Control data determination from primary-side sensing of a secondary-side voltage in a switching power converter

Information

  • Patent Grant
  • 9313840
  • Patent Number
    9,313,840
  • Date Filed
    Friday, June 1, 2012
    12 years ago
  • Date Issued
    Tuesday, April 12, 2016
    8 years ago
Abstract
A power distribution system includes controller of a switching power converter to control the switching power converter and determine one or more switching power converter control parameters. In at least one embodiment, the controller determines the one or more switching power converter control parameters using a resonant period factor from a reflected secondary-side voltage and an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage. In at least one embodiment, the switching power converter control parameters include (i) an estimated time of a minimum value of the secondary-side voltage during the resonant period and (ii) an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates in general to the field of electronics, and more specifically to a method and system for determining control data from primary-side sensing of a secondary-side voltage in a switching power converter.


2. Description of the Related Art


Many electronic systems utilize switching power converters to efficient convert power from one source into power useable by a device (referred to herein as a “load”). For example, power companies often provide alternating current (AC) power at specific voltages within a specific frequency range. However, many loads utilize power at a different voltage and/or frequency than the supplied power. For example, some loads, such as light emitting diode (LED) based lamps operate from a direct current (DC). “DC current” is also referred to as “constant current”. “Constant” current does not mean that the current cannot change over time. The DC value of the constant current can change to another DC value. Additionally, a constant current may have noise or other minor fluctuations that cause the DC value of the current to fluctuate. “Constant current devices” have a steady state output that depends upon the DC value of the current supplied to the devices.


LEDs are becoming particularly attractive as main stream light sources in part because of energy savings through high efficiency light output, long life, and environmental incentives such as the reduction of mercury. LEDs are semiconductor devices and are best driven by direct current. The brightness of the LED varies in direct proportion to the DC current supplied to the LED. Thus, increasing current supplied to an LED increases the brightness of the LED and decreasing current supplied to the LED dims the LED.



FIG. 1 depicts power distribution system 100 that converts power from voltage source 102 into power usable by load 104. Load 104 is a constant current load that includes, for example, one or more LEDs. A controller 106 controls the power conversion process. Voltage source 102 supplies an alternating current (AC) input voltage VIN to a full bridge diode rectifier 108. The voltage source 102 is, for example, a public utility, and the AC voltage VIN is, for example, a 60 Hz/110 V line voltage in the United States of America or a 50 Hz/220 V line voltage in Europe. The rectifier 108 supplies a rectified AC voltage VX to the switching power converter 110. The switching power converter 110 serves as a power supply that converts the AC voltage VX into a DC link voltage VLINK.


The controller 106 provides a control signal CS0 to switching power converter 110 to control the conversion of rectified input voltage VX into a link voltage VLINK. The switching power converter 110 can be any type of switching power converter, such as a boost, buck, boost-buck, or Cúk type switching power converter. The link voltage VLINK is generally a DC voltage that is maintained at an approximately constant level by switching power converter 110. Controller 106 also generates control signal CS1 to control load drive switch 112. When control signal CS1 causes switch 112 to conduct, a primary-side current iPRIMARY flows into a primary coil 114 of transformer 116 to magnetize the primary coil 114. When control signal CS1 opens switch 112, primary coil 114 demagnetizes. The magnetization and demagnetization of the primary coil 114 induces a secondary voltage VS across a secondary coil 118 of transformer 116. Primary voltage VP is N times the secondary voltage VS, i.e. VP=N·VS, and “N” is a ratio of coil turns in the primary coil 114 to the coil turns in the secondary coil 118. The secondary-side current iSECONDARY is a direct function of the secondary voltage VS and the impedance of diode 120, capacitor 122, and load 104. Diode 120 allows the secondary-side current iSECONDARY to flow in one direction. The secondary-side current iSECONDARY charges capacitor 122, and capacitor 122 maintains an approximately DC voltage VLOAD across load 104. Thus, secondary-side current iSECONDARY is a DC current.


Since the control signal CS1 generated by the controller 106 controls the primary-side current iPRIMARY, and the primary-side current iPRIMARY controls the voltage VP across the primary coil 114, the energy transfer from the primary coil 114 to the secondary coil 118 is controlled by the controller 106. Thus, the controller 106 controls the secondary-side current iSECONDARY.


The controller 106 operates the switching power converter 110 in a certain mode, such as quasi-resonant mode. In quasi-resonant mode, the control signal CS1 turns switch 112 ON at a point in time that attempts to minimize the voltage across switch 112, and, thus, minimize current through switch 112. Controller 106 generates the control signal CS1 in accordance with a sensed primary-side current iPRIMARY_SENSE, obtained via link current sense path 126.


To deliver a known amount of power to the load 104, the controller 106 can determine the amount of power delivered to the load 104 by knowing the values of the secondary-side voltage VS and the secondary-side current iSECONDARY. The controller 106 can derive the secondary-side voltage VS from the primary-side voltage VP in accordance with VP=N·VS, as previously discussed. The controller 106 determines the value of the secondary-side current iSECONDARY by monitoring the value of iSECONDARY_SENSE, which is a scaled version of the secondary-side current iSECONDARY with a scaling factor of M. “M” is a number representing fractional ratio of the secondary-side current iSECONDARY to the secondary-side sense current iSECONDARY_SENSE. Thus, the power PLOAD delivered to the load 104 is PLOAD=VP/N·M·iSECONDARY_SENSE.


However, directly sensing the secondary-side current iSECONDARY generally requires an opto-coupler or some other relatively expensive component to provide connectivity to the secondary-side of transformer 116.


SUMMARY OF THE INVENTION

In one embodiment of the present invention, a method includes receiving a sense signal from a primary-side of a transformer of a switching power converter. The sense signal represents a secondary-side voltage across a secondary-side of the transformer. The method further includes determining one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage. Each resonant period occurs after the secondary-side voltage decreases to zero and before a current in the primary-side of the transformer increases from approximately zero. The method also includes determining one or more resonant period factors from the one or more times between approximately zero crossings of the secondary-side voltage. The method also includes determining one or more switching power converter control parameters using (i) the one or more resonant period factors and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage.


In another embodiment of the present invention, an apparatus includes a controller. The controller includes an input to receive a sense signal from a primary-side of a transformer of a switching power converter. The sense signal represents a secondary-side voltage across a secondary-side of the transformer, and the controller is capable to determine one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage. Each resonant period occurs after the secondary-side voltage decreases to zero and before a current in the primary-side of the transformer increases from approximately zero. The controller is further capable to determine one or more resonant period factors from the one or more times between approximately zero crossings of the secondary-side voltage. The controller is further capable to determine one or more switching power converter control parameters using (i) the one or more resonant period factors and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage.


In a further embodiment of the present invention, an apparatus includes a switching power converter. The switching power converter includes a transformer having a primary-side and a secondary-side. The apparatus further includes a controller The controller includes an input to receive a sense signal from a primary-side of a transformer of a switching power converter. The sense signal represents a secondary-side voltage across a secondary-side of the transformer, and the controller is capable to determine one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage. Each resonant period occurs after the secondary-side voltage decreases to zero and before a current in the primary-side of the transformer increases from approximately zero. The controller is further capable to determine one or more resonant period factors from the one or more times between approximately zero crossings of the secondary-side voltage. The controller is further capable to determine one or more switching power converter control parameters using (i) the one or more resonant period factors and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage. The apparatus also includes a load coupled to the secondary-side of the transformer of the switching power converter.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.



FIG. 1 (labeled prior art) depicts a power distribution system.



FIG. 2 depicts a power distribution system that utilizes reflected secondary-side voltage zero crossing and resonant period factors to determine control parameters.



FIG. 3 depicts an embodiment of the power distribution system of FIG. 2.



FIG. 4 depicts an exemplary switching power converter control parameter determination process.



FIGS. 5 and 6 depict exemplary waveforms associated with the system of FIG. 3 and process of FIG. 4.



FIG. 7 depicts exemplary probing times of an input voltage to the power system of FIG. 3.



FIGS. 8 and 9 depict exemplary control parameter generators.





DETAILED DESCRIPTION

A power distribution system includes controller of a switching power converter to control the switching power converter and determine one or more switching power converter control parameters. In at least one embodiment, the switching power converter utilizes a transformer to transfer energy from a primary-side of the transformer to a secondary-side. An input voltage source is connected to the primary-side, and a load is connected to the secondary-side. The controller utilizes the switching power converter control parameters to control a current control switch on the primary-side of the switching power converter, which controls the energy transfer process.


In at least one embodiment, the controller determines the one or more switching power converter control parameters using a resonant period factor from a reflected secondary-side voltage and an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage. In at least one embodiment, the switching power converter control parameters include (i) an estimated time of a minimum value of the secondary-side voltage during the resonant period and (ii) an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero. In at least one embodiment, causing the current control switch to conduct and allow current to flow through the primary-side of the transformer at an estimated time of a minimum value of the secondary-side voltage during the resonant period reduces energy losses and is, thus, more energy efficient. In at least one embodiment, determining an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero allows the controller to determine the amount of energy transferred to a load and, thus, control the switching power converter to meet the power demand of a load. The term “approximately” as used herein means exact or sufficiently close to exact to allow a component, system, or process to achieve its intended function.


The secondary-side voltage enters a decaying resonant period after the current decayed to zero in the secondary-side winding. As previously mentioned, causing the current control switch to conduct at an estimated time of a minimum value of the secondary-side voltage is efficient; however, determining when the minimum value will occur presents a challenge. In at least one embodiment, the resonant period of the secondary-side voltage is relatively stable from cycle-to-cycle of the primary-side switch. By indirectly sensing the secondary-side voltage, such as sensing a reflected secondary-side voltage in an auxiliary winding, the controller can sense zero crossings of the secondary-side voltage. By sensing the time between at least two of the zero crossings, the controller can determine a resonant period factor. Since the time between a zero crossing and a minimum value of the secondary-side resonant voltage equals the resonant period divided by 4 (referred to at “TRES/4”), in at least one embodiment, the controller can determine the timing of the minimum value by adding the resonant period factor TRES/4 to the time of the detected zero crossing.


In at least one embodiment, the controller generally operates the switching power converter in discontinuous conduction mode, critical conduction mode, or quasi-resonant mode. However, in at least one embodiment, the controller probes a reflected, secondary-side voltage to determine the resonant period by extending a duration of the current control switch cycle to include one or more consecutive resonant periods. In at least one embodiment, probing the resonant period occurs during multiple consecutive and/or non-consecutive switch cycles to determine the duration of multiple resonant periods. In at least one embodiment, the controller includes a digital filter to process the multiple resonant periods to obtain a single estimation of the resonant period. For example, in at least one embodiment, the digital filter averages the multiple resonant periods to obtain an average resonant period. Additionally, in at least one embodiment, the current control switch is a field effect transistor (FET). In at least one embodiment, the controller probes the reflected, secondary-side voltage when an input voltage to the primary-side of the transformer is sufficient to reverse bias a body diode of the current control switch to more accurately determine the resonant period factor.


Additionally, the secondary-side current leads the secondary-side voltage in phase by ninety degrees (90°). Thus, in at least one embodiment, the controller can determine when the secondary-side current decayed to approximately zero by subtracting the resonant period factor TRES/4 from an initial occurrence during a switch conduction cycle of a zero crossing of the secondary-side voltage. Additionally, in at least one embodiment, the determination of the switching power converter control parameters occurs using data sensed from a reflected secondary-side voltage without a physical connection to the secondary-side.



FIG. 2 depicts a power distribution system 200 that includes a controller 202 that determines one or more switching power converter control parameters using (i) a resonant period factor and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage. The particular switching power converter control parameters are a matter of design choice and are, in at least one embodiment, at least one of (i) an estimated time of a minimum value of the secondary-side voltage during the resonant period and (ii) an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero. The resonant period factor represents a value associated with the resonant period of the secondary-side voltage VS across the secondary-side coil 204 of a transformer, such as transformer 206. Power distribution system 200 receives an input voltage VIN. The input voltage VIN may be a DC voltage, for example, provided by a battery or the link voltage VLINK in FIG. 1, or an AC voltage, such as the AC input voltage 102. The term “approximately” is used because a DC voltage from a switching power converter can vary by, for example, 5-10% of a nominal value and can contain ripple and noise.


The controller 202 regulates the power delivered to load 208 by regulating the primary-side current iPRIMARY conducted by the primary-side coil 210. Load 208 can be any type of load, such as one or more light emitting diodes (LEDs). In at least one embodiment, the controller 202, the switching power converter 216, and the load 208 are included as part of a lamp (not shown). The controller 202 includes a control signal generator 211 to generate a control signal CS2 to control the switching power converter 216. The control signal generator 211 regulates the primary-side current iPRIMARY by regulating the duty cycle of control signal CS2, which regulates the duty cycle of exemplary current control switch 212. The current control switch 212 can be any type of switch and, in at least one embodiment, is a field effect transistor (FET). The primary-side current iPRIMARY energizes the primary-side coil 210 when the control signal CS2 causes the switch 212 to conduct during period T1 as shown in the exemplary waveforms 218. As indicated by the dot configuration of the transformer 206, when the primary-side current iPRIMARY flows from the primary side coil 210 towards the switch 212, the induced secondary-side voltage VS reverse biases diode 214. When diode 214 is reversed biased, the secondary-side current iSECONDARY is zero, and the capacitor 215 supplies energy to the load 208. When switch 212 stops conducting at the end of the period T1, period T2 begins, and the polarity of the primary-side voltage VP and the secondary-side voltage reverses, which is often referred to as the flyback period. The reversal of the secondary-side voltage VS forward biases diode 214. When the diode 214 is forward biased, the secondary-side current iSECONDARY rises virtually instantaneously and then ramps down to zero when the switching power converter 216 operates in discontinuous conduction mode or critical conduction mode.


The controller 202 senses the primary-side current via primary-side sense current iPRIMARY_SENSE, which is, for example, a scaled version of the primary-side current iPRIMARY. The controller 202 determines the pulse width T1 of control signal CS2 to maintain the primary-side current iPRIMARY within a predetermined range. In at least one embodiment, the predetermined range is dictated by the component values of transformer 206, diode 214, capacitor 215, and the power demand of load 208. The particular manner of generating control signal CS2 is a matter of design choice. Exemplary systems and methods for generating the switch control signal CS2 are described in, for example, U.S. patent application Ser. No. 13/174,404, entitled “Constant Current Controller With Selectable Gain”, assignee Cirrus Logic, Inc., and inventors John L. Melanson, Rahul Singh, and Siddharth Maru, and U.S. patent application Ser. No. 13/486,947, filed on Jun. 1, 2012, entitled “PRIMARY-SIDE CONTROL OF A SWITCHING POWER CONVERTER WITH FEED FORWARD DELAY COMPENSATION”, assignee Cirrus Logic, Inc., inventors Zhaohui He, Robert T. Grisamore, and Michael A. Kost, which are both hereby incorporated by reference in their entireties. The power demand of the load 208 can be determined in any number of ways. For example, the power demand of the load 208 can be stored in a memory (not shown) of the controller 202, provided as a dimming level in the optional DIM signal, or set by a reference resistor (not shown).


The amount of energy delivered to the secondary-side of transformer 206 depends in part on knowing the ending time of period T2, which corresponds to the time at which the secondary-side current iSECONDARY decays to zero. Controller 202 utilizes primary-side sensing of the secondary-side voltage to determine the end of period T2. The particular location, components, and method of primary-side sensing is a matter of design choice. In at least one embodiment, the controller 202 performs primary-side sensing from node 217. When using primary-side sensing, the secondary current iSECONDARY is not directly observable by the controller 202. However, the control parameter generator 220 is capable of determining the one or more switching power converter control parameters, such as (i) an estimated time of a minimum value of the secondary-side voltage during the resonant period and (ii) an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero, by determining a resonant period factor of the secondary-side voltage and knowing an approximate timing relationship between the secondary-side voltage and the secondary-side current iSECONDARY.


Generating the control signal CS2 to cause the switch 202 to begin conducting at an estimated time of a minimum value of the secondary-side voltage VS during the resonant period increases the energy efficiency of the power distribution system 200. The switch 202 includes parasitic impedances, such as the parasitic capacitor 222. The energy efficiency is increased, for example, because when the secondary-side voltage VS is at a minimum value, the parasitic capacitor 222 is discharged. Thus, when control signal CS2 causes the switch 202 to conduct at an estimated time of a minimum value of the secondary-side voltage, the parasitic capacitor 222 does not charge or at least discharge is minimized when the switch 202 is turned ON.


To determine an estimated time of a minimum value of the secondary-side voltage VS during the resonant period, the controller 202 detects zero crossings of the signal ZCD during a resonant period of the secondary-side voltage VS. As subsequently described in more detail, if switch 212 remains non-conductive after the secondary-side voltage VS drops to zero during a period of the control signal CS2, the secondary-side voltage VS will resonate. By detecting at least two zero crossings of the resonating secondary-side voltage VS and determining the elapsed time between the detected zero crossings, the control parameter generator 220 can determine the resonant period factor. The minimum value of the resonating secondary-side voltage VS occurs 90° after each zero crossing, and 90° represents ¼ of the resonant period TRES. Thus, the minimum value of the resonating secondary-side voltage VS occurs at the time of the detected zero crossing plus TRES/4. The resonant period TRES is generally in the range of 0.667 μsec to 2 μsec. For example, if the time between two adjacent zero crossings of the resonant secondary-side voltage VS is 0.5 μsec, then the resonant period TRES is (0.5 μsec)·(2)=1.0 μsec and the resonant period factor TRES/4=0.25 μsec. Thus, when the control parameter generator 220 detects a zero crossing of the secondary-side voltage VS at time t0, then the control parameter generator 220 determines that the minimum value of the resonating secondary-side voltage VS will occur at time t0 plus 0.25 μsec.


When the secondary-side voltage VS resonates, the secondary-side voltage VS lags the secondary-side current iSECONDARY by X degrees, where X is a number. The resonant period factor for determining an estimated time at which secondary-side current decayed to approximately zero is represented by TRES·X/360°. In at least one embodiment, X is 90°, which equates to a resonant period factor of TRES/4. During the resonance of the secondary-side voltage VS and after the secondary-side current iSECONDARY decays to zero, the secondary-side voltage VS reaches approximately 0V X degrees after the secondary-side current decays to zero. By detecting a subsequent zero crossing of the secondary-side voltage VS, the control parameter generator 220 determines the resonant period factor TRES·X/360°. For example, if the time between two adjacent zero crossings of the resonant secondary-side voltage VS is 0.5 μsec, then the resonant period TRES is (0.5 μsec)·(2)=1.0 μsec. If X equals 90°, then the resonant period factor TRES/4 to determine the estimated time at which secondary-side current decayed to approximately zero=1.0 μsec/4=0.25 μsec. Thus, when the control parameter generator 220 detects a zero crossing of the secondary-side voltage VS at time t0, then the control parameter generator 220 determines that estimated time at which secondary-side current iSECONDARY decayed to approximately zero occurred at time t0 minus 0.25 μsec. The secondary-side voltage VS equals the primary-side voltage VP/N, and N is a number representing the turns ratio between the primary-side coil 210 and the secondary-side coil 204. The control signal generator 211 can utilize the estimated time at which secondary-side current iSECONDARY decayed to approximately zero to determine the power delivered to the load 208 since the power delivered to the secondary-side 208 equals approximately the integral of the secondary-side current iSECONDARY times the secondary-side voltage VS.


The frequency and timing of determining the resonant period factor or factors is a matter of design choice. In at least one embodiment, the control signal generator 211 generates the control signal CS2 to extend the time when the switch 212 is nonconductive to allow the control parameter generator 220 to probe the resonating secondary-side voltage VS to detect at least two zero crossings of a resonating secondary-side voltage VS. In at least one embodiment, the control parameter generator 220 detects the multiple zero crossings to determine the resonant period factors for multiple cycles of the control signal CS2 during a single cycle of an AC version of the input voltage VIN. In at least one embodiment, the control parameter generator 220 determines the resonant period factors at least three times during a single cycle of an AC version of the input voltage VIN. In at least one embodiment, the control parameter generator 220 probes the secondary-side voltage VS when the input voltage VIN is sufficient to reverse bias a body diode of the current control switch 212 to more accurately determine the resonant period factors. In at least one embodiment, the controller 202 also generates a control signal CS3 to control another switching power converter as, for example, described in U.S. Pat. No. 7,719,246, entitled “Power Control System Using a Nonlinear Delta-Sigma Modulator with Nonlinear Power Conversion Process Modeling”, assigned to Cirrus Logic, Inc., and inventor John L. Melanson, which is hereby incorporated by reference in its entirety. In at least one embodiment, the controller 202 also responds to a DIM signal generated by a dimmer (not shown) to modify the power delivered to the load 208 in accordance with a dimmer level indicated by the DIM signal. Exemplary systems and method of interfacing with a dimmer signal are described in, for example, U.S. patent application Ser. No. 12/570,550, entitled “Phase Control Dimming Compatible Lighting Systems”, assigned to Cirrus Logic, Inc., inventors William A. Draper and Robert Grisamore, which is hereby incorporated by reference in its entirety.



FIG. 3 depicts a power distribution system 300, which represents one embodiment of the power distribution system 200. FIG. 4 depicts an exemplary switching power converter control parameter determination process 400 to determine (i) an estimated time of a minimum value of the secondary-side voltage VS during a resonant period of the secondary-side voltage VS and (ii) an estimated time at which the secondary-side current iSECONDARY decayed to approximately zero. FIG. 5 depicts an exemplary set of waveforms 500 representing waveforms occurring in the power distribution system 300 when determining the exemplary switching power converter control parameters.


Referring to FIGS. 3, 4, and 5, the power distribution system 300 receives an input voltage VIN from an AC voltage source 302, which in one embodiment is identical to the voltage source 102 (FIG. 1). The controller 306 controls a switching power converter 307. At time t0, control signal generator 304 of controller 306 generates a logical one value of control signal CS2, which causes FET 308 to conduct. The control signal generator 304 represents one embodiment of the control signal generator 211. FET 308 conducts during period T1, and the primary-side current iPRIMARY energizes the primary-side coil 310 of transformer 312 during period T1. The secondary voltage VS across secondary-side coil 314 is negative during period T1, which reverse biases diode 316 and prevents flow of the secondary-side current iSECONDARY.


At time t1, control generator 304 turns FET 308 OFF (i.e. non-conductive), the primary-side voltage VP and secondary-side voltage VS reverse, and the secondary-side current iSECONDARY quickly rises. At the beginning of period T2OBSERVED and T2ACTUAL, the secondary-side voltage VS experiences brief oscillations followed by a time of an approximately constant value. The secondary-side current iSECONDARY flows through the now forward biased diode 316 and charges capacitor 317 to develop a voltage VLOAD across LEDs 319. The secondary-side current iSECONDARY decays to zero at time t2. Time t2 marks the end of the actual period T2ACTUAL. At time t2, which is the end of the actual period T2ACTUAL, the secondary-side voltage VS begins to resonate and reaches a first zero crossing during the cycle of control signal CS2 at time t3. In at least one embodiment, it is difficult to detect the exact time t2, and, thus, difficult to determine the exact end of period T2ACTUAL.


Transformer 312 includes an auxiliary coil 318 on the primary-side of transformer 310 that senses a reflected secondary-side voltage VS. The auxiliary voltage VAUX across the auxiliary coil 318 represents the sensed secondary-side voltage VS. Resistors 320 and 322 provide a voltage divider so that the zero crossing detection ZCD represents a scaled version of the auxiliary voltage VAUX and, thus, also represents a sensed version of the secondary-side voltage VS. In addition to sensing the secondary-side voltage VS, the auxiliary voltage VAUX also generates a current iAUX through resistor 324 and diode 326 to generate the controller supply voltage VDD across capacitor 328.


The value of the zero crossing detection signal ZCD tracks the secondary-side voltage VS and indicates a zero crossing of the secondary-side voltage VS at time t3. The elapsed time between time t1 and time t3 represents an observed period T2OBSERVED. In operation 402 during the resonant period of the secondary-side voltage VS, the control parameter generator 330 senses at least two instances of when the zero crossing detection signal ZCD reaches approximately 0V during a current control switch period TTSWITCH. For example, in at least one embodiment, the control parameter generator 330 senses the first zero crossing of the secondary-side voltage VS at time t3 and the second zero crossing at time t5. In operation 404, the control parameter generator 330 determines at least one resonant period factor. The elapsed time between times t5 and t3 equals ½ of the resonant period TRES. In at least one embodiment, the control parameter generator 330 also detects additional zero crossings, such as the zero crossing at time t6 and generates an average value of the resonant period TRES and/or a fraction of the resonant period TRES, such as TRES/4. The manner of detecting the 0V value of the zero crossing detection signal ZCD is a matter of design choice. In at least one embodiment, the control parameter generator 330 includes a digital microprocessor (not shown) connected to a memory (not shown) storing code that is executable by the processor to determine the control parameters. Other exemplary embodiments are discussed in more detail in FIG. 8.


The minimum value of the secondary-side voltage VS occurs at the lowest valley of the secondary-side voltage during the resonant period TRES. As evident in FIG. 5, the minimum value of the secondary-side voltage VS occurs at time t4, and time t4 equals the time from the first zero crossing at time t3 plus the resonant period factor TRES/4. The estimated time t2 at which the secondary-side current iSECONDARY decayed to approximately zero occurs X degrees prior to the first zero crossing at time t4 during the current control switch period TTSWITCH of the switch control signal CS2 while the secondary-side voltage VS is resonating. In at least one embodiment, X is 90°, which equates to a resonant period factor of TRES/4. Thus, the secondary-side current iSECONDARY decayed to approximately zero at time t3 minus the resonant factor TRES/4. Since X equals 90°, operation 404 determines one resonant period factor TRES/4 to determine both control parameters: (i) the estimated time of the minimum value of the secondary-side voltage VS during the resonant period TRES, which equates to time t4 and (ii) an estimated time at which the secondary-side current iSECONDARY decayed to approximately zero, which equates to time t2. If X is not approximately 90°, in at least one embodiment, the control parameter generator 330 determines a separate resonant period factor for determining time t4 and time t2. At time t7, the current control switch period TTSWITCH ends, and the control signal generator 304 initiates a new pulse and, thus, a new cycle of the control signal CS2.



FIG. 6 depicts an exemplary set of waveforms 600 representing waveforms occurring in the power distribution system 300 during normal operation. Referring to FIGS. 3, 4, and 6, during normal operation, based on the results of operations 402 and 404, the control parameter generator 330 performs operations 406, 408, and 410 to determine the control parameters for use by the control signal generator 304 to generate the switch control signal CS2. In operation 406, during a subsequent current control switch period TTSWITCH after the period depicted in FIG. 5, the control parameter generator 330 detects the first zero crossing at time tZC. Operation 408 determines the primary-side current control switching time tVSMIN by adding the resonant period factor TRES/4 determined in operation 404 to the zero crossing time tZC, i.e. tVSMIN=tZC+TRES/4. The control parameter generator 330 provides the resulting switching time tVSMIN to the control signal generator 304. At time tVSMIN, the control signal generator 304 generates a logical one value for control signal CS2, which causes FET 308 to conduct. As previously discussed, causing the FET 308 to conduct at the minimum value of the secondary-side voltage VS during the resonant period TRES increases the energy efficiency of the power distribution system 300.


Operation 410 determines the time tiS_END, which is the estimated time at which the secondary current iSECONDARY decayed to approximately zero at the end of the present period T2ACTUAL. Operation 410 determines the time tiS_END by subtracting the resonant period factor TRES/4 from the zero crossing time tZC, i.e. tiS_END=tZC−TRES/4. The control parameter generator 330 provides the time tiS_END to the control signal generator 304 to, for example, allow the control signal generator to determine how much current was provided to the secondary-side of the transformer 312 and generate the control signal period T1 in accordance with power demands of the LED 319. Operation 412 determines whether and when to repeat the switching power converter control parameter determination process 400 from operation 402 or operation 406 for the next current control switch period.


Determining how often to repeat the switching power converter control parameter determination process 400 from operation 402 is a matter of design choice. FIG. 7 depicts exemplary control signal and input voltage signals 700 with exemplary probing times TP1, TP2, TP3, and TP4. Referring to FIGS. 3 and 7, this embodiment of the input voltage VIN is a rectified sinusoidal wave. To operate more efficiently, in this embodiment, the controller signal generator 304 (FIG. 3) operates the switching power converter 307 in discontinuous conduction mode (DCM) when the input voltage VIN is less than a threshold voltage VTH and in critical conduction mode (CRM) when the input voltage VIN is greater than or equal to the threshold voltage VTH. The particular threshold voltage VTH is a matter of design choice and corresponds to, for example, the input voltage VIN at 30° and 150°. When the input voltage VIN is greater than the threshold voltage VTH and the switching power converter operates in CRM, the minimum drain voltage VDRAIN of FET 308 when the secondary-side voltage VS resonates is sufficient to keep a parasitic body diode (not shown) of FET 308 reverse biased. However, when the input voltage VIN is less than the threshold voltage VTH and the switching power converter operates in DCM, the minimum drain voltage VDRAIN may be insufficient to keep the parasitic body diode reversed biased with the secondary-side voltage VS resonates.


Thus, in at least one embodiment, operation 412 causes the control parameter generator 330 to repeat from operation 402 (corresponding to FIG. 5) during the time when the switching power converter 307 operates in the CRM region. In at least one embodiment, the control parameter generator 330 performs the operations 402 and 404 to determine the resonant period factor at multiple probing times during each cycle of the input voltage VIN. Probing times TP1, TP2, TP3, and TP4 are exemplary. In at least one embodiment, the control parameter generator 330 utilizes multiple probing times to update the resonant period factor since the resonant period can change over time. In at least one embodiment, the control parameter generator 330 also averages multiple determined resonant period factors to obtain a higher confidence resonant period factor. The particular number of determined resonant period factors obtained during a cycle of the input voltage VIN is a matter of design choice. The particular probing times are also a matter of design choice. In at least one embodiment, the control parameter generator 330 performs operations 402 and 404 at least three times per 50-60 Hz cycle of the input voltage VIN. For overall perspective, in at least one embodiment, the control signal CS2 is at least 25 kHz. Thus, in at least one embodiment, most of the time, operation 412 repeats the switching power converter control parameter determination process 400 from operation 406. In at least one embodiment, cycle 702 of the input voltage VIN is representative of subsequent cycles.



FIG. 8 depicts a control parameter generator 800, which represents a digital embodiment of control parameter generator 330. The control parameter generator 800 represents a digital version of the control parameter generator 330. The control parameter generator 800 includes an analog-to-converter (ADC) 802 to receive and convert the zero crossing detection signal ZCD into a digital value ZCD(n). The logical comparator 804 compares ZCD(n) with approximately 0 to determine if the value of ZCD(n) equals approximately 0. “Approximately 0” is used since the voltage divider by resistors 320 and 322 creates a slight offset of ZCD when the reflected secondary-side voltage VS equals zero. In at least one embodiment, ZCD is modified by the offset, and ADC 802 compares the modified ZCD with 0.


The logical comparator generates the output signal tZC(n) at the time ZCD(n) that is approximately zero and provides tZC(n) to control parameter determination stage 806. Counter 808 receives tZC(n) and determines the time between tZC(n) and tZC(n+1), which equals TRES/2. The resonant period factor generator 810 determines the resonant period factor from the time between tZC(n) and tZC(n+1). Filter 812 averages M number of resonant period factors generated by the resonant period factor 810. M is an integer greater than or equal to two. The control parameter processor performs operations 406-412 to determine the time tiS_END at which the secondary current decayed to zero and the time tVSMIN of minimum value of the secondary-side voltage VS during resonance.



FIG. 9 depicts control parameter generator 900, which represents a mixed analog/digital version of the control parameter generator 330. The control parameter generator 900 includes an analog comparator 902 to compare the zero crossing detection signal ZCD with approximately 0V to account for the offset voltage of the resistors 320 and 322 voltage divider. The comparator 902 generates the zero crossing time tZC(n) as a logical zero when the zero crossing detection signal ZCD is less than ˜0V. The control parameter determination stage 806 then processes the zero crossing times tZC(n) as previously described in conjunction with FIG. 8.


Thus, a power distribution system includes a controller that determines one or more switching power converter control parameters using a resonant period factor from a reflected secondary-side voltage and an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage.


Although embodiments have been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.

Claims
  • 1. A method comprising: operating a switching power converter in discontinuous conduction mode when an input voltage to the switching power converter is less than a threshold voltage;operating the switching power converter in critical conduction mode when the input voltage is greater than the threshold voltage;receiving a primary-side sense signal, wherein the primary-side sense signal is from a portion of a switching power converter that includes a primary-side of a transformer and the sense signal represents a secondary-side voltage across a secondary-side of the transformer;when the switching power converter is operating in critical conduction mode: determining one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage, wherein each resonant period occurs after the secondary-side voltage decreases to zero and before a current in the primary-side of the transformer increases from approximately zero;determining one or more resonant period factors using the one or more times between approximately zero crossings of the secondary-side voltage;determining a time value that indicates when an approximate minimum value of the secondary-side voltage occurs during at least one of the resonant periods using (i) the one or more resonant period factors and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage; andgenerating a switch control signal pulse in accordance with the determined time value, which indicates occurrence of the minimum value of the secondary-side voltage, to control conductivity of a switch that controls current in the primary-side of the transformer of the switching power converter.
  • 2. The method of claim 1 wherein the one or more switching power converter control parameters comprise an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
  • 3. The method of claim 2 wherein the one or more resonant period factors comprise a time that equals approximately one-fourth of the resonant period, and determining one or more switching power converter control parameters further comprises: during a cycle of a switch controlling current in the primary-side of the transformer, subtracting the resonant period factor from a time of a first approximately zero voltage crossing of the resonant period to determine an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
  • 4. The method of claim 1 wherein the one or more switching power converter control parameters comprise an estimated time of a minimum value of the secondary-side voltage during the resonant period.
  • 5. The method of claim 4 wherein the one or more resonant period factors comprise a time that equals approximately one-fourth of the resonant period, and determining one or more switching power converter control parameters further comprises: during a cycle of a switch controlling current in the primary-side of the transformer, adding the resonant period factor to a time of a first approximately zero voltage crossing of the resonant period to determine an estimated time of a minimum value of the secondary-side voltage during the resonant period.
  • 6. The method of claim 4 further comprising: causing the switch controlling the current in the primary-side of the transformer to conduct one-quarter period after a detected zero voltage crossing of the secondary-side voltage.
  • 7. The method of claim 1 wherein the one or more switching power converter control parameters comprise (i) an estimated time of a minimum value of the secondary-side voltage during the resonant period and (ii) an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
  • 8. The method of claim 1 wherein the signal representing the secondary-side voltage across a secondary-side of the transformer is a reflected secondary-side voltage across an auxiliary winding of the transformer coupled to the secondary-side of the transformer.
  • 9. The method of claim 1 wherein: determining each time between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage comprises: allowing the secondary-side voltage to resonate for at least one-half period between adjacent zero crossings; anddetermining the one or more resonant period factors from the one or more times between approximately zero crossings of the secondary-side voltage comprises: averaging times between multiple adjacent approximately zero crossings of the secondary-side voltage multiple at least one-half resonant periods to determine an average of the resonant period factors.
  • 10. The method of claim 1 further comprising: determining one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage when an input voltage to the primary-side of the transformer is sufficient to reverse bias a body diode of a switch that controls current in the primary-side of the transformer.
  • 11. The method of claim 1 further comprising: detecting the approximately zero crossings of the secondary-side voltage.
  • 12. The method of claim 1 further comprising: generating a control signal to control power provided to a load.
  • 13. The method of claim 12 wherein the load comprises one or more light emitting diodes.
  • 14. An apparatus comprising: a controller wherein the controller includes an input to receive a primary-side sense signal, wherein the primary-side sense signal is from a portion of a switching power converter that includes a primary-side of a transformer and the sense signal represents a secondary-side voltage across a secondary-side of the transformer, and during operation the controller is configured to: determine one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage, wherein each resonant period occurs after the secondary-side voltage decreases to zero and before a current in the primary-side of the transformer increases from approximately zero;determine one or more resonant period factors using the one or more times between approximately zero crossings of the secondary-side voltage; anddetermine a time value that indicates when an approximate minimum value of the secondary-side voltage occurs during at least one of the resonant periods using (i) the one or more resonant period factors and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage; andgenerate a switch control signal pulse in accordance with the determined time value, which indicates occurrence of the minimum value of the secondary-side voltage, to control conductivity of a switch that controls current in the primary-side of the transformer of the switching power converter.
  • 15. The apparatus of claim 14 wherein the one or more switching power converter control parameters comprise an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
  • 16. The apparatus of claim 15 wherein the one or more resonant period factors comprise a time that equals approximately one-fourth of the resonant period, and to determine the one or more switching power converter control parameters, the controller is further capable to: during a cycle of a switch controlling current in the primary-side of the transformer, subtract the resonant period factor from a time of a first approximately zero voltage crossing of the resonant period to determine an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
  • 17. The apparatus of claim 14 wherein the one or more switching power converter control parameters comprise an estimated time of a minimum value of the secondary-side voltage during the resonant period.
  • 18. The apparatus of claim 14 wherein the one or more resonant period factors comprise a time that equals approximately one-fourth of the resonant period, and to determine the one or more switching power converter control parameters, the controller is further capable to: during a cycle of a switch controlling current in the primary-side of the transformer, add the resonant period factor to a time of a first approximately zero voltage crossing of the resonant period to determine an estimated time of a minimum value of the secondary-side voltage during the resonant period.
  • 19. The apparatus of claim 18, the controller is further capable to: cause the switch controlling the current in the primary-side of the transformer to conduct one-quarter period after a detected zero voltage crossing of the secondary-side voltage.
  • 20. The apparatus of claim 14 wherein the one or more switching power converter control parameters comprise (i) an estimated time of a minimum value of the secondary-side voltage during the resonant period and (ii) an estimated time at which a current in the secondary-side of the transformer decayed to approximately zero.
  • 21. The apparatus of claim 14 wherein the signal representing the secondary-side voltage across a secondary-side of the transformer is a reflected secondary-side voltage across an auxiliary winding of the transformer coupled to the secondary-side of the transformer.
  • 22. The apparatus of claim 14 wherein: to determine each time between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage, the controller is further capable to: allow the secondary-side voltage to resonate for at least one-half period between adjacent zero crossings; andto determine the one or more resonant period factors from the one or more times between approximately zero crossings of the secondary-side voltage, the controller is further capable to: average times between multiple adjacent approximately zero crossings of the secondary-side voltage multiple at least one-half resonant periods to determine an average of the resonant period factors.
  • 23. The apparatus of claim 14 wherein the controller is further capable to: determine one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage when an input voltage to the primary-side of the transformer is sufficient to reverse bias a body diode of a switch that controls current in the primary-side of the transformer.
  • 24. The apparatus of claim 14 wherein the controller is further capable to: detect the approximately zero crossings of the secondary-side voltage.
  • 25. The apparatus of claim 14 wherein the controller is further capable to: generate a control signal to control power provided to a load.
  • 26. The apparatus of claim 25 wherein the load comprises one or more light emitting diodes.
  • 27. An apparatus comprising: a switching power converter, wherein the switching power converter includes a transformer having a primary-side and a secondary-side;a controller wherein the controller includes an input to receive a primary-side sense signal, wherein the primary-side sense signal is from a portion of a switching power converter that includes a primary-side of a transformer and the sense signal represents a secondary-side voltage across a secondary-side of the transformer, and during operation the controller is configured to: determine one or more times between approximately zero crossings of the secondary-side voltage during one or more resonant periods of the secondary-side voltage, wherein each resonant period occurs after the secondary-side voltage decreases to zero and before a current in the primary-side of the transformer increases from approximately zero;determine one or more resonant period factors using the one or more times between approximately zero crossings of the secondary-side voltage; anddetermine a time value that indicates when an approximate minimum value of the secondary-side voltage occurs during at least one of the resonant periods using (i) the one or more resonant period factors and (ii) an occurrence of an approximate zero voltage crossing of the secondary-side voltage during a resonant period of the secondary-side voltage;generate a switch control signal pulse in accordance with the determined time value, which indicates occurrence of the minimum value of the secondary-side voltage, to control conductivity of a switch that controls current in the primary-side of the transformer of the switching power converter; anda load coupled to the secondary-side of the transformer of the switching power converter.
  • 28. The apparatus of claim 27 wherein the load comprises one or more light emitting diodes.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 61/492,871, filed Jun. 3, 2011, and entitled “Resonant Period Extractor for Switching Mode Power Supply”,” which is incorporated by reference in its entirety.

US Referenced Citations (209)
Number Name Date Kind
3790878 Brokaw Feb 1974 A
4677366 Wilkinson et al. Jun 1987 A
4683529 Bucher Jul 1987 A
4737658 Kronmuller et al. Apr 1988 A
4739462 Farnsworth et al. Apr 1988 A
4937728 Leonardi Jun 1990 A
4940929 Williams Jul 1990 A
4977366 Powell Dec 1990 A
5001620 Smith Mar 1991 A
5003454 Bruning Mar 1991 A
5055746 Hu et al. Oct 1991 A
5109185 Ball Apr 1992 A
5173643 Sullivan et al. Dec 1992 A
5264780 Bruer et al. Nov 1993 A
5278490 Smedley Jan 1994 A
5383109 Maksimovic et al. Jan 1995 A
5424932 Inou et al. Jun 1995 A
5430635 Liu Jul 1995 A
5479333 McCambridge et al. Dec 1995 A
5481178 Wilcox et al. Jan 1996 A
5565761 Hwang Oct 1996 A
5638265 Gabor Jun 1997 A
5691890 Hyde Nov 1997 A
5747977 Hwang May 1998 A
5757635 Seong May 1998 A
5764039 Choi et al. Jun 1998 A
5783909 Hochstein Jul 1998 A
5798635 Hwang et al. Aug 1998 A
5808453 Lee et al. Sep 1998 A
5874725 Yamaguchi Feb 1999 A
5960207 Brown Sep 1999 A
5994885 Wilcox et al. Nov 1999 A
6043633 Lev et al. Mar 2000 A
6084450 Smith et al. Jul 2000 A
6091233 Hwang et al. Jul 2000 A
6160724 Hemena et al. Dec 2000 A
6229292 Redl et al. May 2001 B1
6259614 Ribarich et al. Jul 2001 B1
6300723 Wang et al. Oct 2001 B1
6304066 Wilcox et al. Oct 2001 B1
6304473 Telefus Oct 2001 B1
6343026 Perry Jan 2002 B1
6356040 Preis et al. Mar 2002 B1
6445600 Ben-Yaakov Sep 2002 B2
6469484 L'Hermite et al. Oct 2002 B2
6510995 Muthu et al. Jan 2003 B2
6531854 Hwang Mar 2003 B2
6580258 Wilcox et al. Jun 2003 B2
6583550 Iwasa Jun 2003 B2
6621256 Muratov et al. Sep 2003 B2
6628106 Batarseh et al. Sep 2003 B1
6657417 Hwang Dec 2003 B1
6696803 Tao et al. Feb 2004 B2
6724174 Esteves et al. Apr 2004 B1
6734639 Chang et al. May 2004 B2
6768655 Yang et al. Jul 2004 B1
6781351 Mednik et al. Aug 2004 B2
6839247 Yang Jan 2005 B1
6862198 Muegge et al. Mar 2005 B2
6882552 Telefus et al. Apr 2005 B2
6894471 Corva et al. May 2005 B2
6933706 Shih Aug 2005 B2
6940733 Schie et al. Sep 2005 B2
6944034 Shteynberg et al. Sep 2005 B1
6956750 Eason et al. Oct 2005 B1
6975523 Kim et al. Dec 2005 B2
6980446 Simada et al. Dec 2005 B2
7072191 Nakao et al. Jul 2006 B2
7099163 Ying Aug 2006 B1
7102902 Brown et al. Sep 2006 B1
7145295 Lee et al. Dec 2006 B1
7161816 Shteynberg et al. Jan 2007 B2
7221130 Ribeiro et al. May 2007 B2
7233135 Noma et al. Jun 2007 B2
7266001 Notohamiprodjo et al. Sep 2007 B1
7276861 Shteynberg et al. Oct 2007 B1
7292013 Chen et al. Nov 2007 B1
7295452 Liu Nov 2007 B1
7310244 Yang et al. Dec 2007 B2
7342812 Piper et al. Mar 2008 B2
7388764 Huynh et al. Jun 2008 B2
7411379 Chu Aug 2008 B2
7505287 Kesterson Mar 2009 B1
7554473 Melanson Jun 2009 B2
7606532 Wuidart Oct 2009 B2
7642762 Xie et al. Jan 2010 B2
7647125 Melanson Jan 2010 B2
7667986 Artusi et al. Feb 2010 B2
7684223 Wei Mar 2010 B2
7710047 Shteynberg et al. May 2010 B2
7719246 Melanson May 2010 B2
7719248 Melanson May 2010 B1
7746043 Melanson Jun 2010 B2
7755525 Nanda et al. Jul 2010 B2
7759881 Melanson Jul 2010 B1
7786711 Wei et al. Aug 2010 B2
7804256 Melanson Sep 2010 B2
7804480 Jeon et al. Sep 2010 B2
7821237 Melanson Oct 2010 B2
7834553 Hunt et al. Nov 2010 B2
7852017 Melanson Dec 2010 B1
7863828 Melanson Jan 2011 B2
7872883 Elbanhawy Jan 2011 B1
7880400 Zhou et al. Feb 2011 B2
7888922 Melanson Feb 2011 B2
7894216 Melanson Feb 2011 B2
7969125 Melanson Jun 2011 B2
8008898 Melanson et al. Aug 2011 B2
8008902 Melanson et al. Aug 2011 B2
8018171 Melanson et al. Sep 2011 B1
8040703 Melanson Oct 2011 B2
8076920 Melanson Dec 2011 B1
8115465 Park et al. Feb 2012 B2
8120341 Melanson Feb 2012 B2
8125805 Melanson Feb 2012 B1
8169806 Sims et al. May 2012 B2
8179110 Melanson May 2012 B2
8188677 Melanson et al. May 2012 B2
8193717 Leiderman Jun 2012 B2
8222772 Vinciarelli Jul 2012 B1
8222832 Zheng et al. Jul 2012 B2
8232736 Melanson Jul 2012 B2
8242764 Shimizu et al. Aug 2012 B2
8248145 Melanson Aug 2012 B2
8344707 Melanson et al. Jan 2013 B2
8369109 Niedermeier et al. Feb 2013 B2
8441210 Shteynberg et al. May 2013 B2
8487591 Draper et al. Jul 2013 B1
8536799 Grisamore et al. Sep 2013 B1
8581504 Kost et al. Nov 2013 B2
8593075 Melanson et al. Nov 2013 B1
8610364 Melanson et al. Dec 2013 B2
8654483 Etter Feb 2014 B2
8803439 Stamm et al. Aug 2014 B2
8816593 Lys et al. Aug 2014 B2
8866452 Kost et al. Oct 2014 B1
8912781 Singh et al. Dec 2014 B2
8947017 Kikuchi et al. Feb 2015 B2
20030090252 Hazucha May 2003 A1
20030111969 Konoshi et al. Jun 2003 A1
20030160576 Suzuki Aug 2003 A1
20030174520 Bimbaud Sep 2003 A1
20030214821 Giannopoulos et al. Nov 2003 A1
20030223255 Ben-Yaakov Dec 2003 A1
20040037094 Muegge et al. Feb 2004 A1
20040046683 Mitamura et al. Mar 2004 A1
20040196672 Amei Oct 2004 A1
20050057237 Clavel Mar 2005 A1
20050207190 Gritter Sep 2005 A1
20050231183 Li et al. Oct 2005 A1
20050270813 Zhang et al. Dec 2005 A1
20050275354 Hausman Dec 2005 A1
20060013026 Frank et al. Jan 2006 A1
20060022648 Zeltser Feb 2006 A1
20060022916 Aiello Feb 2006 A1
20060214603 Oh et al. Sep 2006 A1
20060261754 Lee Nov 2006 A1
20060285365 Huynh Dec 2006 A1
20070024213 Shteynberg Feb 2007 A1
20070103949 Tsuruya May 2007 A1
20070170873 Mishima Jul 2007 A1
20070182338 Shteynberg Aug 2007 A1
20070285031 Shteynberg Dec 2007 A1
20080018261 Kastner Jan 2008 A1
20080043504 Ye Feb 2008 A1
20080062584 Freitag et al. Mar 2008 A1
20080062586 Apfel Mar 2008 A1
20080117656 Clarkin May 2008 A1
20080130336 Taguchi Jun 2008 A1
20080174291 Hansson Jul 2008 A1
20080175029 Jung et al. Jul 2008 A1
20080224636 Melanson Sep 2008 A1
20080259655 Wei Oct 2008 A1
20080278132 Kesterson et al. Nov 2008 A1
20080310194 Huang et al. Dec 2008 A1
20090059632 Li et al. Mar 2009 A1
20090067204 Ye et al. Mar 2009 A1
20090079357 Shteynberg et al. Mar 2009 A1
20090108677 Walter et al. Apr 2009 A1
20090184665 Ferro Jul 2009 A1
20090243582 Irissou et al. Oct 2009 A1
20090284182 Cencur Nov 2009 A1
20090295300 King Dec 2009 A1
20100060200 Newman et al. Mar 2010 A1
20100066328 Shimizu et al. Mar 2010 A1
20100128501 Huang et al. May 2010 A1
20100141317 Szajnowski Jun 2010 A1
20100148681 Kuo et al. Jun 2010 A1
20100156319 Melanson Jun 2010 A1
20100213859 Shteynberg et al. Aug 2010 A1
20100218367 Feng et al. Sep 2010 A1
20100238689 Fei et al. Sep 2010 A1
20100244726 Melanson Sep 2010 A1
20100244793 Caldwell Sep 2010 A1
20110110132 Rausch May 2011 A1
20110199793 Kuang et al. Aug 2011 A1
20110276938 Perry et al. Nov 2011 A1
20110291583 Shen Dec 2011 A1
20110309760 Beland et al. Dec 2011 A1
20120025736 Singh et al. Feb 2012 A1
20120056551 Zhu et al. Mar 2012 A1
20120146540 Khayat et al. Jun 2012 A1
20120153858 Melanson et al. Jun 2012 A1
20120176819 Gao et al. Jul 2012 A1
20120187997 Liao et al. Jul 2012 A1
20120248998 Yoshinaga Oct 2012 A1
20120320640 Baurle et al. Dec 2012 A1
20130181635 Ling Jul 2013 A1
20140218978 Heuken et al. Aug 2014 A1
Foreign Referenced Citations (22)
Number Date Country
0536535 Apr 1993 EP
0636889 Jan 1995 EP
0636889 Jan 1995 EP
1213823 Jun 2002 EP
1289107 Aug 2002 EP
1289107 May 2003 EP
1962263 Aug 2008 EP
2232949 Sep 2010 EP
2257124 Dec 2010 EP
2006022107 Mar 2006 JP
2008053181 Mar 2006 JP
0184697 Nov 2001 WO
2004051834 Jun 2004 WO
2006013557 Feb 2006 WO
2006022107 Mar 2006 WO
2007016373 Feb 2007 WO
2008004008 Jan 2008 WO
2008152838 Dec 2008 WO
2010011971 Jan 2010 WO
2010065598 Jun 2010 WO
2010065598 Oct 2010 WO
2011008635 Jan 2011 WO
Non-Patent Literature Citations (92)
Entry
Brkovic, Milivoje, Automatic Current Shaper with Fast Output Regulation and Soft-Switching, Telecommunications Energy Conference, INTELEC '93. 15th International, Sep. 27-30, 1993, pp. 379-386, vol. 1, California Institute Technology, Pasadena, California USA.
Dilouie, Craig, Introducing the LED Driver, Electrical Construction & Maintenance (EC&M), Sep. 1, 2004, ,pp. 28-32, Zing Communications, Inc., Calgary, Alberda, Canada.
Spiazzi, Giorgio, Simone Buso and Gaudenzio Meneghesso, Analysis of a High-Power-Factor Electronic Ballast for High Brightness Light Emitting Diode, Power Electronics Specialist Conference, 2005. PESC '05, IEEE 36th, pp. 1494-1499, 2005, Dept. of Information Engineering, University of Padova, Padova, Italy.
Supertex Inc, 56W Off-line LED Driver, 120VAC with PFC, 160V, 350mA Load, Dimmer Switch Compatible, DN-H05, pp. 1-20, Jun. 17, 2008, Sunnyvale, California, USA.
Renesas, Renesas Technology Releases Industry's First Critical-Conduction-Mode Power Factor Correction Control IC Implementing Interleaved Operations, R2A20112, Dec. 18, 2006, Tokyo, Japan.
Renesas, PFC Control IC R2A20111 Evaluation Board, Application Note R2A20111 EVB, Feb. 2007, Rev. 1.0, Tokyo, Japan.
Renesas, Power Factor Correction Controller IC, HA16174P/FP, Rev. 1.0, Jan. 6, 2006, Tokyo, Japan.
Seidel, et al, A Practical Comparison Among High-Power-Factor Electronic Ballasts with Similar Ideas, IEEE Transactions on Industry Applications, vol. 41, No. 6, Nov./Dec. 2005, pp. 1574-1583, Santa Maria, Brazil.
STMicroelectronics, Transition-Mode PFC Controller, Datasheet L6562, Rev. 8, Nov. 2005, Geneva, Switzerland.
STMicroelectronics, Electronic Ballast with PFC Using L6574 and L6561, Application Note AN993, May 2004, Geneva Switzerland.
STMicroelectronics, Advanced Transition-Mode PFC Controller L6563 and L6563A, Mar. 2007, Geneva Switzerland.
STMicroelectronics, CFL/TL Ballast Driver Preheat and Dimming, L6574, Sep. 2003, Geneva Switzerland.
STMicroelectronics, Power Factor Corrector, L6561, Rev. 16, Jun. 2004, Geneva, Switzerland.
Texas Instruments, Avoiding Audible Noise at Light Loads When Using Leading Edge Triggered PFC Converters, Application Report SLUA309A, Mar. 2004—Revised Sep. 2004, Dallas, TX, USA.
Texas Instruments, Startup Current Transient of the Leading Edge Triggered PFC Controllers, Application Report SLUA321, Jul. 2004, Dallas, TX, USA.
Texas Instruments, Current Sense Transformer Evaluation UCC3817, Application Report SLUA308, Feb. 2004, Dallas, TX, USA.
Texas Instruments, 350-W, Two-Phase Interleaved PFC Pre-regulator Design Review, Application Report SLUA369B, Feb. 2005—Revised Mar. 2007, Dallas, TX, USA.
Texas Instruments, Average Current Mode Controlled Power Factor Correction Converter using TMS320LF2407A, Application Report SPRA902A, Jul. 2005, Dallas, TX, USA.
Texas Instruments, Transition Mode PFC Controller, UCC28050, UCC28051, UCC38050, UCC38051, Application Note SLUS5150, Sep. 2002—Revised Jul. 2005, Dallas TX, USA.
Texas Instruments, Interleaving Continuous Conduction Mode PFC Controller, UCC28070, SLUS794C, Nov. 2007—Revised Jun. 2009, Dallas, TX, USA.
Texas Instruments, BiCMOS Power Factor Prerefulator Evaluation Board UCC3817, User's Guide, SLUU077C, Sep. 2000—Revised Nov. 2002, Dallas, TX, USA.
On Semiconductor, Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653, Application Note AND8184/D, Nov. 2004, Phoenix, AZ, USA.
Unitrode, BiCMOS Power Factor Preregulator, Texas Instruments, UCC2817, UCC2818, UCC3817, UCC3818, SLUS3951, Feb. 2000—Revised Feb. 2006, Dallas, TX, USA.
Unitrode, Optimizing Performance in UC 3854 Power Factor Correction Applications, Design Note DDN-39E, 1999, Merrimack, ME, USA.
Unitrode, High Power-Factor Preregulator, UC1852, UC2852, UC3852, Feb. 5, 2007, Merrimack, ME, USA.
Unitrode, UC3854A/B and UC3855A/B Provide Power Limiting with Sinusoidal Input Current for PFC Front Ends, SLUA196A, Design Note DN-66, Jun. 1995—Revised Nov. 2001, Merrimack, ME, USA.
Unitrode, Programmable Output Power Factor Preregulator, UCC2819, UCC3819, SLUS482B, Apr. 2001—Revised Dec. 2004, Merrimack, ME, USA.
Yao, et al, Soft Switching Circuit for Interleaved Boost Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007, pp. 80-86, Zhejiang Univ., Hangzhou.
Zhang, et al, A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006, pp. 1745-1753, Ontario, Canada.
Zhou, et al, Novel Sampling Algorithm for DSP Controlled 2kW PFC Converter, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 217-222, Zhejiang Univ., Hangzhou.
Texas Instruments, UCC281019, 8-Pin Continuous Conduction Mode (CCM) PFC Controller, SLU828B, Revised Apr. 2009, all pages, Dallas, Texas, USA.
http://toolbarpdf.com/docs/functions-and-features-of-inverters.html printed on Jan. 20, 2011.
International Search Report and Written Opinion issued in the corresponding PCT Application No. PCT/US2012/040522 and mailed on Sep. 10, 2012.
International Preliminary Report on Patentability, PCT/US2012/040522, The International Bureau of WIPO, Dec. 4, 2013, p. 1.
Written Opinion, PCT/US2012/040522, European Patent Office, Dec. 4, 2013, pp. 1-7.
Texas Instruments, High Performance Power Factor Preregulator, UC2855A/B and UC3855A/B, SLUS328B, Jun. 1998, Revised Oct. 2005, pp. 1-14, Dallas, TX, USA.
Balogh, Laszlo, et al,Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductr-Current Mode, 1993, IEEE, pp. 168-174, Switzerland.
Cheng, Hung L., et al, A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology, Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Aug. 14-16, 2006, vol. 50, No. 4, Aug. 2003, pp. 759-766, Nat. Ilan Univ., Taiwan.
Fairchild Semiconductor, Theory and Application of the ML4821 Average Current Mode PFC Controllerr, Fairchild Semiconductor Application Note 42030, Rev. 1.0, Oct. 25, 2000, pp. 1-19, San Jose, California, USA.
Garcia, O., et al, High Efficiency PFC Converter to Meet EN610000302 and A14, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium, vol. 3, pp. 975-980, Div. de Ingenieria Electronica, Univ. Politecnica de Madrid, Spain.
Infineon Technologies AG, Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM), Infineon Power Management and Supply, CCM-PFC, ICE2PCS01, ICE2PCSO1G, Version 2.1, Feb. 6, 2007, p. 1-22, Munchen, Germany.
Lu, et al, Bridgeless PFC Implementation Using One Cycle Control Technique, International Rectifier, 2005, pp. 1-6, Blacksburg, VA, USA.
Brown, et al, PFC Converter Design with IR1150 One Cycle Control IC, International Rectifier, Application Note AN-1077, pp. 1-18, El Segundo CA, USA.
International Rectifer, PFC One Cycle Control PFC IC, International Rectifier, Data Sheet No. PD60230 rev. C, IR1150(S)(PbF), IR11501(S)(PbF), Feb. 5, 2007, pp. 1-16, El Segundo, CA, USA.
International Rectifier, IRAC1150-300W Demo Board, User's Guide, Rev 3.0, International Rectifier Computing and Communications SBU-AC-DC Application Group, pp. 1-18, Aug. 2, 2005, El Segundo, CO USA.
Lai, Z., et al, A Family of Power-Factor-Correction Controllerr, Applied Power Electronics Conference and Exposition, 1997. APEC '97 Conference Proceedings 1997., Twelfth Annual, vol. 1, pp. 66-73, Feb. 23-27, 1997, Irvine, CA.
Lee, P, et al, Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors, IEEE Transactions on Industrial Electronics, vol. 47, No. 4, Aug. 2000, pp. 787-795, Hung Horn, Kowloon, Hong Kong.
Linear Technology, Single Switch PWM Controller with Auxiliary Boost Converter, Linear Technology Corporation, Data Sheet LT1950, pp. 1-20, Milpitas, CA, USA.
Linear Technology, Power Factor Controller, Linear Technology Corporation, Data Sheet LT1248, pp. 1-12, Milpitas, CA, USA.
Supertex, Inc., HV9931 Unity Power Factor LED Lamp Driver, Supertex, Inc., Application Note AN-H52, 2007, pp. 1-20, Sunnyvale, CA, USA.
Ben-Yaakov, et al, The Dynamics of a PWM Boost Converter with Resistive Input, IEEE Transactions on Industrial Electronics, vol. 46., No. 3, Jun. 1999, pp. 1-8, Negev, Beer-Sheva, Israel.
Erickson, Robert W., et al, Fundamentals of Power Electronics, Second Edition, Chapter 6, 2001, pp. 131-184, Boulder CO, USA.
Fairchild Semiconductor, Theory and Application of the ML4821 Average Current Mode PFC Controller, Fairchild Semiconductor, Application Note 42030, Rev. 1.0, Oct. 25, 2000, pp. 1-19, San Jose, CA, USA.
Fairchild Semiconductor, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Application Note 6004, Rev. 1.0.1, Oct. 31, 2003, San Jose, CA, USA.
Fairfield Semiconductor, Power Factor Correction (PFC) Basics, Application Note 42047, Rev. 0.9.0, Aug. 19, 2004, San Jose, CA, USA.
Fairchild Semiconductor, Design of Power Factor Correction Circuit Using FAN7527B, Application Note AN4121, Rev. 1.0.1, May 30, 2002, San Jose, CA, USA.
Fairchild Semiconductor, Low Start-Up Current PFC/PWM Controller Combos FAN4800, Rev. 1.0.6, Nov. 2006, San Jose, CA, USA.
Fairchild Semiconductor, Power Factor Correction Controller FAN4810, Rev. 1.0.12, Sep. 24, 2003, San Jose, CA, USA.
Fairchild Semiconductor, ZVS Average Current PFC Controller Fan 4822, Rev. 1.0.1, Aug. 10, 2001, San Jose, CA, USA.
Fairchild Semiconductor, Ballast Control IC FAN7532, Rev. 1.0.2, Jun. 2006, San Jose, CA, USA.
Fairchild Semiconductor, Simple Ballast Controller FAN7544, Rev. 1.0.0, Sep. 21, 2004, San Jose, CA, USA.
Fairchild Semiconductor, Power Factor Correction Controller FAN7527B, Aug. 16, 2003, San Jose, CA, USA.
Fairchild Semiconductor, Ballast Control IC FAN7711, Rev. 1.0.2, 2007, San Jose, CA, USA.
Fairchild Semicondctor, Simple Ballast Controller, KA7541, Rev. 1.0.3, Sep. 27, 2001, San Jose, CA, USA.
Fairchild Semiconductor, Power Factor Controller, ML4812, Rev. 1.0.4, May 31, 2001, San Jose, CA, USA.
Fairchild Semiconductor, Power Factor Controller, ML4821, Rev. 1.0.2, Jun. 19, 2001, San Jose, CA, USA.
Freescale Semiconductor, Dimmable Light Ballast with Power Factor Correction, Designer Reference Manual, DRM067, Rev. 1, Dec. 2005, M681-1C08 Microcontrollers, Chandler, AZ, USA.
Freescale Semiconductor, Design of Indirect Power Factor Correction Using 56F800/E, Freescale Semiconductor Application Note, AN1965, Rev. 1, Jul. 2005, Chandler, AZ, USA.
Freescale Semiconductor, Implementing PFC Average Current Mode Control using the MC9S12E128, Application Note AN3052, Addendum to Reference Design Manual DRM064, Rev. 0, Nov. 2005, Chandler, AZ, USA.
Hirota, et al, Analysis of Single Switch Delta-Sigma Modulated Pulse Space Modulation PFC Converter Effectively Using Switching Power Device, Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, vol. 2, pp. 682-686, Hyogo Japan.
Madigan, et al, Integrated High-Quality Rectifier-Regulators, Industrial Electronics, IEEE Transactions, vol. 46, Issue 4, pp. 749-758, Aug. 1999, Cary, NC, USA.
Maksimovic, et al, Impact of Digital Control in Power Electronics, International Symposium on Power Semiconductor Devices and ICS, 2004, Boulder, CO, USA.
Mammano, Bob, Current Sensing Solutions for Power Supply Designers, Texas Instruments, 2001, Dallas TX.
Miwa, et al, High Efficiency Power Factor Correction Using Interleaving Techniques, Applied Power Electronics Conference and Exposition, 1992. APEC '92. Conference Proceedings 1992., Seventh Annual, Feb. 23-27, 1992, pp. 557-568, MIT, Cambridge, MA, USA.
Noon, Jim, High Performance Power Factor Preregulator UC3855A/B, Texas Instruments Application Report, SLUA146A, May 1996—Revised Apr. 2004, Dallas TX, USA.
NXP Semiconductors, TEA1750, GreenChip III SMPS Control IC Product Data Sheet, Rev.01, Apr. 6, 2007, Eindhoven, The Netherlands.
Turchi, Joel, Power Factor Correction Stages Operating in Critical Conduction Mode, ON Semiconductor, Application Note AND8123/D, Sep. 2003-Rev. 1 , Denver, CO, USA.
On Semiconductor, GreenLLine Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions, MC33260, Semiconductor Components Industries, Sep. 2005—Rev. 9, Denver, CO, USA.
On Semiconductor, Enhanced, High Voltage and Efficient Standby Mode, Power Factor Controller, NCP1605, Feb. 2007, Rev. 1, Denver, CO, USA.
On Semiconductor, Cost Effective Power Factor Controller, NCP1606, Mar. 2007, Rev. 3, Denver, CO, USA.
On Semiconductor, Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters, NCP1654, Mar. 2007, Rev. PO, Denver, CO, USA.
Philips Semiconductors, 90W Resonant SMPS with TEA1610 SwingChip, Application Note AN99011, Sep. 14, 1999, The Netherlands.
Prodic, et al, Dead-Zone Digital Controller for Improved Dynamic Response of Power Factor Preregulators, Applied Power Electronics Conference and Exposition, 2003. APEC '03. Eighteenth Annual IEEE, Feb. 9-13, 2003, vol. 1, pp. 382-388, Boulder, CO, USA.
Prodic, et al, Digital Controller for High-Frequency Rectifiers with Power Factor Correction Suitable for On-Chip Implementation, Power Conversion Conference-Nagoya, 2007. PCC '07, Apr. 2-5, 2007, pp. 1527-1531, Toronto, Canada.
Prodic, Aleksander, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, vol. 22, Issue 5, Sep. 2007, pp. 1719-1730, Toronto, Canada.
Su, et al, Ultra Fast Fixed-Frequency Hysteretic Buck Converter with Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications, IEEE Journal of Solid-State Circuits, vol. 43, No. 4, Apr. 2008, pp. 815-822, Hong Kong University of Science and Technology, Hong Kong, China.
Wong, et al, “Steady State Analysis of Hysteretic Control Buck Converters”, 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008), pp. 400-404, 2008, National Semiconductor Corporation, Power Management Design Center, Hong Kong, China.
Zhao, et al, Steady-State and Dynamic Analysis of a Buck Converter Using a Hysteretic PWM Control, 2004 35th Annual IEEE Power Electronics Specialists Conference, pp. 3654-3658, Department of Electrical & Electronic Engineering, Oita University, 2004, Oita, Japan.
First Office Action dated Jun. 12, 2015, mailed in Application No. 201280027057X, The State Intellectual Property Office of the People's Republic of China, pp. 1-6.
Search Report dated Jun. 4, 2015, mailed in Application No. 201280027057X, The State Intellectual Property Office of the People's Republic of China, pp. 1-2.
Response to the Written Opinion as filed Jul. 24, 2014, Application No. 12731216.3, European Patent Office, pp. 1-19.
Second Office Action dated Nov. 17, 2015, mailed in Application No. 201280027057X, The State Intellectual Property Office of the People's Republic of China, pp. 1-3.
Related Publications (1)
Number Date Country
20120306406 A1 Dec 2012 US
Provisional Applications (1)
Number Date Country
61492871 Jun 2011 US