This application claims under 35 U.S.C. §119(a) the benefit of Korean Patent Application No. 10-2010-0109140 filed on Nov. 4, 2010, the entire contents of which are incorporated herein by reference.
1. Technical Field
The present invention relates to a control device for a doubly-fed induction generator in which a feedback linearization method is enabled, in more detail, a control device for a doubly-fed induction generator which can implement an LVRT (Low Voltage Ride-Through) function by improving a DC link voltage control performance and an output control performance even under unbalanced voltage, such as a momentary power failure, by controlling a positive sequency component and a negative sequency component, which have non-linear characteristics, to be linearized while controlling the positive sequency component and the negative sequency component of the current of a rotor in a doubly-fed induction generator, respectively, for a d-axis and a q-axis.
2. Background Art
Doubly-fed induction generators are typical generators used for wind power generation and researches have been conducted to apply the generators to the tidal current power generation, the tidal power generation, and the wave power generation, etc.
In general, a grid-connected power generation system designed to generate electricity in connection to an electric power system is in close connection with system voltage, and particularly, it has known that a power generation system using a DFIG (Doubly-fed induction generator) is considerably influenced by characteristics of the system voltage, because it has a structure in which three-phase power line is directly connected to the wire of a stator in the doubly-fed induction generator. Therefore, technical development has been continued for control devices that keep generating power under changes in system voltage.
However, the control device of the related art represents good control characteristics when the system voltage maintains three-phase balance, but the control characteristics are deteriorated under unbalanced voltage.
In detail, a yellow signal ch1 indicates a detection signal for 30% drop of the system voltage, a red signal ch2 indicates DC-link (DC_link) voltage, a green signal ch4 indicates non-filtered active power, and a blue signal ch3 indicates filtered active power, in
As illustrated in the figures, it can be seen that the control device according to the related art stably performs control under system voltage within a normal range, but the control is performed, with active power including a lot of harmonics in the section where the voltage drops, and control characteristics are not maintained under momentary drop of the system voltage.
Since the system becomes unstable when the DC-link (DC_link) voltage cannot be constantly controlled under the three-phase unbalanced voltage, power generation cannot be continued and reactive power cannot be supplied in the unbalanced voltage section.
It is necessary to stop the power generation equipment in order to protect the control device for the generator, when it fails to control the doubly-fed induction generator in order to keep the DC-link voltage in a stable range under system voltage drop or momentary power failure. In this case, since it is required to observe the regulation that prohibits restart at least within five minutes when the power generation equipment stops, the operation factor decreases and the power amount reduces while it is impossible to prevent the amount of energy, which is supplied to the power system, from fluctuating widely.
This case results in the same effect as a sudden change of load, which imposes a burden on the power producer who manages the electrical power grid. A technical specification is applied to keep generating power when the system voltage regulation is within 10% in the related art; however, it is recently required to expand the technical standard to keep generating power even under system voltage drop and momentary power failure for a short time.
That is, although the LVRT (Low Voltage Ride-Through) function that keeps the operation even under short system disturbance has been considered as a necessary specification in the Grid Code, there is a problem that it is impossible to perform the LVRT function, when it is impossible to control the DC-link voltage at a constant level under unstable system voltage, such as in momentary power failure, as described above.
Therefore, the present invention has been made in an effort to solve the problems and it is an object of the present invention to provide a control device that can stably control a doubly-fed induction generator even in a three-phase unbalanced section, such as momentary failure, as well as a section where system voltage maintains three-phase balance.
Especially, it is an object of the present invention to provide a control device for a doubly-fed induction generator which can implement an LVRT (Low Voltage Ride-Through) function by improving a DC link voltage control performance and an output control performance even under unbalanced voltage, such as a momentary power failure, by controlling a positive sequency component and a negative sequency components, which have non-linear characteristics, to be linearized while controlling the positive sequency component and the negative sequency component of the current of a rotor in a doubly-fed induction generator, respectively, for a d-axis and a q-axis.
In order to achieve the objects, an embodiment of the present invention provides a control device for a doubly-fed induction generator in which a feedback linearization method is embedded, in which the doubly-fed induction generator is controlled by a power conversion device composed of a system-side converter having an AC-DC conversion function and a generator-side converter having a DC-AC conversion function. The control device divides and measures positive sequency components and negative sequency components from stator voltage and current, rotor voltage and current, and signals of stator magnetic flux and rotor magnetic flux of the doubly-fed induction generator, divides the rotor current into four signals by dividing d-axial current and q-axial current from the positive sequency component and the negative sequency component of the rotor current, and makes a positive sequency component controller and a negative sequency component controller for the rotor current separately control the four signals of the rotor current, using the measured value, in which the positive sequency component controller and the negative sequency controller perform current input-output control, which is linearized by a feedback linearization method, for the d-axial current and the q-axial current respectively.
In order to achieve the objects, another embodiment of the present invention provides a control device for a doubly-fed induction generator in which a feedback linearization method is embedded, in which the doubly-fed induction generator is controlled by a power conversion device composed of a system-side converter having an AC-DC conversion function and a generator-side converter having a DC-AC conversion function. The control device divides and measures positive sequency components and negative sequency components from stator voltage and current, rotor voltage and current, and signals of stator magnetic flux and rotor magnetic flux of the doubly-fed induction generator, divides the rotor current into four signals by dividing d-axial current and q-axial current from the positive sequency component and the negative sequency component of the rotor current, and makes a positive sequency component controller and a negative sequency component controller for the rotor current separately control the four signals of the rotor current, using the measured value, in which the positive sequency component controller performs current input-output control, which is linearized by a feedback linearization method, for the d-axial current and the q-axial current.
In this case, d-axial output νrdp of the positive sequency component controller is calculated as
νrdp={(Rrirdp)−(ωs−ωr)(σLr)irqp}+(σLr)ν1p
Also, q-axial output νrqp of the positive sequency component controller is calculated as
Also, a new state variable ν1p is y1*=irdp*, and when y1=irdp, it is calculated as
ν1p=λ11e1p+λ12∫e1pdt=λ11(y1*−y1)+λ12∫(y1*−y1)dt
Or, the new state variable ν1p is y1*=irdp*, and when y1=irdp, it is calculated as
ν1p={dot over (y)}1*+λ11e1p+λ12∫e1pdt={dot over (y)}1*+λ11(y1*−y1)+λ12∫(y1*−y1)dt
Also, the new state variable ν2p is y2*=irqp*, and when y2=irqp, it is calculated as
ν2p=λ21e2p+λ22∫e2pdt=λ21(y2*−y2)+λ22∫(y2*−y2)dt
Or, the new state variable ν2p is y2*=irqp*, when y2=irqp, is calculated as
ν2p={dot over (y)}2*+λ22∫e2pdt={dot over (y)}2*+λ21(y2*−y2)+λ22∫(y2*−y2)dt
In an embodiment of the present invention, d-axial output νrdn of the negative sequency component controller is calculated as
νrdn={(Rrirdn)−(−ωs−ωr)(σLr)irqn}+(σLr)ν1n
Also, q-axial output νrqn of the negative sequency component controller is calculated as
In this case, the new state variable ν1n is y1*=irdn*, when y1=irdn, it is calculated as
ν1n=λ11e1n+λ12∫e1ndt=λ11(y1*−y1)+λ12∫(y1*−y1)dt
Or, the new state variable ν1n is y1*=irdn*, and when y1=irdn, it is calculated as
ν1n={dot over (y)}1*+λ11e1n+λ12∫e1ndt={dot over (y)}1*+λ11(y1*−y1)+λ12∫(y1*−y1)dt
Or, the new state variable ν2n is y2*=irqn*, and when y2=irqn, is calculated as
ν2n=λ21e2n+λ22∫e2ndt=λ21(y2*−y2)+λ22∫(y2*−y2)dt
Or, the new state variable ν2n is y2*=irqn*, and when y2=irqn, it is calculated as
ν2n={dot over (y)}2*+λ21e2n+λ22∫e2ndt={dot over (y)}2*+λ21(y2*−y2)+λ22∫(y2*−y2)dt
Also, it is preferable that d-axial rotor current reference value (irdn*) and q-axial rotor current reference value (irqn*) of the negative sequency component used in the negative sequency component controller is set as irdn*=0 and irqn*=0, respectively.
According to the embodiment of the present invention, the control device performs sequence control such that a stator-side main switch is turned on, when the magnitude of the system voltage positive sequency component is more than 90% of the rated voltage of the positive sequency component, and the DC-link voltage is between the upper limit and the lower limit of the DC-link voltage.
Further, the control device performs sequence control such that a stator-side main switch is turned off, when the magnitude of the system voltage positive sequency component is less than 90% of the rated voltage of the positive sequency component.
The control device further includes brake resistance devices attached in parallel to both ends of a DC-link voltage and performs the sequence control such that the brake resistance devices are turned on when the DC-link voltage is larger than an upper limit of the DC-link voltage, while the brake resistance devices are turned off when the DC-link voltage is between the upper limit of the DC-link voltage and a lower limit of the DC-link voltage.
Further, the control device performs the sequence control such that the power conversion device stops, when the DC-link voltage is larger than an allowable internal pressure (DC-link voltage stop value) considering capacitors attached in parallel to both ends of the DC-link voltage.
According to a control device for a doubly-fed induction generator in which a feedback linearization method is embedded, it is possible to stably control the active power and the DC-link voltage of the doubly-fed induction generator, even under unbalanced voltage in which the system voltage largely fluctuates or momentary power failure (150 ms or less) occurs, when a power generation system equipped with the doubly-fed induction generator (wind power generation, tidal current power generation, and the wave power generation) operates in a grid-connected type.
As described above, according to the present invention, since it is possible to perform stable control even under a section with a system failure, such as momentary power failure, it is not necessary to stop the power conversion device and it is possible to implement an LVRT (Low Voltage Ride-Through) function under Europe standard (E.ON Netz Standard) that prescribes that the operation should be continued without stopping, even in a momentary power failure section, thereby extending a market.
Hereinafter, preferred embodiments of the present invention are described in detail with reference to the accompanying drawings in order for those skilled in the art to easily understand.
A control device for a doubly-fed induction generator according to the present invention divides positive sequency components and negative sequency components from stator-side voltage and current, rotor-side voltage and current, and signals of stator magnetic flux and rotor magnetic flux of the doubly-fed induction generator (DFIG), converts the components in a d-q coordinate system, and controls the d-axial and the q-axial current components of the positive sequency components and controls the d-axial and the q-axial current components of the negative sequency component by using four signals for the rotor current which is divided into a d-axial positive sequency component, a q-axial positive sequency component, a d-axial negative sequency component, and a q-axial negative sequency component.
In particular, complete decoupling control can be achieved by applying a feedback linearization method to the positive sequency component and the negative sequency component of the rotor current. Therefore, the present invention allows the doubly-fed induction generator having a rotor wire controlling energy flow of a stator wire, which is the main path of energy transfer, to rapidly stabilize system voltage under unbalanced voltage by controlling a rotor-side converter (RSC) of the generator and to have an LVRT function by keeping the DC link voltage within a stable range.
In order to explain the control method of the doubly-fed induction generator according to the present invention, the parameters are defined as follows.
Rs, Rr: stator resistance, rotor resistance
Vs, Vr: stator voltage, rotor voltage including all the d-axial and q-axial components
Vsn, Vrn: stator voltage of negative sequency component, rotor voltage of negative sequency component
Vrdp, Vrqp: d-axial component, q-axial component about positive sequency component of rotor voltage
Vrdn, Vrqn: d-axial component, q-axial component about negative sequency component of rotor voltage
is, ir: stator current, rotor current including all the d-axial and q-axial components
isn, irn: stator current of negative sequency component, rotor current of negative sequency component
irdp, irqp: d-axial component, q-axial component about positive sequency component of rotor current
irdn, irqn: d-axial component, q-axial component about negative sequency component of rotor current
irdp*, irqp*: d-axial reference value, q-axial reference value about positive sequency component of rotor current
irdn*, irqn*: d-axial reference value, q-axial reference value about negative sequency component of rotor current
imsp: positive sequency component magnetizing current
imsn: negative sequency component magnetizing current
φs, φr: stator magnetic flux inter-linkage, rotor magnetic flux inter-linkage including all the d-axial and q-axial component
φsn, φrn: negative sequency component of stator magnetic flux inter-linkage, negative sequency component of rotor magnetic flux inter-linkage
φrdp, φrqp: d-axial component, q-axial component about positive sequency component of rotor magnetic flux inter-linkage
φrdn, φrqn: d-axial component, q-axial component about negative sequency component of rotor magnetic flux inter-linkage
φsdp, φsqp: d-axial component, q-axial component about positive sequency component of stator magnetic flux inter-linkage
φsdn, φsqn: d-axial component, q-axial component about negative sequency component of stator magnetic flux inter-linkage
Ls, Lr: stator inductance, rotor inductance
Lm: mutual inductance
Lls, Llr: stator leakage inductance, rotor leakage inductance
ωs, ωr, ωsl: stator angular velocity, rotor angular velocity, slip angular velocity
Ps, Qs: stator active power, stator reactive power
VDC: DC link voltage
θs, θr, θsl: stator magnetic flux angle, rotor magnetic flux angle, slip magnetic flux angle
S, j: differential operator, imaginary number operator
λ11, λ12, λ21, λ22, K11, K12: PI controller constant
Vrdsp*, Vrqsp*, Vrdsn*, Vrqsn*: value that converts Vrdp*, Vrqp*, Vrdn*, Vrqn* into 2 phase static coordinates respectively
Hereinafter, the control method of the control device in the doubly-fed induction generator according to the present invention will be explained using a numerical expression.
The stator voltage equation and rotor voltage equation of the doubly-fed induction generator expressed in the static coordinates are represented as follows.
Vs=Rsis+(LlsS)is+ir)+jωsφs
Vr=Rrir+(LlrS)ir+(LmS)(ir+is)+j(ωs−ωr)φr [Formula 1]
Also, in the rotor voltage equation of the doubly-fed induction generator, when it is displayed after converting the positive sequency component into d and q coordinates, it will be represented as Formulae 2 and 3.
And, the stator magnetic flux inter-linkage, rotor magnetic flux inter-linkage, stator inductance, and rotor inductance and the like are equal to the formulae 4˜7. Further, σLr defined in the present invention is equal to the formula 8.
A current control device is designed with a linear input-output relationship, unlike the related art in which a current controller is designed in a PI type by a rotor-side voltage equation. The fact that the input-output relationship is linear with a single input and a single output means that the relationship is not influenced by other parameters, except for the parameters in the relational expression. Therefore, the transient characteristics are greatly increased and it is possible to achieve unyieldingness that can maintain the control characteristics against variation characteristics of parameters, which are non-linearly varied, and the system voltage regulation.
Assuming that the input signal is the d-axial voltage (q-axial voltage) and the output is the d-axial current (q-axial current) in Formula 2 (Formula 3), it can be seen that it has a non-linear relationship because the input-output relationship is inversed, in a differential type.
Meanwhile, when the doubly-fed induction generator is controlled, the voltage vector is applied to the converter of the generator side, then PWM may be implemented such that the predetermined current may be flown, accordingly the input signals are defined as Vrdp and Vrqp, and the output signals are defined as irdp and irqp.
Based on the definition equation about the input/output parameters, it is classified the term with two input signals and the term without a input signal, and when it is represented in a matrix form, it becomes the Formula 11.
Regarding the Formula 11, for representing multi-input multi-output system with two input signals and two output signals, it is substituted with an equation defining the output to become the Formula 12.
In here, the definition of each variable is as follows.
It is required to differentiate the outputs and the differentiation should be repeated until an input term is acquired in the differentiate expressions, in order to design a control device that linearizes the relationship between the input signal and the output signal in the present invention.
Firstly, when the first output (y1) is differentiated, the Formula 18 is obtained.
As the control input signal u1 appears in the results equation differentiated firstly for the first output y1, no more differentiation is preformed, and the differentiation of the second output y2 is executed. When the first differentiation of the second output y2 is performed, the Formula 19 is obtained.
As a result of firstly differentiating the second output y2, the control input signal u2 appeared in the equation, no more differentiation is performed. When the Formulae 18 and 19 are represented in a matrix form, it becomes the Formula 20 after classifying the term with an input and the term without an input.
Compared with the Formula 11 defined as the state variable and the input signal, it can be seen that the Formula 20 may be transformed into the relationship equation defined as the output and input signals. However, as it is still a form of differentiation, it may be seen that the input and output relationships can be linearized by transforming a nonlinear form into a linear form.
For this purpose, in order that the controller input ui may have the solution in the Formula 20 firstly, the inverse matrix about the matrix as the coefficient term of the controller input should be existed. Therefore, in order to determine whether the solution exists, prepare the Formula 21 by substituting the Formula 20 with the matrix, and inspect the reverse matrix.
In the Formula 21, when the reverse matrix of the matrix E(t) is calculated, it becomes the Formula 22.
Therefore, in order that the Formula 21 may have the solution all the time, when the condition of (σLγ)(σLγ)≠0 is met, it has a solution as the reverse matrix is not “0”. It can be seen that it always has a satisfactory solution, since the rotor side inductance value of the doubly-fed induction generator is not always “0”.
In the Formula 21, when the differential value {dot over (y)}i of the output as nonlinear term is substituted with a new state variable νi for linearization, it may be substituted like the Formula 23.
When the Formula 23 is substituted with the Formula 20 before substituting the Formula 22, the rule for determining the control signal may be obtained. That is proposed in the Formula 24. The Formula 24 described as below may be used as the current controller of the positive sequency component utilized in the control device of the doubly-fed induction generator according to the present invention.
Meanwhile, when the Formula 17 is substituted with the Formula 24 where the expression 17 is a defined equation about the input signal of the controller, the current control device applicable to the doubly-fed induction generator may be obtained as the Formula 25. It can be seen that it is configured with a term that makes the tolerance “0” and a feed-forward term to entirely decouple another input.
In here, a new state variable may be designed so as to determine using the tolerance and regulation for the control input, and using the Formula 26 or Formula 27, the tolerance is controlled to “0”.
ν1=λ11(y1*−y1)+λ12∫(y1*−y1)dt
ν2=λ21(y2*−y2)+λ22∫(y2*−y2)dt [Formula 26]
ν1={dot over (y)}1*+λ11(y1*−y1)+λ12∫(y1*−y1)dt
ν2={dot over (y)}2*+λ21(y2*−y2)+λ22∫(y2*−y2)dt [Formula 27]
At this point, y1*=irdp* and y2*=irqp*, it represents y1=irdp, y2=irqp.
Next, the control method of the current controller in negative sequency component for controlling the doubly-fed induction generator according to the present invention will be explained. In the invention, the control method of the current controller in negative sequency component may be configured with the same method as the control algorithm of the current controller in the positive sequency component described before, herein detailed descriptions of the same or similar constitution may be omitted.
First of all, the negative sequency component in the stator voltage equation and rotor voltage equation of the doubly-fed induction generator expressed in the static coordinates is represented as the Formula 28.
Vsn=Rsisn+(LlsS)isn+(LmS)(isn+irn)+j(−ωs)φsn
Vrn−Rrirn+(LlrS)irn+(LmS)(irn+isn)+j(−ωs−ωr)φrn [Formula 28]
φsn=Lsisn+Lmirn
In here,
φrn=Lrirn+Lmisn
At this point, in case of expressing d, q voltage equation of the negative sequency component using the rotor voltage equation, it will be represented as the Formulae 29, 30.
For preparing the Formulae 29 and 30 in the form of the state equation, when the polynomial expression is arranged so that the differential term may be positioned on the left side, it becomes the Formulae 31 and 32. Also, when it is represented in a matrix form after defining the input signal as Vrdn, Vrqn and the output signal as irdn, irqn, it becomes the Formula 33.
Regarding the Formula 33, for representing multi-input multi-output system with two input signals and two output signals, it is arranged with the equation defining the output, and then it becomes the Formula 34.
In here, the definition of each variable is as follows.
As mentioned before, it is required to differentiate the outputs and the differentiation should be repeated until an input term is acquired in the differentiate expressions, in order to design a control device that linearizes the relationship between the input signal and the output signal in the present invention. First, once the first output (y1) is differentiated, the Formula 40 is obtained.
As a result of differentiating the second output y2, the control input signal u2 appears in the equation, accordingly no more differentiation is performed. Formula 42 is acquired by expressing Formulae 40 and 41 in a matrix type and arranging the terms with the input and the terms without input.
It can be seen that Formula 42 was transformed in an expression defined by output and input signals, as compared with Formula 33 defined by state variables and input signals. However, since it is still a differential type, it can be seen that it is possible to linearize the relationship between the input and the output by converting the non-linear type into a linear type. For this purpose, an inverse matrix of the matrix corresponding to the coefficient term of the controller input should exist so that the controller input has a solution in Formula 20. It becomes Formula 43 by transforming Formula 42 into a matrix to ascertain whether a solution exists. It is possible to acquire rotor reference voltage illustrated in a two-phase stationary reference frame by transforming the output of a positive sequency component current controller FL1 and the output of a negative sequency component current controller FL2 (Transform 1 and Transform 2) and composing the same components, in the present invention.
In the Formula 43, when calculating the reverse matrix of the matrix E(t), it becomes the Formula 44.
(σLγ)(σLγ)≠0 As mentioned before, since in the doubly-fed induction generator, it can be seen that it always has a satisfactory solution.
{dot over (y)}i νi In the Formula 43, for the purpose of substituting the differential value of the output as nonlinear term with the new state variable to thereby make linearization, it is substituted as the Formula 45, below.
When the Formula 45 is substituted with Formula 43, and substituted with the Formula 44, the rule for determining the control signal may be obtained. That was proposed in the Formula 46. The Formula 46 described as below may be used as the current controller of the negative sequency component utilized in the control device of the doubly-fed induction generator according to the present invention.
Meanwhile, when the Formula 39 is substituted with the Formula 46 where the expression 39 is a defined equation of the input signal of the controller, the current control device applicable to the doubly-fed induction generator may be obtained as the Formula 47. It can be seen that it may be configured with a term that makes the tolerance “0” and a feed-forward term, for entirely decoupling another input.
In here, the new state variable may be designed so as to determine using the tolerance and regulation of the control input, and using the Formula 48 or Formula 49, the tolerance may be controlled to “0”.
ν1=λ11(y1*−y1)+λ12∫(y1*−y1)dt
ν2=λ21(y2*−y2)+λ22∫(y2*−y2)dt [Formula 48]
ν1=y1*+λ11(y1*−y1)+λ12∫(y1*−y1)dt
ν2=y2*+λ21(y2*−y2)+λ22∫(y2*−y2)dt [Formula 49]
In
The rotor reference voltage in two phase static coordinates may be obtained by uniting the same components after transforming (Transform 1, Transform 2) the output of the current controller in positive sequency component and the output the current controller in negative sequency component into the static coordinates respectively. At this point, a PWM input signal may be obtained by transforming (Transform 3) the rotor reference voltage of two phase static coordinates into that of three phase static coordinates.
Meanwhile,
As such, the present invention provides a doubly-fed induction generator capable of controlling a positive sequency component and a negative sequency component, which have non-linear characteristics, to be linearized while controlling the positive sequency component and the negative sequency component of the current of a rotor in a doubly-fed induction generator, respectively, for a d-axis and a q-axis.
It is possible to achieve large effect by performing sequence control while applying the control device according to an embodiment of the present invention. The sequence control implies a method of controlling a stator-side main switch in a power conversion device and brake dynamic breakers at both ends of the DC-link.
According to the embodiment of the present invention, the control device performs sequence control such that a stator-side main switch is turned on, when the magnitude of the system voltage positive sequency component is more than 90% of the rated voltage of the positive sequency component, and the DC-link voltage is between the upper limit of the DC-link voltage and a lower limit of the DC-link voltage.
However, it is possible to implement the LVRT function by turning off the stator-side main switch (S134), when the magnitude of the system voltage positive sequency component is less than 90% of the rated voltage of the positive sequency component (S124), even if the upper DC-link voltage is between the upper limit of the DC-link voltage and the lower limit of the DC-link voltage (S110, S116).
When the stator side main switch is on S130, the control device according to the present invention may be operated to control the rotor side converter RSC of the doubly-fed induction generator S132.
In this case, the DC-link voltage normalizes in the stator-side main switch that has been turned off, and the stator-side main switch can be turned on again when the system voltage normalizes (S138). An IN_phase process is necessary (S130) while the stator-side main switch that has been turned off is turned on. The In_phase method is not included in the technical characteristics of the present invention, such that the detailed description is not provided.
On the other hand, brake resistance devices attached in parallel at both ends of the DC-link is turned on when the DC-link voltage is larger than the upper limit of the DC-link voltage (S112), and performs sequence control to be turned off when the DC-link voltage comes in the normal range. Further, the power generation is stopped by stopping the power conversion device (S140), when the DC-link voltage becomes larger than the stop value of the DC-link voltage (S114).
The operational characteristics of the control device for a doubly-fed induction generator according to an embodiment of the present invention were analyzed under unbalanced voltage of a 2.5 MW doubly-fed induction generator. The control device for a doubly-fed induction generator according to the present invention can be connected to a rotor-side converter (RSC) of a doubly-fed induction generator, as illustrated in
As illustrated in
Therefore, it could be seen that it was possible to keep the DC-link voltage relatively stable, even if the system voltage suddenly drops or momentary power failure occurs, by using the control device for a doubly-fed induction generator according to the present invention.
Further, it may be seen that the stator-side switch is turned off again, when the DC-link voltage exceeds the upper limited value DC_Link_VTG_over_limit or the system voltage drops under the stable range Ratio_positive_VTG<0.9, and it can be seen that the stator-side switch is turned on again and power generation continues through the IN_phase process, when the DC-link voltage normalizes and the system voltage correspondingly normalizes.
As illustrated in
As described above, it can be seen that the control device for a doubly-fed induction generator according to the present invention can stably control the active power and the DC-link voltage and satisfy LVRT specifications, even under unbalanced voltage, such as momentary power failure, as well as under voltage drop.
While the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0109140 | Nov 2010 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7518256 | Juanarena Saragueta et al. | Apr 2009 | B2 |
7638983 | Park et al. | Dec 2009 | B2 |
7800243 | Bendixen et al. | Sep 2010 | B2 |
7830127 | Corcelles Pereira et al. | Nov 2010 | B2 |
7919879 | Flannery et al. | Apr 2011 | B2 |
8395360 | Tripathi et al. | Mar 2013 | B2 |
8400003 | Letas et al. | Mar 2013 | B2 |
8476871 | Ooi et al. | Jul 2013 | B2 |
20040145188 | Janssen et al. | Jul 2004 | A1 |
20070052244 | Hudson | Mar 2007 | A1 |
20100117606 | Oohara et al. | May 2010 | A1 |
20100142237 | Yuan et al. | Jun 2010 | A1 |
20120056602 | Li et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
10-2010-0054231 | May 2010 | KR |
Entry |
---|
Jang, Jeong-Ik et al.: “Nonlinear Control of Output Voltages of PWM Inverters for Stand-Alone Wind Power Generation”, in Korean with English translation of Abstract, PWM, vol. 12, No. 2, 2007, pp. 131-138. |
Number | Date | Country | |
---|---|---|---|
20120112708 A1 | May 2012 | US |