1. Technical Field
The present invention relates to a technology for rewriting an image by applying a voltage multiple times.
2. Related Art
JP-A-2009-251615 describes an electrophoretic type display device using microcapsules. The display device is an active matrix type, and is provided with drive circuits, each of which drives microcapsules at each of the intersections between a plurality of row electrodes extending in a row direction and a plurality of column electrodes extending in a column direction. White particles and black particles that are charged with mutually opposite polarities are contained in each of the microcapsules. Upon application of a voltage to the row electrode and the column electrode, a potential difference is generated between an electrode provided on the drive circuit and a counter electrode disposed opposite to the electrode through the microcapsules. As a result, white particles and black particles within the microcapsules migrate by the effect of electric fields generated by the potential difference, whereby the distribution of white particles and black particles changes and an image is displayed accordingly.
The electrophoretic type display device may use a drive method for rewriting an image in which pixels required to be rewritten are extracted, and voltage is applied only to pixel electrodes corresponding to the extracted pixels. This drive method achieves high-speed image rewriting, but may result in image blurring at pixels that are not rewritten, due to leakage of electric current from the pixel electrodes of the pixels that are rewritten to the pixel electrodes of the pixels that are not rewritten. Such blurring may be cancelled out by refreshing the pixels, but deterioration of the pixels may progress because of the imbalance caused in the polarities of voltages that have been impressed.
In accordance with an advantage of some aspects of the invention, there is provided a technology for controlling deterioration of pixels in areas where current leakage occurs.
In accordance with an embodiment of the invention, a control device is provided for controlling a display device equipped with a display section having a plurality of first electrodes respectively corresponding to pixels, a second electrode provided opposite the plurality of first electrodes, and display elements placed between the first electrodes and the second electrode. The control device includes an application device that applies a first voltage to the first electrode multiple times when the gray level of the pixel is changed from a first gray level to a second gray level, and applies a second voltage with a polarity different from that of the first voltage to the first electrode multiple times when the gray level of the pixel is changed from the second gray level to the first gray level; and an application control device that controls the application device to change a first image displayed with a plurality of pixels composing the entirety or a part of the display section to an image in the first gray level displayed with the plurality of pixels, and thereafter display a second image with the plurality of pixels. The application control device controls the application device such that the numbers of application of the first voltage and the second voltage to each of the plurality of pixels become equal to each other from a state in which each of the plurality of pixels lastly assumes the first gray level before the first image is displayed until a state in which each of the plurality of pixels first assumes the first gray level after the first image is displayed. According to such a configuration, charges in the pixel electrodes caused by leakage current in the first image are cancelled out by charges in the pixel electrodes caused by leakage current in a state in which the gray level of the plurality of pixels is changed to the first gray level first time after the first image is displayed, whereby deterioration of the pixels in areas where current leakage occurs can be controlled.
In the control device, the application control device may control the application device such that the first image displayed with the plurality of pixels is sequentially changed to an image displayed in the first gray level with the plurality of pixels, to an image displayed in the second gray level with the plurality of pixels, to an image displayed in the first gray level with the plurality of pixels, and to the second image. According to such a configuration, color blurring that may be caused by leakage current can be controlled.
In the control device, the application control device may control the application device such that the first image displayed with the plurality of pixels is sequentially changed to an image displayed in the first gray level with the plurality of pixels, and to the second image. According to such a configuration, rewriting of an image can be performed at high speed.
In the control device, the application control device may control the application device with a highest or a lowest gray level among M gray levels (3≦M) as the first gray level. According to such a configuration, the effect of controlling blurring can be enhanced, compared with the case where an intermediate gray level is used as the first gray level.
In the control device, the application control device may control the application device with an intermediate gray level among M gray levels (3≦M) as the first gray level. According to such a configuration, rewriting of an image using relatively numerous intermediate gray levels can be performed at high speed.
In accordance with another embodiment of the invention, a display device includes a display section having a plurality of first electrodes respectively corresponding to pixels, a second electrode provided opposite the plurality of first electrodes, and display elements placed between the first electrodes and the second electrode, and the control device described above.
In accordance with still another embodiment of the invention, an electronic apparatus includes the display device described above.
In accordance with yet another embodiment of the invention, a control method is provided for controlling a display device equipped with a display section having a plurality of first electrodes respectively corresponding to pixels, a second electrode provided opposite the plurality of first electrodes, and display elements placed between the first electrodes and the second electrode. The control method includes an application processing of applying a first voltage to the first electrode multiple times when the gray level of the pixel is changed from a first gray level to a second gray level, and applying a second voltage with a polarity different from that of the first voltage to the first electrode multiple times when the gray level of the pixel is changed from the second gray level to the first gray level; and an application control processing of controlling voltage application in the application processing to change a first image displayed with a plurality of pixels composing the entirety or a part of the display section to an image in the first gray level displayed with the plurality of pixels, and thereafter display a second image with the plurality of pixels. The application control processing device controls voltage application in the application processing such that the first voltage and the second voltage are applied in the same number to each of the plurality of pixels from a state in which each of the plurality of pixels lastly assumes the first gray level before the first image is displayed until a state in which each of the plurality of pixels first assumes the first gray level after the first image is displayed.
The first substrate 11 includes a substrate 111, a bonding layer 112 and a circuit layer 113. The substrate 111 is made of a material having dielectric property and flexibility, for example, a polycarbonate substrate. The substrate 111 may be made of any resin material that is light-weight, flexible, elastic and dielectric, without any particular limitation to polycarbonate. As another example, the substrate 111 may be formed from glass material without flexibility. The bonding layer 112 is a layer that bonds the substrate 111 and the circuit layer 113 together. The circuit layer 113 is a layer having a circuit for driving the electrophoretic layer 12. The circuit layer 113 has pixel electrodes 114 (an example of the first electrode).
The electrophoretic layer 12 includes microcapsules 121 and a binder 122. The microcapsules 121 are fixed by the binder 122. The binder 122 may be made of any material that has good affinity with the microcapsules 121, excellent adhesion to the electrodes, and dielectric property. Each of the microcapsules 121 is a capsule containing a dispersion medium and electrophoretic particles. The microcapsules 121 may preferably be made of a material having flexibility, such as, composites of gum arabic and gelatin, urethane compounds, and the like. It is noted that an adhesive layer made of adhesive may be provided between the microcapsules 121 and the pixel electrodes 114.
As the dispersion medium, it is possible to use any one of materials including water; alcohol solvents (such as, methanol, ethanol, isopropanol, butanol, octanol, and methyl cellosolve); esters (such as, ethyl acetate and butyl acetate); ketones (such as, acetone, methyl ethyl ketone, and methyl isobutyl ketone); aliphatic hydrocarbons (such as, pentane, hexane, and octane); alicyclic hydrocarbons (such as, cyclohexane and methylcyclohexane); aromatic hydrocarbons (such as, benzene, toluene, long-chain alkyl group-containing benzenes (such as, xylenes, hexylbenzene, heptylbenzene, octylbenzene, nonylbenzene, decylbenzene, undecylbenzene, dodecylbenzene, tridecylbenzene, and tetradecylbenzene)); halogenated hydrocarbons (such as, methylene chloride, chloroform, carbon tetrachloride, and 1,2-dichloroethane); and carboxylates. Also, the dispersion medium may be made of any one of other various oils. The dispersion medium may use any of the materials described above in combination. Further, in another example, the dispersion medium may be further mixed with a surfactant.
The electrophoretic particles are particles (polymer or colloid) having a property in which the particles move in the dispersion medium by electric fields. In the present embodiment, white electrophoretic particles and black electrophoretic particles are contained in each of the microcapsules 121. The black electrophoretic particles are particles including black pigments, such as, for example, aniline black, carbon black and the like, and are positively charged in the present embodiment. The white electrophoretic particles are particles including white pigment, such as, for example, titanium dioxide, aluminum oxide and the like, and are negatively charged in the present embodiment.
The second substrate 13 includes a common electrode 131 (an example of a second electrode) and a film 132. The film 132 seals and protects the electrophoretic layer 12. The film 132 may be formed from a material that is transparent and has a dielectric property, such as, for example, polyethylene terephthalate. The common electrode 131 is made of a transparent conductive material, such as, for example, indium tin oxide (ITO).
The scanning line drive circuit 16 outputs a scanning signal Y for sequentially, exclusively selecting one scanning line 115 from among the m scanning lines 115. The scanning signal Y is a signal that sequentially, exclusively becomes to be H (High) level. The data line drive circuit 17 outputs data signals X. The data signals X are signals indicative of data voltages corresponding to gray level values of pixels. The data line drive circuit 17 outputs data signals indicative of data voltages corresponding to pixels in a row selected by the scanning signal.
The pixel electrode 114 is provided at each of the pixels 14, and disposed opposite the common electrode 131. The common electrode 131 is commonly shared by the entire pixels 14, and is given a potential EPcom through a common electrode wiring 118. The potential EPcom may be set to the same potential as the potential Vcom. The electrophoretic layer 12 is held between the pixel electrode 114 and the common electrode 131. The pixel electrode 114, the electrophoretic layer 12 and the common electrode 131 form an electrophoretic element 143. A voltage corresponding to a potential difference between the pixel electrode 114 and the common electrode 131 is applied to the electrophoretic layer 12. In the microcapsules 121, the electrophoretic particles move according to a voltage applied to the electrophoretic layer 12, thereby expressing a gray level. When the potential on the pixel electrodes 114 is positive (for example, +15V) with respect to the potential EPcom on the common electrode 131, the negatively charged white electrophoretic particles move toward the pixel electrode 114, and the positively charged black electrophoretic particles move toward the common electrode 131. In this instance, as the display section 10 is viewed from the side of the second substrate 13, the pixels appear in black. When the potential on the pixel electrodes 114 is negative (for example, −15V) with respect to the potential EPcom on the common electrode 131, the positively charged black electrophoretic particles move toward the pixel electrodes 114, and the negatively charged white electrophoretic particles move toward the common electrode 131. In this instance, the pixels appear in white.
In the following description, a period starting from the selection of the scanning line in the 1st row by the scanning line drive circuit 16 until the completion of the selection of the scanning line in the m−th row is referred to as a “frame period” or, simply a “frame”. Each of the scanning lines 115 is selected once in each frame, and a data signal is supplied to each of the pixels 14 once in each frame.
Details of the function described above are as follows. In the present embodiment, the first gray level corresponds to white, and the second gray level corresponds to black. A first image and a second image are images based on image data stored in the VRAM 40. The first image is an image corresponding to the image data before rewriting, and the second image is an image corresponding to image data after rewriting. The first image and the second image may be any image. For example, the image may be an image composed of a mixture of the first gray level and the second gray level, or an image in which the entire pixels are either in the first gray level or the second gray level. For changing the display state of the pixel 14 from white to black or from black to white, the controller 20 supplies data signals to the pixel 14 over a plurality of frames, instead of supplying a data signal to the pixel 14 only in one frame, thereby changing the display state. This is because, when the display state is to be changed from white to black or from black to white, the electrophoretic particles do not migrate completely even if the electric field is given to the electrophoretic particles only in one frame. N is an integer of 2 or greater, and may be any arbitrary value by which the electrophoretic particles sufficiently migrate between the electrodes, in other words, the display state sufficiently changes from white to black or from black to white. At room temperature, N may often be set to about 7 to 8. At higher temperatures, N may be about 4 because the response of the electrophoretic particles to the electric field improves. In the present embodiment, an exemplary case where N is 4 will be described for simplifying the description. In other words, when changing the display state of the pixel 14 from white to black, the controller 20 supplies the data signal to the pixel 14 over four frames, to make the pixel 14 to display black. As a result, the voltage of +15V (an example of the first voltage) is applied to the pixel electrode 114 over four frames. On the other hand, when the display state of the pixel 14 is changed from black to white, the data signal to make the pixel to display white is supplied to the pixel 14 over four frames. As a result, the voltage of −15V (an example of the second voltage) is applied to the pixel electrode 114 over four frames.
The application control device 202 controls the application device 201 such that a first image displayed with a plurality of pixels composing the entirety or a part of the display section 10 is changed to an image in the first gray level displayed with the plurality of pixels, and thereafter a second image is displayed with the plurality of pixels. Furthermore, the application control device 202 controls the application device 201 such the numbers of application of the first voltage and the second voltage to each of the plurality of pixels become equal to each other from a state in which each of the plurality of pixels lastly assumed the first gray level before the first image is displayed until a state in which each of the plurality of pixels assumes the first gray level first time after the first image is displayed.
Here, the problem of the related art will be described.
A sign “o” shown in the small areas indicates that a voltage o (o=EPcom) that makes the potential difference of the pixel electrode 114 with respect to the common electrode 131 to be 0V is applied to the pixel electrode 114. A sign “w” indicates that a voltage that changes the display state of the pixel 14 from black to white, in other words, a voltage w that makes the potential difference of the pixel electrode 114 with respect to the common electrode 131 to be −15V is applied to the pixel electrode 114. A sign “b” indicates that a voltage that changes the display state of the pixel 14 from white to black, in other words, a voltage b that makes the potential difference of the pixel electrode 114 with respect to the common electrode 131 to be +15V is applied to the pixel electrode 114. As described above, the voltage w and the voltage b are applied over four frames.
White arrows extending from a boundary between adjacent small areas indicate the direction of blurring of the white display that can occur between mutually adjacent small areas. In
In the example of
White arrows extending from a boundary between adjacent small areas indicate the direction of blurring of the white display that can occur between mutually adjacent small areas. Black arrows extending from a boundary between adjacent small areas indicate the direction of blurring of the black display that can occur between mutually adjacent small areas. In
In
In the example of
In the image rewriting shown in
For example, in a rewriting sequence shown in
A method of controlling a display device that can meet the requirement described above, similarly to
In the case of TID=1 (from black to black), because an initial value is black, first, it is rewritten to white by applying the voltage w over four frames and the voltage o over one frame. Next, it is rewritten to black by applying the voltage b over four frames and the voltage o over one frame. Then, it is rewritten to white by applying the voltage w over four frames and the voltage o over one frame. Lastly, it is rewritten to black by applying the voltage b over four frames and the voltage o over one frame.
In the case of TID=2 (from black to white), because an initial value is black, first, it is rewritten to white by applying the voltage w over four frames and the voltage o over one frame. Next, it is rewritten to black by applying the voltage b over four frames and the voltage o over one frame. Then, it is rewritten to white by applying the voltage w over four frames and the voltage o over one frame. Lastly, as the target value is white, the white state is maintained by applying the voltage o over five frames.
In the case of TID=3 (from white to black), because an initial value is white, first, the white state is maintained by applying the voltage o over five frames. Next, it is rewritten to black by applying the voltage b over four frames and the voltage o over one frame. Then, it is rewritten to white by applying the voltage w over four frames and the voltage o over one frame. Lastly, it is rewritten to black by applying the voltage b over four frames and the voltage o over one frame.
In the case of TID=4 (from white to white), because an initial value is white, first, the white state is maintained by applying the voltage o over five frames. Next, it is rewritten to black by applying the voltage b over four frames and the voltage o over one frame. Then, it is rewritten to white by applying the voltage w over four frames and the voltage o over one frame. Lastly, as the target value is white, the white state is maintained by applying the voltage o over five frames.
In step S104, the controller 20 judges as to whether an index D(j, i) corresponding to the pixel P(j, i) is 0. When the index D(j, i) is not 0 (step S104: NO), it proceeds to step S105, and when the index D(j, i) is 0 (step S104: YES), it proceeds to step S109. The controller 20 subtracts one from the index D(j, i) in step S105.
In step S109, the controller 20 decides a drive table for changing the gray level of the pixel P(j, i) from the gray level expressed by the scheduled image data of the memory area B(j, i) into the gray level expressed by the image data of the memory area A(j, i). Concretely, the gray level expressed by the scheduled image data of the memory area B(j, i) is assumed to be an initial value, the gray level expressed by the image data of the memory area A(j, i) is assumed to be a target value, and a table ID corresponding to this initial value and the target value is read from the ID table.
In step S110, the controller 20 writes the extracted table ID in the memory area C(j, i), writes 20 that is the first value of the index in the memory area D(j, i), writes image data read from the memory area A(j, i) in the memory area B(j, i), and proceeds to step S106.
In step S106, the controller 20 judges as to whether the variable j has reached n, returns to step S102 when it has not reached n, adds one to the variable j, and proceeds to step S103. When the variable j has reached n, it proceeds to step S107. In step S107, the controller 20 judges as to whether the variable i has reached m, returns to step S101 when it has not reached m, adds one to the variable i, and proceeds to step S102. When the variable i has reached m, it proceeds to step S108. In step S108, the controller 20 reads an application voltage that corresponds to the table ID and the index decided to each pixel from the drive table, and drives each pixel according to the application voltage.
Next, in step S108, an application voltage corresponding to the table ID and the index described above is read from the drive table, and this application voltage is impressed to each of the pixels 14. Thereafter, the processings from the 2nd frame to the 20th frame are executed according to the flow diagram in
The rewriting method described above is one example of the method of rewriting the display section 10 based on the drive table shown in
According to the rewriting operation described above, the display of each pixel is rewritten, based on the gray level value of an image before rewriting (the first image), and the gray level value of the image after rewriting (the second image), using one of the drive waveforms shown in
Note here that each of the pixels has been rewritten with one of the drive waveforms of
As for the pixel that displays black in the first image, rewriting has been performed before with a drive waveform whose target value is black among the drive waveforms shown in
Here, let us focus on the pixels that display black in the first image, the voltage b has been applied four times to the focused pixels concerned (with the table ID=1 or 3, and the indexes=5 to 2 in the prior drive waveform) from the state where all the pixels lastly displayed white before the first image (the state at the index=6 in the prior drive waveform). Note that, during this period, black display blurring can occur due to current leakage from the focused pixels concerned in pixels that adjoin the focused pixels concerned among the pixels other than the focused pixels concerned.
As for the focused pixels concerned, the voltage w has been applied four times (with the table ID=1 or 2, and the indexes=20 to 17 in the post drive waveform) until all the pixels become white display first time after the first image (the state at the index=16 in the post drive waveform). Note that, during this period, white display blurring can occur due to current leakage to the focused pixels concerned in pixels that adjoin the focused pixels concerned among the pixels other than the focused pixels concerned.
In this manner, the number of application of the voltage b and the number of application of the voltage w for the focused pixels concerned are controlled to be mutually the same from the state where all the pixels are lastly at the first gray level before displaying the first image until the state where all the pixels become the first gray level first time after displaying the first image.
As a result, the number of occurrences of black display blurring from the focused pixels concerned to adjacent pixels and the number of occurrences of white display blurring can be made equal to each other in the period of the prior drive waveform at the indexes=5 to 2 and in the period of the post drive waveform at the indexes=20 to 17. In other words, for pixels other than the focused pixels concerned, the DC balance can be achieved, taking into consideration the voltages based on current leakage in the vicinity of the boundaries. Note that, during the other period, in other words, during the period at the indexes=15 to 7 in
According to the control method described above, whatever image the first image and the second image assume, the numbers of application of the voltage w and the voltage b can be balanced, and voltages based on current leakage in the vicinity of the boundaries can be DC-balanced, such that corrosion of the electrophoretic layer 12 and deterioration of the pixel electrodes 114 can be prevented.
The embodiment described above may be modified as follows. Also, the embodiment and any of the modification examples may be combined. Also, plural modification examples may be combined.
In the embodiment described above, an example is described in which, when the first image is rewritten to the second image, an all-white image, an all-black image and an all-white image are sequentially displayed during the period between the first image and the second image. However, during the period between the first image and the second image, an all-black image (an example of the first gray level), an all-white image (an example of the second gray level) and an all-black image (an example of the first gray level) may be sequentially displayed. Further, instead of changing the entire pixels to the second gray level, a third image other than an all-black image and an all-white image may be displayed. Moreover, after sequentially displaying an image or plural images following the third image, the first gray level, and the second image may be displayed.
When rewriting the first image to the second image, an all-white image or an all-black image (an example of the second gray level) following the first image may be displayed, and then the second image may be displayed.
Here, let us focus on the pixels that display black in the first image. The voltage b has been applied four times to the focused pixels concerned (with the table ID=1 or 3, and the indexes=5 to 2 in the prior drive waveform) from the state where all the pixels lastly displayed white before the first image (the state at the index=6 in the prior drive waveform). On the other hand, the voltage w has been applied four times to the focused pixels concerned (with the table ID=1 or 2, and the indexes=10 to 7 in the post drive waveform) until all the pixels first become white display after the first image (the state at the index=6 in the post drive waveform).
In this manner, also in the modification example, the number of application of the voltage b and the number of application of the voltage w for the focused pixels concerned are controlled to be mutually the same from the state where all the pixels are lastly at the first gray level before the first image being displayed until the gray level of all the pixels becomes the first gray level first time after the first image being displayed. As a result, the number of occurrences of black display blurring from the focused pixels concerned to adjacent pixels and the number of occurrences of white display blurring can be made equal to each other in the period of the prior drive waveform at the indexes=5 to 2 and in the period of the post drive waveform at the indexes=10 to 7. In other words, for pixels other than the focused pixels concerned, the DC balance can be achieved, taking into consideration the voltages based on current leakage in the vicinity of the boundaries, similarly to the embodiment described above. According to such a configuration, rewriting of an image can be performed at higher speed, compared to the embodiment and the modification example 1.
In the embodiment, an example in which image data is in two gray levels is shown. However, image data may be in three or more gray levels.
The embodiment described above is configured to regulate the DC balance of voltages based on current leakage with the drive table shown in
The relation between the processings and the hardware components is not limited to the one explained in the embodiment. For example, the subject that performs the color reduction processing may be the CPU 30, instead of the controller 20.
The electronic apparatus 1 is not limited to an electronic book reader. The electronic apparatus 1 may be a personal computer, a PDA (Personal Digital Assistant), a cellular phone, a smartphone, a tablet terminal, or a portable game console. The equivalent circuit of the pixel 14 is not limited to the one described in the embodiment. Switching elements and capacitance elements may be combined in any way, as long as a controlled voltage can be applied between the pixel electrodes 114 and the common electrode 131.
The structure of the pixel 14 is not limited to the one described in the embodiment. For example, the polarities of charged particles are not limited to those described in the embodiment. Black electrophoretic particles may be negatively charged, and white electrophoretic particles may be positively charged. In this case, the polarities of voltages to be applied to the pixels become inversed to the polarities described in the embodiment. Also, the display elements are not limited to electrophoretic type display devices using microcapsules. Other display elements, such as, liquid crystal elements, organic EL (Electro Luminescence) elements or the like may be used.
The entire disclosure of Japanese Patent Application No. 2012-087510, filed Apr. 6, 2012 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2012-087510 | Apr 2012 | JP | national |