, under the vehicle and exposed to the underside environment, or mounted to some other location (e.g., within a bumper, within the grill, near a body panel juncture to allow the sensor to be hidden, etc.). In addition to sensors 133 and 135, or as a replacement for one or both sensors 133 and 135, the vehicle may be coupled to an externally mounted sensor 137, sensor 137 being mounted within the garage or other charging location (e.g., a charging bay). Preferably the electrical interconnect to couple sensor 137 to controller 115 is contained within the same plug/jack arrangement that is used to couple the vehicle to the external charging station, thus simplifying coupling.
There are two primary modes of operation of the present system. In the first mode, oxygen-rich effluent generated during battery pack charging is initially used to fill tank 125. Once tank 125 is filled and the oxygen-rich effluent is passing directly into the ambient environment, the oxygen concentration monitoring and control system of the present invention is used to insure that the oxygen concentration in the ambient environment does not exceed the preset limit. In the second mode of operation, during charging the generated oxygen-rich effluent is transferred directly to the ambient environment. Whenever the oxygen concentration monitoring system of the present invention determines that the oxygen concentration is greater than desired, the oxygen-rich effluent is transferred into tank 125, thereby preventing a further rise in oxygen concentration in the ambient environment. Once the oxygen concentration level in the ambient falls below a preset value, further storage of effluent within tank 125 is deemed unnecessary and the effluent is once again allowed to pass directly into the ambient environment. Each of these modes of operation is described in detail below.
In
In
As previously noted, other inlet/outlet and piping arrangements may be used without departing from the invention. For example,
In addition to controlling the oxygen concentration within the ambient environment, e.g., parking garage or charging bay, storing the oxygen-rich effluent from metal-air battery pack 107 and then introducing the effluent, either by itself or to supplement ambient air, into the battery pack during the discharge cycle achieves several benefits. First, as the electrical resistance of a metal-air cell during discharge is determined, in part, by the partial pressure of oxygen at the cathode, increasing the oxygen concentration by utilizing stored oxygen-rich effluent as described herein leads to an increase in the partial pressure of oxygen, and thus a reduction in electrical resistance. By reducing electrical resistance, the power capability of the battery pack is increased. Second, a large metal-air battery pack, for example one sized for use with an EV, may experience reduced/depleted oxygen concentrations during the discharge cycle unless sufficient airflow is forced through the pack. Utilizing the oxygen-rich effluent stored in tank 125 reduces, if not altogether eliminates, this problem, leading to improved battery pack efficiency and power capabilities.
While the basic operation of the invention has been described, it will be appreciated that a variety of modifications may be made to further enhance performance, depending upon the particulars of the system in which the invention is implemented.
In the system illustrated in
Another system modification illustrated in
Another system modification illustrated in
Once tank 125 is full (step 1517), the system adjusts the control valves to start sending effluent into the ambient environment (step 1519). At the same time, the system terminates sending effluent to tank 125 and halts operation of compressor 131 (step 1521). The SOC of the battery pack continues to be monitored and compared to the target SOC (step 1523). As before, if the target SOC is reached (step 1525), charging is terminated (step 1527). If the target SOC has not been reached (step 1529), then the oxygen concentration is determined (step 1531), for example using one or more sensors 133, 135 or 137. The monitored oxygen concentration is compared to a preset maximum allowable level (step 1533). As long as the oxygen concentration is below the preset maximum (step 1535), charging continues (step 1537) until the SOC target is reached. If the oxygen concentration increases beyond the allowed maximum (step 1539), charging is suspended (step 1541). Once suspended, controller 115 continues to monitor the oxygen concentration (step 1543) and compare the monitored oxygen level to the preset maximum (step 1545). Once the oxygen concentration falls below the preset level (step 1547), charging resumes (step 1549).
In an alternate methodology illustrated in
If the system determines that the monitored oxygen concentration is greater than the preset level (step 1619), the system adjusts the control valves so that the effluent may be compressed and stored in tank 125 (step 1621). At the same time, the system terminates passing effluent directly to the ambient environment (step 1623). The system continues to monitor battery pack SOC and compare the monitored SOC to the SOC target (step 1625). As before, once the target SOC is reached (step 1627), charging is terminated (step 1629). If the target SOC has not yet been reached (step 1631), the system continues to monitor ambient oxygen concentration (step 1633). In step 1635 the ambient oxygen concentration may be compared to the same preset maximum allowable oxygen concentration used in step 1607. However, in the preferred embodiment and as shown in
As previously described, controller 115 may be coupled to one or more oxygen concentration sensors, the sensors being located at various locations, thus insuring that the oxygen concentration within all areas remain within the desired safety range. It will be appreciated that the oxygen concentration during charging will typically be greatest at the battery pack oxygen outlet, and will decrease with distance from the oxygen outlet. Additionally, the oxygen concentration decreases based on the volume of air into which the oxygen outlet is coupled, and based on the level of mixing that occurs with the ambient environment. Thus oxygen concentration will exceed the acceptable level quicker in a single garage of 3,750 cubic feet then in a double garage of 7,500 cubic feet. Similarly, the oxygen concentration will exceed the acceptable level quicker in a closed garage than in an open garage.
As described above with respect to sensors 133, 135 and 137, the system may monitor the oxygen concentration with multiple sensors, thus taking into account the expected oxygen concentration variations based on proximity to the battery pack oxygen outlet and the conditions of the ambient environment. In at least one embodiment of the invention, associated with each sensor is a corresponding maximum concentration level, this maximum level used in determining whether to store the battery pack effluent generated during charging or release it to the ambient environment (e.g., step 1533 in the process illustrated in
In an alternate embodiment utilizing multiple sensors, e.g., sensors 133, 135 and 137, an algorithm is used to weight the oxygen concentration level determined for each sensor. The weighted concentration value is then used in determining where to transfer the effluent. For example, the oxygen concentration level near the battery pack may be given twice the weighting as the output from a sensor 135 monitoring external vehicle concentration levels, thus insuring that even if the concentration level in the charging bay is kept to an acceptable level (for example by leaving the garage door open), the charging levels near the vehicle, which may not be subject to the same level of ambient air mixing, do not reach a dangerous level.
As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.
This application is a continuation-in-part of U.S. patent application Ser. Nos. 12/887,557, filed Sep. 22, 2010, and 13/013,852, filed Jan. 26, 2011, and claims benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/372,351, filed Aug. 10, 2010, the disclosures of which are incorporated herein by reference for any and all purposes.
Number | Date | Country | |
---|---|---|---|
61372351 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12887557 | Sep 2010 | US |
Child | 13035776 | US | |
Parent | 13013852 | Jan 2011 | US |
Child | 12887557 | US |