This disclosure relates to data processing. More particularly, but not exclusively, this disclosure relates to a system and method for controlling a plurality of endpoint devices in a digital network.
With the advent of the Internet of Things (IoT), data processing has become an ever-increasing problem. There have been a proliferation of endpoint devices that are IoT capable and Internet connectivity is already an integral feature of many devices which are remotely monitored and controlled. These devices have various applications and range from household appliances to smart vehicles, wearable devices and many others. These endpoint devices are often mobile and generally use dynamic Internet Protocol (IP) addresses that change over time, or as the device moves from one network to the next. This is particularly prevalent in mobile devices that communicate using Global System for Mobile communications (GSM), third generation (3G), fourth generation (4G), Long-Term Evolution (LTE), LTE Advanced, as well as IoT devices that utilize IoT specialized wireless communication technologies.
However, even for fixed line connections such as Asymmetric digital subscriber line (ADSL) and Fiber to the x (FTTX) connections, IP addresses assigned to IoT endpoint devices are often dynamic and change over time, for example when the device moves from one wireless or wired Internet link to the other, or when IP configuration settings of the device change for some reason. Transmission of data to these devices thus quickly becomes problematic at a larger scale, because these changing IP addresses cause a substantial server load, and immense computing power is needed to keep track of all the IoT devices. It is estimated that there are already billions of IoT endpoint devices and this number is rapidly increasing.
Firewalls in local networks further exacerbate the problem and communications that are initiated at a server side become computationally prohibitive when these vast numbers of devices need to be monitored, tracked or controlled. As result, communications between servers and IoT devices are slow and often have a high latency.
As an example, when an operator of smart vehicles intends to send firmware updates from its servers to millions of its smart vehicles, or when the operator needs to perform polling of their vehicles, this process would take hours or even days to complete, because of a bottleneck that is caused by the aforementioned problems. Long-polling is typically used, where a placeholder connection is opened in anticipation of an instruction, however this results in loss of efficacy where many instructions are required to be sent over a connection because the connection still needs to be securely established every time when a new instruction is initiated. Real-time communication between servers and IoT endpoint devices at a large scale is thus not possible, is impractical, or is prohibitively expensive with currently available technologies.
Further problems arise when the IoT devices are battery-powered, as any inefficiencies within the components of an IoT device may cause a faster depletion of the battery. IoT devices may also lose Internet connectivity for other reasons, such as when a wireless communication link is interrupted for some reason, for example while driving through a tunnel or when the endpoint device is located in an area with limited or no Internet connectivity. Alternatively, they may be mobile devices which change connection methods constantly. In these circumstances, servers may utilize unnecessary or wasteful computational power in attempts to locate offline IoT devices. When the IoT devices come back online, their IP address, firewall settings and location may have changed which increases server load even more.
Moreover, further problems arise in distributed computing devices and servers such as application delivery controllers (ADC's) or virtual servers that are not necessarily IoT devices. These devices are remotely controlled over a digital network and have the same types of problems with IP addresses that can change regularly and at large scale, for example, when a new set of more than one thousand ADC systems are redeployed with dynamic network discovery. Dynamic network discovery allows servers to be deployed without statically defining specific networking elements, but to rather have those elements be discovered and applied from a controlling server, in this case a Dynamic Host Configuration Protocol (DHCP). Similar situations exist on container platforms like Docker and Kubernetes, and in public cloud environments with non-static IPs. Keeping track of large numbers of these devices also requires a vast amount of computational resources. There are protocols and remote monitoring services currently available, however none of these known systems or methods that the applicant is aware of addresses or solves the aforementioned problems. Known protocols tend to take more time to establish a secure connection than the time that is actually needed to perform an instruction, for example when Transport Layer Security (TLS) is used. Hence, the known systems do not provide for near real-time communications with large numbers of endpoint devices, they lack scalability and are generally inefficient and unsuited for applications that require a hyper-scale.
There is accordingly scope to address the aforementioned problems and deficiencies, or at least to provide a useful alternative to the known systems and methods.
The preceding discussion is not an acknowledgment or admission that any of the material referred to was part of the common general knowledge in the art as at the priority date of the application.
In accordance with an aspect of the disclosed embodiments there is provided a computer-implemented method for controlling a plurality of endpoint devices, the method being conducted at a server computer, the method comprising:
Further features may provide for the client interface of each endpoint device to be configured, once a connection between the client interface and the server computer is lost, to automatically transmit another outbound connection request for the server computer to reconnect or re-establish the persistent data communication session.
Still further features may provide for the client interface to be configured to repetitively attempt to re-establish the persistent data communication session, for the repetitive attempts to occur at intervals of once per second, or at increasing intervals of about 1, 2, 3, 4, 5, 6, 7, 8, 9, or up to 10 seconds, and may continue to attempt to connect at 10 second intervals, or at any other suitable interval.
Yet further features may provide for the client interface to be a standard client interface; for the standard client interface to be downloaded onto the endpoint device from the server computer; alternatively, for the standard client interface to be installed onto the endpoint device during manufacture of the endpoint device.
Further features may provide for the server computer to form part of, or to be connected to a customer cloud infrastructure that includes a plurality of other server computers that each carry out the steps of the method.
Still further features may provide for the customer cloud infrastructure to be in data communication with the control interface of the server computer using an application programming interface (API), for example using a representational state transfer (REST) API or RESTful API.
Yet further features may provide for the endpoint device instructions to be configured to cause a processor associated with the endpoint device to carry out the endpoint device instructions; for the endpoint device instructions to include any one or more of a read command, a write command and a run or execute command; for data, such as larger data files, to be transferred from the endpoint device to the server computer or vice versa during the persistent data communication session; and for data files to be transferred in portions or by using a chunking process.
Further features may provide for one or both of the data packet and the result data to be time stamped; for the result data to include an indication of whether the endpoint device instructions were carried out successfully or not; for the result data to include error data if the endpoint device instructions were not carried out successfully.
A still further feature may provide for the method to include transmitting, by the server computer, the result data to the customer cloud infrastructure for further processing.
Yet further features may provide for the method to include: receiving, through the control interface of the server computer, a list of the endpoint device identifiers from the customer for storage in a database associated with the server computer; accessing, by the server computer, the list in the database to retrieve each endpoint device identifier therefrom, to include it in the data packet destined for that endpoint device during the persistent data communication session; for the server computer to be arranged to utilize a look-up table, or the like, to retrieve the endpoint device identifier from the list.
Further features may provide for the method to include: encrypting, by the server computer, the data packet; causing the client interface of the endpoint device to decrypt the data packet; causing the client interface of the endpoint device to encrypt the result data; and decrypting, by the server computer, the result data when it is received from the client interface of the endpoint device during the persistent data communication session.
Still further features may provide for the plurality of endpoint devices to form part of an Internet of Things (IoT) network; for the IoT network to be controlled by the server computer; and for the plurality of endpoint devices to be associated with the customer.
Yet further features may provide for the plurality of server computers to be arranged in one or more server clusters; for the plurality of server computers to provide server redundancy.
Further features may provide for the communications to be provided by a communications protocol; for the communications protocol to be a unicast protocol; for the communications protocol to include a set of rules that governs communications between the server computer and the client interface of each endpoint device.
Still further features may provide for the set of rules to include any one or more of the following:
Yet further features may provide for the communications between the customer cloud infrastructure and the server computer, as well as between the server computer and the client interface of the endpoint device to be provided by a secure communications link, for example by way of Hypertext Transfer Protocol Secure (HTTPS) utilizing Secure Sockets Layer (SSL) or Transport Layer Security (TLS), or any other cryptographic protocol, including asymmetric cryptography that utilizes public and private key pairs; for the communications to be provided by HTTP or HTTPS tunneling technology; alternatively, for the communications to be provided by User Datagram Protocol (UDP), or any other protocol.
Further features may provide for the method to include: authenticating, by the server computer, the endpoint device before establishing the persistent data communication session with the client interface of that endpoint device.
Still further features may provide for the method to include performing, by the server computer, a handshake process or authentication process between the server computer and the client interface of the endpoint device to initiate the persistent data communication session; for the persistent data communication session to be a secure link which is established or negotiated, after which the server computer may transmit the data packet via the persistent data communication session to the client interface of the endpoint device, so that subsequent responses and data packets may be sent and received without requiring the persistent data communications session or secure link to be re-negotiated.
Yet further features may provide for the handshake process or authentication process to be performed in less than a second; alternatively, in less than 500 milliseconds (ms), and preferably in about 150 milliseconds, or less than 150 milliseconds; for the persistent data communication session to be a bi-directional session that enables communication between the server computer and the client interface of the endpoint device; for the persistent data communication session to enable the step of transmitting, by the server computer, the data packet via the persistent data communication session to the client interface of the endpoint device within less than 100 milliseconds, and preferably within about 25 milliseconds or within about 5 milliseconds; alternatively, for a latency of the bi-directional persistent data communication session to be about 5 milliseconds, excluding a round trip time (RTT).
Further features may provide for the client interface of each endpoint device to be client software operated on the endpoint device; for the client software to be hard coded; for the client software to be installed during manufacture of each endpoint device; for the client interface to be configured such that any endpoint device that includes the client interface thereat is required to comply with the set of rules which may be described by the client interface, alternatively for the client software to be downloaded from the server computer and/or dynamically updated during the persistent data communication session.
Still further features may provide for the client interface of the endpoint device to be configured, if the data packet is received and the persistent data communication session is subsequently terminated, to nevertheless cause the endpoint device to carry out the endpoint device instructions, and then to transmit the result data once the persistent data communication session is re-established.
Yet further features may provide for the method to include: controlling, by the server computer, each endpoint device in near real-time; for the method to include implementing, by the server computer or the customer cloud infrastructure, a machine learning algorithm, static logic or other event to react in near real-time to result data received from one or more of the plurality of endpoint devices.
Further features may provide for the server computer to be a physical server or a virtual server.
Still further features may provide for the client interface of each endpoint device to be a thin client; and for the control interface of the server computer to be a thin server.
Further features may provide for the thin client to be configured to pull data from the thin server; for the thin client to occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory associated with each endpoint device; for the thin server to occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory associated with the server computer; for server computer to be endpoint-agnostic; and for the client interface of each endpoint device to be endpoint-agnostic excluding the memory required for a given instruction and contents of any packets or files within.
In accordance with another aspect of the disclosure there is provided a computer-implemented method for controlling a plurality of endpoint devices, the method being conducted at an endpoint device, the method comprising:
Further features may provide for the client interface of the endpoint device to be configured, once a connection between the client interface and the server computer is lost, to automatically transmit another outbound connection request for the server computer to reconnect or re-establish the persistent data communication session.
Still further features may provide for the client interface to be configured to repetitively attempt to re-establish the persistent data communication session, for the repetitive attempts to occur at intervals of once per second, or at increasing intervals of about 1, 2, 3, 4, 5, 6, 7, 8, 9, or up to 10 seconds and may continue to attempt to connect at 10 second intervals, or at any other suitable interval.
In accordance with a further aspect of the disclosure there is provided a system for controlling a plurality of endpoint devices, the system comprising:
A further feature may provide for the system to include a result analytics component provided at the server computer, the result analytics component being operable to analyze result data received by the receiving component from the client interface of the endpoint device, once the instructions are carried out.
Still further features may provide for the client interface of each endpoint device to be configured, once a connection between the client interface and the server computer is lost, to automatically transmit another outbound connection request for the server computer to re-establish the persistent data communication session; for the client interface to be a standard client interface which is downloaded onto the endpoint device from the server computer, or installed onto the endpoint device during manufacture of the endpoint device; for the server computer to form part of, or to be connected to a customer cloud infrastructure that includes a plurality of other server computers; for the endpoint device instructions include any one or more of a read command, a write command and a run command; for data to be transferred to the endpoint device during the persistent data communication session, using a chunking process; for one or both of the data packet and the result data are time stamped; for the result data to include an indication of whether the endpoint device instructions were carried out successfully or not; for the server computer to be configured to encrypt the data packet; and for the client interface of the identified endpoint device to be configured to decrypt the data packet.
Yet further features may provide for the communication to be provided by a communications protocol; for the communications protocol to include a set of rules that governs communications between the server computer and the client interface of each endpoint device; for the set of rules to include any one or more of:
Further features may provide for the communications during the persistent data communication session to be provided by HTTP or HTTPS tunneling technology; for the server computer to be configured to authenticate the endpoint device before establishing the persistent data communication session with the client interface of that endpoint device, so that subsequent responses and data packets may be sent and received without requiring the persistent data communication session to be re-negotiated; for the authentication process to be performed in less than a second, alternatively, in less than 500 milliseconds (ms), alternatively in about 150 milliseconds; for the client interface of the endpoint device to be configured, if the data packet is received and the persistent data communication session is subsequently terminated, to nevertheless cause the endpoint device to carry out the endpoint device instructions, and then to transmit the result data once the persistent data communication session is re-established; for the server computer to be configured to control each endpoint device in near real-time; for the server computer or the customer cloud infrastructure to be configured to implement a machine learning algorithm to react in near real-time to result data received from one or more of the plurality of endpoint devices; for the client interface of each endpoint device to be a thin client; for the control interface of the server computer to be a thin server; for the thin client to occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory associated with each endpoint device; and for the thin server to occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory associated with the server computer.
In accordance with a further aspect of the disclosure there is provided a computer program product for controlling a plurality of endpoint devices, the computer program product comprising a non-transitory computer-readable medium having stored computer-readable program code for performing the steps of:
Further features may provide for the computer-readable medium to be a non-transitory computer-readable medium and for the computer-readable program code to be executable by a processor associated with the server computer, or a processor associated with the endpoint device.
Still further features may provide for the client interface to be a standard client interface which is downloaded onto the endpoint device from the server computer, or installed onto the endpoint device during manufacture of the endpoint device; for the client interface of each endpoint device to be configured, once a connection between the client interface and the server computer is lost, to automatically transmit another outbound connection request for the server computer to re-establish the persistent data communication session; for the endpoint device instructions to include any one or more of a read command, a write command and a run command; for data to be transferred to the endpoint device during the persistent data communication session, using a chunking process; for one or both of the data packet and the result data to be time stamped; for the result data to include an indication of whether the endpoint device instructions were carried out successfully or not; for the computer-readable program code to be further configured to perform the steps of: encrypting, by the server computer, the data packet, and causing the client interface of the endpoint device to decrypt the data packet.
Yet further features may provide for the computer-readable program code to be further configured to perform the steps of: causing the client interface of the endpoint device to encrypt the result data, and decrypting, by the server computer, the result data when it is received from the client interface of the endpoint device during the persistent data communication session.
Further features may provide for the communication to be provided by a communications protocol; for the communications protocol to include a set of rules that governs communications between the server computer and the client interface of each endpoint device; and for the set of rules includes any one or more of:
Still further features may provide for the computer-readable program code to be further configured such that communications during the persistent data communication session is provided by HTTP or HTTPS tunneling technology; for the computer-readable program code to be further configured to perform the steps of: authenticating, by the server computer, the endpoint device before establishing the persistent data communication session with the client interface of that endpoint device, so that subsequent responses and data packets may be sent and received without requiring the persistent data communication session to be re-negotiated.
Yet further features may provide for the authentication process to be performed in less than a second, alternatively, in less than 500 milliseconds (ms), alternatively in about 150 milliseconds; for the client interface of the endpoint device to be configured, if the data packet is received and the persistent data communication session is subsequently terminated, to nevertheless cause the endpoint device to carry out the endpoint device instructions, and then to transmit the result data once the persistent data communication session is re-established; and for the computer-readable program code to be further configured to perform the step of: controlling, by the server computer, each endpoint device in near real-time.
A further feature may provide for the computer-readable program code to be further configured to perform the step of: implementing, by the server computer, a machine learning algorithm to react in near real-time to result data received from one or more of the plurality of endpoint devices.
Still further features may provide for the client interface of each endpoint device to be a thin client; for the control interface of the server computer to be a thin server; for the thin client to occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory associated with each endpoint device; and for the thin server to occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory associated with the server computer.
Embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings.
In the drawings:
In this specification, the terms “endpoint” and “endpoint device” or plural forms of these terms will be used to include any physical or virtual computing device or node in a digital communications network including, but not limited to, a server, a system, an ADC, or any other computing device.
There is provided a system and method for managing a plurality of endpoint devices distributed in a digital network. A central server may be provided at a backend, in communication with, or forming part of a cloud infrastructure. A plurality of servers may be utilized, for example in server clusters. These servers may be physical servers or virtual servers. A customer, which may be associated with the plurality of endpoint devices, may require control of the endpoint devices, or may require to send or receive data to and from the endpoint devices. The cloud infrastructure may be associated with the customer. The system may be configured such that data is pulled by each of the endpoint devices from the backend, whereafter the respective endpoint device may be authenticated and then a secure tunnel may be established between the backend and the endpoint device. Software may be resident on the endpoint device to facilitate this process and the software may be either hard coded, downloadable from the backend, or pre-installed to the endpoint device. When pulling data, the endpoint device may be configured to initiate the communications. Once authentication is performed, the secure tunnel may be kept open as a persistent secure connection. Control or command data may be transmitted via the tunnel for execution by a processor of the endpoint device, whereafter it may return a result or response to the backend. It should be appreciated that like features may be designated by like reference numerals in the Figures.
Referring to
The server computers (14.1 to 14.n) may form part of, or may be connected to a customer cloud infrastructure (36) which may include or be connected to a plurality of other server computers forming part of the system (10). The customer cloud infrastructure (36) may for example be associated with a customer (30) which may, in turn, be associated with one or more of the endpoint devices (12.1 to 12.n), however, other implementations are possible. Each server computer (14.1 to 14.n) may include the control interface (26.1 to 26.n) that may be configured to receive command data (28) to control one or more of the endpoint devices (12.1 to 12.n). The command data may be received from a customer (30) that wishes to control one or more of the endpoint devices (12.1 to 12.n). The command data (28) may for example include endpoint device instructions (32) and endpoint device identifiers (34). The server (14.1) may include a receiving component (38.1) for receiving multiple connection requests, each connection request originating from an endpoint device (12.1) identified by the received endpoint device identifiers (34).
The server computer (14.1) may be operable, responsive to receiving the connection request (20) of each endpoint device, to establish a persistent data communication session (40) between the server computer (14.1) and the client interface (18.1) of the endpoint device (12.1). In one example embodiment, a persistent data communication session may be a communication session that is initiated by a handshake process and continues until the connection is dropped. In some of the embodiments described, the endpoint device may automatically attempt to re-establish the connection after the connection is dropped or terminated. A secure HTTPS tunnel may be utilized in the persistent data communications session. A data packet generation component (42.1) may be provided at the server (14.1) for generating a data packet (43.1) which may include the command data (28) or part thereof. The data packet (43.1) destined for endpoint device (12.1) may include customer instructions or endpoint device instructions (32) for that particular endpoint device (12.1) and which may be specified by the customer (30).
At the server (14.1), a data packet transmitting component (38.1) may be operable to transmit the data packet (43.1) via the persistent data communication session (40) to the client interface (18.1) of each endpoint device identified by the endpoint device identifiers, to enable the endpoint device instructions (32) to be carried out by the endpoint device (12.1). The server (14.1) may further include a result analytics component (44.1) that may be operable to analyze result data (46.1) received by the receiving component (38.1) from the client interface (18.1) of the endpoint device (12.1), once the instructions are carried out. The instructions may be performed or carried out by a processor (47.1) associated with the endpoint device (12.1). In an example embodiment, the client interface (18.1) may be installed in a memory (48.1) or memory component of the endpoint device (12.1). It will be appreciated that other endpoint devices and other server computers of the system (10) may have similar components and features to endpoint device (12.1) and server computer (14.1).
The endpoint device instructions (32) may be configured to cause the processor (47.1) associated with the endpoint device (12.1) to carry out the endpoint device instructions (32). These endpoint device instructions may for example include any one or more of a read command, a write command and a run or execute command. Data, such as larger data files may also be transferred from the endpoint device (12.1) to the server computer (14.1) or vice versa during the persistent data communication session (40).
The client interface (18.1 to 18.n) of each endpoint device (12.1 to 12.n) may be configured, once the connection (40) between the client interface (18.1) and the server computer (14.1) is lost, to automatically transmit another outbound connection request (20) for the server computer (14.1) to reconnect or re-establish the persistent data communication session (40). The client interface (18.1) may further be configured to repetitively attempt to re-establish the persistent data communication session. These attempts may for example occur at intervals of once per second, or at increasing intervals of about 1, 2, 3, 4, 5, 6, 7, 8, 9, or up to 10 seconds, or at any other suitable interval, as will be described in more detail below with reference to
The client interface (18.1) may be a standard client interface, and may be software that is downloaded and installed onto the endpoint device (12.1) from the server computer (14.1) during the persistent data communications session (40). Alternatively, the standard client interface (18.1) may be pre-installed onto the endpoint device during manufacture thereof. Updates such as client interface updates or firmware updates may also be transferred to the endpoint device (12.1) during the persistent data communications session, if needed. The client interface (18.1) may be hard coded in some embodiments. The client interface (18.1) may be dynamically updated during the persistent data communication session (40).
In the present embodiment of the system (10), the client interface (18.1) may be configured, if the data packet (43.1) is received and the persistent data communication session (40) is subsequently terminated for some reason, to nevertheless cause the endpoint device (12.1) to carry out the endpoint device instructions (32), and then to transmit the result data (46.1) once the persistent data communication session (40) is re-established again.
The customer cloud infrastructure may be in data communication with the control interface (26.1) of the server computer (14.1) using an application programming interface (API), for example using a representational state transfer (REST) API (50) and utilizing Hypertext Transfer Protocol Secure (HTTPS). However, other protocols may also be used.
The system (10) may provide the advantage that the persistent data communications session (40) need only be established once, and then a HTTPS tunnel (40) may be established. After the outbound request (20) is received by the receiving component (38.1) at the server (14.1), a handshake process may be performed between the server computer (14.1) and the client interface (18.1) of the endpoint device (12.1) to initiate the persistent data communication session (40). The persistent data communication session (40) may be a secure link which is established or negotiated, after which the server computer (14.1) may transmit the data packet (43.1) via the persistent data communication session (40) to the client interface (18.1) of the endpoint device (12.1). Hence, subsequent responses or result data (46.1) and data packets (43.1) may be sent and received via the secure HTTPS tunnel (40), without requiring the secure link to be re-negotiated. In other words, the handshake process need only be performed once. This is unlike conventional configurations where server computers connect to a plurality of endpoint devices in batch or sequential mode, where all of the connections are not held open in a persistent manner. Moreover, conventional server computers may require secure communications to be re-established or re-negotiated numerous times during a single communications session with an endpoint device, even if the connection is not interrupted, which may increase the required processing power and required processing time.
The data packet (43.1) may be time stamped by a timing component (52.1) at the server (14.1) and the result data (46.1) may, in turn, be time stamped by a timing component (54.1) of the endpoint device (12.1). The result data (46.1) may include an indication of whether the endpoint device instructions (32) were carried out successfully or not, or it may include error data if the endpoint device instructions (32) were not carried out successfully. Once the result data (46.1) is received at the server (14.1), it may be transmitted or relayed to the customer cloud infrastructure for further processing. The result data (46.1) may also be analyzed by the result analytics component (44.1) at the server (14.1).
When the endpoint device instructions (32) in the data packet (43.1) are received by the endpoint device (12.1), the instructions may cause the processor (47.1) to carry out the endpoint device instructions (32). These endpoint device instructions (32) may include any one or more of a read command, a write command and a run or execute command. Data, such as larger data files, may additionally be transferred from the endpoint device (12.1) to the server computer (14.1), or vice versa, during the persistent data communication session (40).
Still referring to
When the data packet (43.1) is generated or packaged by the data packet generation component (42.1) of the server computer (14.1), the data packet may be encrypted at the server (14.1). Public and private key cryptography may be used to encrypt the data packet (43.1) (i.e. asymmetric cryptography) at the server (14.1). The client interface of the endpoint device (12.1) may, in turn, decrypt the data packet (43.1) when it is received via the persistent communication session (40). Public and private key cryptography may again be used on the client side, with the client interface (18.1) of the endpoint device (12.1) encrypting the result data (46.1) before it is transmitted back to the server (14.1). The server computer then decrypts the result data (46.1) when it is received from the client interface (18.1) of the endpoint device (12.1) during the persistent data communication session (40). In an exemplary embodiment of the present disclosure, the plurality of endpoint devices (12.1 to 12.n) may form part of an Internet of Things (IoT) network. However, different groups of endpoint devices (such as the first group (22) and the second group (24)) may form part of different digital networks controlled by the server computers (14.1 to 14.n) or server clusters (16.1 to 16.m). The communications of the persistent communication session (40), as well as the communications from the customer cloud infrastructure (36) to the servers (14.1 to 14.n) may be provided by a communications protocol. The communications protocol utilized during the persistent communications session (40) may be a unicast protocol.
In the present embodiment, the communications protocol may include a set of rules that governs communications between the server computers (14.1 to 14.n) and the client interface (18.1 to 18.n) of each endpoint device (12.1 to 12.n). The set of rules may be referred to as a contract, and may include, but need not be limited to, any one or more of the following rules:
The communications between the customer cloud infrastructure (36) and the server computer (14.1), as well as between the server computer (14.1) and the client interface (18.1) of the endpoint device (12.1) may be provided by a secure communications link, for example by way of Hypertext Transfer Protocol Secure (HTTPS) utilizing Secure Sockets Layer (SSL) or Transport Layer Security (TLS), or any other cryptographic protocol, including asymmetric cryptography that utilizes public and private key pairs. In a present embodiment of the system (10), the communications may be provided by HTTP or HTTPS tunneling technology, however, embodiments may be possible that utilize User Datagram Protocol (UDP), or any other similar protocol.
To establish the persistent data communication session, the outbound connection request (20) is transmitted from the endpoint device (12.1). Then, the server receives (38.1) the request (20) and an authentication of the endpoint device may be performed. The server computer (14.1) may look up the endpoint device (12.1) in the list (56) (which may be stored in the database (58.1) received from the cloud (36)) and may authenticate the endpoint device (12.1) before establishing the persistent data communication session (40) with the client interface (18.1) of that endpoint device (12.1). The handshake process as described above may be performed.
In the present embodiment of the system (10), this handshake process may be performed in less than a second; alternatively, in less than 500 milliseconds (ms), and preferably in about 150 milliseconds This will also be discussed in more detail below. The persistent data communication session (40) may be a bi-directional session that enables communication between the server computer (14.1) and the client interface (18.1) of the endpoint device (12.1). The handshake and authentication process may open up the HTTPS tunnel (40) or persistent data communication session and thus enables the server computer (14.1) to transmit the data packet (43.1) very quickly and more efficiently than prior art methods or systems that the applicant is aware of. This may further enable controlling endpoint devices (12.1 to 12.n) at a much larger scale. The data packet (43.1) may be transmitted via the persistent data communication session (40) to the endpoint device within less than 100 milliseconds, and preferably within about 25 milliseconds or within about 5 milliseconds. Stated differently, a latency of the bi-directional persistent data communication session may be about 5 milliseconds, excluding a round trip time (RTT).
This low latency, coupled with the persistent data communication session (40) may enable the system (10) to control each endpoint device (12.1 to 12.n) in near-real time. The servers (14.1 to 14.n) and other clusters (16.1 to 16.m) may thus control each endpoint device (12.1 to 12.n) in near real-time. This may enable control applications that are not possible with currently available systems and methods. The system (10) may for example be configured to implement, with the server computer (14.1) or with the customer cloud infrastructure (36), a machine learning algorithm to react or to respond in near real-time to result data (46.1 to 46.n) received from one or more of the plurality of endpoint devices (12.1 to 12.n).
It will be appreciated that the server computer (14.1) may be a physical server or a virtual server. In the present embodiment, the client interface (18.1 to 18.n) of each endpoint device (12.1 to 12.n) may be standardized so that it may operate on various types of devices, and may be a thin client. The control interfaces (26.1 to 26.n) of the server computers (14.1 to 14.n) may, in turn, each be a thin server. The thin client (18.1) of endpoint device (12.1) may thus be configured to pull data from the thin server (14.1). The thin client may occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory (48.1 to 48.n) associated with each endpoint device (12.1 to 12.n) which occupied storage space may exclude the memory required for the given instruction and contents of any packets or files within. The thin server may, in turn, occupy less than 100 megabytes, alternatively less than 10 megabytes of storage space on a memory (27.1 to 27.n) associated with each of the server computers (14.1 to 14.n) which occupied storage space may exclude the memory required for the given instruction and contents of any packets or files within. The server computers (14.1 to 14.n) may be endpoint-agnostic. The thin server may be software downloaded onto the server computers (14.1 to 14.n) from the customer cloud infrastructure (36). The thin client or client interface (18.1 to 18.n) of each endpoint device (12.1 to 12.n) may also be endpoint-agnostic.
In
Referring to
Every communication session (40) connection may be established securely, and a global standard library may be used. As described above, to comply with security best practices and to keep data secure, the communication session (40) may be SSL validated using SSL certificates over HTTPS. In the embodiment shown in
It may be necessary while transferring a large file from the ADC (112.1) to the server (114.1), mid-way through that file transfer during the communication session (40), to obtain statistics of a processor and memory (not shown in
Implementing this protocol with an MDC with as low as possible latency may facilitate effectively scaling the number of ADCs (112.1 to 112.n) able to be controlled by the system (100). Outbound connection requests may thus originate from the ADC servers (i.e. from the endpoint devices (112.1 to 112.n)). The ADCs (112.1 to 112.n) may be located in a so-called demilitarized zone (DMZ) or subnetwork which may be locked down. The protocol or system (100) may therefore enable outbound connection requests. Outbound connections from the ADC servers (112.1 to 112.n) may be advantageous as it lowers the complexity of the networking and security infrastructure, and may for example remove the requirement for firewall updates. The outbound connection request may provide the benefit that the ADC server does not need to maintain a list of connections where a client may possibly exist, but only the client's current connection details.
If an interruption in the network or connectivity occurs between the ADC (112.1) and the server (114.1), the ADC (112.1) may continue and attempt to re-establish connection to the server (114.1). Once the data communication session is re-established, the instructions or work that commenced during the down-time may be sent back to the server (114.1). Hence, the endpoint devices or ADCs (112.1 to 112.n) may continue to function if there is a break in the connection between the server (114.1) and the ADC (112.1). Additionally, any instruction that was successfully received by the ADC that does not require a connection with the Server, may be executed, the result may be stored at the ADC or endpoint device (112.1), and the result may then be returned back to the server (114.1) once the connection or data communication session has been re-established.
There is hence provided the ability to schedule instructions on both the server (114.1) and the ADC (112.1) supported by a storage system to store results. Automation may thus be provided with the systems and methods described herein. Scheduling of instructions on both the server (114.1) and the client or endpoint device (112.1) may thus be performed. A scheduling system may also be supported with a local storage engine, so that in the event of a disconnect between the server (114.1) and the client (112.2), the schedule and/or instructions may be continued offline.
A RESTful API may be used providing feature parity which may enable integration with components of the system (100). A number of endpoint devices, for example ranging from 10's to millions may be controlled with the system (100) as it enables fast (near instant) outbound communication as well as near real-time control. Server/Management layer systems may require the ability to communicate to all the controlled or managed endpoint devices simultaneously, or near simultaneously (or ad-hoc). Changes or updates may additionally be pushed from the server to the endpoint devices which may cause them to read update data.
The system (100) may further plug into services such as Envoy™, Istio™, HAProxy™, Nginx™, and others, and may provide an application delivery mesh, managed or controlled from a centralized location, server (114.1) or cloud (136). The system (100) may be complementary to open source systems and may thus provide customizability, scriptability and tooling. The system (100) may be utilized with Linux™. The system (100) may also be retro-fitted or installed onto existing open source load balancers.
Still referring to
The system (400) may for example be used in ADC applications. AI and/or ML require relatively large data sets or large amounts of data to learn from. AI and/or ML algorithms may utilize learning models. The protocol or system (400) may provide near-real time data from the client interfaces (412). The data from the client interfaces may be user-defined parameters from the clients (412) to the server (414). Data may hence be provided to the AI learning algorithm, and software logic may be adjusted according to simulations. Configuration settings may be optimized or enhanced and these optimized or enhanced settings may then be pushed back to the clients (412). The control server or cloud (436) may include a learning engine using AI and/or ML coupled with reactionary workflows. The one or more clients (412) may send data required by the learning models to the server (414), where it may be processed and may then trigger configuration changes to either scale up or down ADC settings depending on the AI configuration. As mentioned above, in exemplary embodiments, there may be a plurality of servers similar to the server (414) for example arranged in server clusters, and the control server (436) may poll the server (414) for data required for the scaling of servers and apply that data to the learning models. The control server (436) may deploy or reconfigure servers (414) depending on the output from these AI and/or ML algorithms.
It will be appreciated that embodiments described herein may enable millions of endpoint devices to send data to a centralized location as well as receive instruction sets, in an IoT implementation. This may happen substantially at the same time, and in near-real time. The client interface may be a thin client and may be “lightweight”. Hence, the client interface may be bundled in any IoT device to enable it to be controlled from a centralized location, enabling scaling and providing robustness even with limited or intermittent connectivity. Features of embodiments of the systems described are that the system may enable endpoint devices to automatically come online and “discover” a method to connect to the server. The server's large-scale design and usage of the communication protocol described may enable client interface to manage a near infinite number of IoT devices in parallel and send or receive high volumes of simultaneous communications from those devices. The ability of client interfaces or endpoint devices to come online automatically and self-discover a connection to the server, combined with the near infinite scalability (in terms of device numbers or simultaneous communications) may provide advantages over prior art systems and methods that the applicant is aware of. In addition, reliability, flexibility and ease of use may be provided by the systems and methods described, particularly in IoT devices and applications. This may be enabled as inbound access or inbound communications from the server to the client interfaces may not be required. This may enable the system to be utilized over a variety of digital networks, and may provide robustness or fault tolerance. This may also facilitate reading sensor data and sending IoT control instructions with ease and may provide greater efficiency compared to existing technologies.
Implementations that utilize Linux™ or Windows™ may be possible. Spinning up cloud-native and modern environments at scale may be facilitated. Vendors may have thousands to millions of individual Linux™ (and other) devices forming part of cloud-native deployments, clouds, supercomputers and more. The embodiments described herein may provide control of these devices substantially in parallel and may not requiring a direct or inbound connection to the devices, which may solve or at least alleviate some of the problems mentioned in the background of this specification. Example applications may be orchestration companies, from open-source container orchestration systems for automating application deployment, scaling and management such as Kubernetes or Chef. Other implementations may be large vendors of equipment, and cloud service providers.
The embodiments described may provide a lightweight and efficient connection from the servers to the client interfaces, and may provide a medium for log streaming, to stream log entries out of an application server or IoT device. Obtaining application exceptions or overload messages from an application may typically be written to a log file which can be streamed directly from the client interface or client of the endpoint device to the server, and notification and escalation via Simple Network Management Protocol (SNMP), Simple Mail Transfer Protocol (SMTP), short message service (SMS), or other methods may be provided to either the customer cloud interface or via the API.
Referring again to
The near real time communication and near-zero latency may facilitate communicating with endpoint devices, and may provide a non-linear load—e.g. the more endpoint devices or nodes that are connected do not necessarily result in a slowdown of communication or an increase in latency may be alleviated or avoided. For example, the client (30) such as Samsung™ may be enabled to determine how many smart televisions are turned on at once, or to deploy a message to millions (or a near infinite number) of consumers at the same time. The described embodiments may enable monitoring or control of the running processes, memory, and file signatures of the plurality of endpoint devices within a network, cluster, cloud, organization, etc. An ability may be provided to, at near-zero latency, detect an anomaly in the traffic or file signature on an endpoint device (which endpoint device may be a system or sub-system). This may facilitate security, for example, once an intruder modifies a file, or logs in to a system or endpoint device, this act may be detected in near-real time in a matter of seconds or milliseconds or even nanoseconds. The relevant customer (30) or administrator may then be notified or alerted.
Referring again to the exemplary implementation in
Referring now to
To add a client or endpoint device to the server: A client node or endpoint device may be created (510). The server (14.1) may generate (512) a key pair (e.g. a public key and a secret or private key) for the client interface. The client interface may be downloaded (514) to the endpoint device, the key and secret key may be set up, and the client interface may be run by the processor (47.1). The endpoint device and/or client interface (12.1, 18.1) may then pull (516) and execute a client docker container from the server (14.1). The key provided by the server may be used (518). Once the connection is established: the server may listen (520) for connections from client interfaces. A HTTPS tunnel connection may be established (522). The client interface (18.1) may now be enabled to initiate (524) connections to the server (14.1) by initiating the request (20) for communications. The server (14.1) may then issue (526) commands or command data (28) (an example command of “pwd” may be sent) to the client interface (18.1). The command may be received (528) by the endpoint device, and executed, and the result may be returned to the server. The client interface (18.1) may return the result data (46.1) (for example including a result “www/src”) back to the server in about 12 milliseconds.
Referring now to
In
At (712), an ADC service may be restarted. A command may be issued by the server (14.1) to the client (18.1) to restart a ‘HAProxy service’ on an ADC (when the endpoint device (12.1) is an ADC server). Services (daemons) on ADC servers may often require a restart for various reasons which the server (14.1) may issue to the client (12.1) for execution. In this case, ‘HAProxy’ may be a load balancing application on the ADC which forwards the specific type of network traffic as per a set configuration. If that configuration is updated, a service restart of ‘HAProxy’ may be required, before the change may be applied correctly.
At (714), reading an application log file may be performed. When issues from the endpoint device are reported, log files may be a first port of call when troubleshooting an issue. It may be important that log files can be read over the protocol to enable support technicians to solve issues customers report. In the example provided, a customer of MDCP has encountered an issue with HAProxy failing to start up on a particular ADC. An MDCP support technician may read the /var/log/haproxy.log file through the server to understand what is the issue.
Executing a set of instructions may be performed in serial (716). A set of instructions may need to be executed in serial as there is a dependency on one instruction to have completed before another is executed, but a group of instructions can be pre-configured to be executed for the sequence to have value. In the exemplary case for MDCP, it may be required to update a specific configuration in HAProxy which requires a service restart as well as to read the configuration file back to ensure that the configuration is correctly updated. The server (14.1) may send through a set of three jobs, dependant on each other (a job chain):
Executing instructions in parallel or substantially in parallel may be performed (718). Often there may be long running instructions sent by the server (14.1) to the client interface (18.1). The system may prevent or alleviate these long running instructions from hampering any other communication between the server (14.1) and the client or endpoint device (12.1). Parallel execution of instructions may allow for this by, using splicing to enable multiple threads of instruction execution. A large file, such as a backup, as per a standard backup solution, would be transferred from the client to the server which, depending on the connection speed, could take up to an hour. During this period, it is critical that all service, system and throughput metrics continue to be reported back to the Server. Using splicing the reporting instruction may be processed whilst the file transfer is in progress.
Description Detailing Reasons for Low Latency Coupled with Scale and Parallelism
As mentioned in the background of this specification, previous methods of managing connections may include elements of the connection process that may not be essential when making use of HTTP tunneling technology.
Instantiating a connection:
Long-polling
An example of a standard, prior art connection instantiation is shown in
By comparison, a connection with instruction processing according to embodiments described herein is shown in
In
As shown in
In
The client interface or client (18.1) may be split into 3 main components:
1. A Job Storage Database (1112):
2. A Command Daemon (1114) or computer process:
3. Client Protocol Implementation (1110)
Below are examples of commands that may be executed, and how the commands may be used to monitor or control devices or applications:
In
The protocol utilized may provide a communication method used between the client (18.1) and the server (14.1). An API may be available for functionality for the server, client and the protocol used. A Job may be a set of instructions (32) sent by the server (14.1) to the client (18.1) for execution. Job information may be stored in a Job Storage (1612) facility or database on both the server (14.1) and the endpoint device (12.1) or client. Jobs may include:
Further features of the system may include the following:
Binary Safe Transfers
The systems and methods described herein may transfer data using the protocol, which may be a binary safe communication standard that allows very efficient transfer of data, for example in two primary ways:
Multiple Connections Between Server Vs Client
The systems methods and protocol disclosed may support the ability to open multiple channels or persistent data communication sessions (40). Several outbound connections to the servers (14.1 to 14.n) may be utilized in order to have substantially parallel instruction sets. This may allow threaded client interfaces (18.1 to 18.n) to accept jobs on an event-based system and to run multiple tasks in parallel.
Connection Efficiency
Establishing a secure communication channel may be a computationally expensive task. The negotiation of a new HTTPS, SSH, etc channel may require public key negotiations which all apply a factor of 10-200 times more load than using an existing channel that is already negotiated and secured. The systems and methods disclosed herein may maintain a connection or communication session (40) once established, in order to communicate in the most power, computing and latency efficient method possible while it may ensure that communications are cryptographically secure.
Referring to
Jobs and Event Communication
The communication between the server and client may be provided by using two operators, namely job (or command) and event.
A Job may be a work instruction (32) sent from the Server to the Client, from which at least 2 Events may occur. The first may be a job received event to acknowledge that the client has received the job, the second may be a result of the client attempting to execute the job. Depending on the type of work being done, more events may be triggered, for example a recurring job may trigger an event every time it is run. Events may also be where any errors and timeouts are noted back to the server. The client may for example not be able to execute a job, without specific instructions from the server, and may be under a “contract” or obligation to always return an event from a received job. These features are illustrated in the diagram (1700) in
Data Store
The system may have an asynchronous contract based storage system on each node in the network (for example on each endpoint device), as well as at the server. These contracts may facilitate that for every action there is a reaction i.e. every job has one or more associated events with it. The client may store any events that have not synced to the server (due to loss of connection, delay, etc) until the contract is completed. This data may be American Standard Code for Information Interchange (ASCII codes) or binary information which may be kept in sync automatically between all the nodes and the server, and stored securely by the server.
Usage of Chunks and Splicing to Attain Concurrency
In
In order to prevent long-running instructions between the server and the client from holding up concurrent instructions, large files or payloads may automatically be split into similar size chunks for data transfer across the persistent data communication session (40).
In the example illustrated in
This chunking mechanism may provide advantages.
Referring again to
The computing device (2100) may be suitable for storing and executing computer program code. The various participants and elements in the previously described system diagrams may use any suitable number of subsystems or components of the computing device (2100) to facilitate the functions described herein. The computing device (2100) may include subsystems or components interconnected via a communication infrastructure (2105) (for example, a communications bus, a network, etc.). The computing device (2100) may include one or more processors (2110) and at least one memory component in the form of computer-readable media. The one or more processors (2110) may include one or more of: CPUs, graphical processing units (GPUs), microprocessors, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs) and the like. In some configurations, a number of processors may be provided and may be arranged to carry out calculations simultaneously. In some implementations various subsystems or components of the computing device (2100) may be distributed over a number of physical locations (e.g. in a distributed, cluster or cloud-based computing configuration) and appropriate software units may be arranged to manage and/or process data on behalf of remote devices.
The memory components may include system memory (2115), which may include read only memory (ROM) and random-access memory (RAM). A basic input/output system (BIOS) may be stored in ROM. System software may be stored in the system memory (2115) including operating system software. The memory components may also include secondary memory (2120). The secondary memory (2120) may include a fixed disk (2121), such as a hard disk drive, and, optionally, one or more storage interfaces (2122) for interfacing with storage components (2123), such as removable storage components (e.g. magnetic tape, optical disk, flash memory drive, external hard drive, removable memory chip, etc.), network attached storage components (e.g. NAS drives), remote storage components (e.g. cloud-based storage) or the like.
The computing device (2100) may include an external communications interface (2130) for operation of the computing device (2100) in a networked environment enabling transfer of data between multiple computing devices (2100) and/or the Internet. Data transferred via the external communications interface (2130) may be in the form of signals, which may be electronic, electromagnetic, optical, radio, or other types of signal. The external communications interface (2130) may enable communication of data between the computing device (2100) and other computing devices including servers and external storage facilities. Web services may be accessible by and/or from the computing device (2100) via the communications interface (2130).
The external communications interface (2130) may be configured for connection to wireless communication channels (e.g., a cellular telephone network, wireless local area network (e.g. using Wi-Fi™), satellite-phone network, Satellite Internet Network, etc.) and may include an associated wireless transfer element, such as an antenna and associated circuitry. The external communications interface (2130) may include a subscriber identity module (SIM) in the form of an integrated circuit that stores an international mobile subscriber identity and the related key used to identify and authenticate a subscriber using the computing device (2100). One or more subscriber identity modules may be removable from or embedded in the computing device (2100).
The external communications interface (2130) may further include a contactless element (2150), which is typically implemented in the form of a semiconductor chip (or other data storage element) with an associated wireless transfer element, such as an antenna. The contactless element (2150) may be associated with (e.g., embedded within) the computing device (2100) and data or control instructions transmitted via a cellular network may be applied to the contactless element (2150) by means of a contactless element interface (not shown). The contactless element interface may function to permit the exchange of data and/or control instructions between computing device circuitry (and hence the cellular network) and the contactless element (2150). The contactless element (2150) may be capable of transferring and receiving data using a near field communications capability (or near field communications medium) typically in accordance with a standardized protocol or data transfer mechanism (e.g., ISO 14443/NFC). Near field communications capability may include a short-range communications capability, such as radio-frequency identification (RFID), Bluetooth™, infra-red, or other data transfer capability that can be used to exchange data between the computing device (2100) and an interrogation device. Thus, the computing device (2100) may be capable of communicating and transferring data and/or control instructions via both a cellular network and near field communications capability.
The computer-readable media in the form of the various memory components may provide storage of computer-executable instructions, data structures, program modules, software units and other data. A computer program product may be provided by a computer-readable medium having stored computer-readable program code executable by the central processor (2110). A computer program product may be provided by a non-transient computer-readable medium, or may be provided via a signal or other transient means via the communications interface (2130).
Interconnection via the communication infrastructure (2105) allows the one or more processors (2110) to communicate with each subsystem or component and to control the execution of instructions from the memory components, as well as the exchange of information between subsystems or components. Peripherals (such as printers, scanners, cameras, or the like) and input/output (I/O) devices (such as a mouse, touchpad, keyboard, microphone, touch-sensitive display, input buttons, speakers and the like) may couple to or be integrally formed with the computing device (2100) either directly or via an I/O controller (2135). One or more displays (2145) (which may be touch-sensitive displays) may be coupled to or integrally formed with the computing device (2100) via a display (2145) or video adapter (2140).
The computing device (2100) may include a geographical location element (2155) which is arranged to determine the geographical location of the computing device (2100). The geographical location element (2155) may for example be implemented by way of a global positioning system (GPS), or similar, receiver module. In some implementations the geographical location element (2155) may implement an indoor positioning system, using for example communication channels such as cellular telephone or Wi-Fi™ networks and/or beacons (e.g. Bluetooth™ Low Energy (BLE) beacons, iBeacons™, etc.) to determine or approximate the geographical location of the computing device (2100). In some implementations, the geographical location element (2155) may implement inertial navigation to track and determine the geographical location of the communication device using an initial set point and inertial measurement data.
Any of the steps, operations, components or processes described herein may be performed or implemented with one or more hardware or software units, alone or in combination with other devices. In one embodiment, a software unit is implemented with a computer program product comprising a non-transient computer-readable medium containing computer program code, which can be executed by a processor for performing any or all of the steps, operations, or processes described. Software units or functions described in this application may be implemented as computer program code using any suitable computer language such as, for example, Java™, C++, or Perl™ using, for example, conventional or object-oriented techniques. The computer program code may be stored as a series of instructions, or commands on a non-transitory computer-readable medium, such as a random access memory (RAM), a read-only memory (ROM), a magnetic medium such as a hard-drive, or an optical medium such as a CD-ROM. Any such computer-readable medium may also reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
Flowchart illustrations and block diagrams of methods, systems, and computer program products according to embodiments are used herein. Each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may provide functions which may be implemented by computer readable program instructions. In some alternative implementations, the functions identified by the blocks may take place in a different order to that shown in the flowchart illustrations.
Some portions of this description describe the embodiments of the disclosure in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. The described operations may be embodied in software, firmware, hardware, or any combinations thereof.
The foregoing description has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
The language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the disclosure is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.
Finally, throughout the specification and accompanying claims, unless the context requires otherwise, the word ‘comprise’ or variations such as ‘comprises’ or ‘comprising’ will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
This application claims priority from U.S. provisional patent application No. 62/865,091 filed on 21 Jun. 2019, which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/055795 | 6/19/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62865091 | Jun 2019 | US |