The present invention relates to a control device that controls an internal combustion engine in accordance with target control amount values, and more particularly to a control device that can make various requests concerning internal combustion engine performance be reflected in the target control amount values when they are to be determined.
It is demanded that an automotive internal combustion engine fulfill requests concerning various performance characteristics such as drivability, emissions performance, and fuel consumption rate. The requests concerning the various performance characteristics are issued from an overall vehicle control device to an internal combustion engine control device. The internal combustion engine control device controls control amounts of the internal combustion engine in order to fulfill such requests. However, it is difficult to fulfill all such requests completely and simultaneously. Therefore, it is necessary to devise a scheme for successfully making the various requests be reflected in the control amounts of the internal combustion engine.
Examples of such a scheme are disclosed in JP-A-2009-162199 and JP-A-2008-169825. Internal combustion engine control devices described in JP-A-2009-162199 and JP-A-2008-169825 perform a request mediation process to make various requests be reflected in the control amounts of the internal combustion engine. In the request mediation process, at first, each request is expressed by a predefined physical quantity. The physical quantity is used as a control amount for the internal combustion engine. The physical quantity includes, for instance, a torque, an efficiency, or an air-fuel ratio. The efficiency is the ratio of an actually output torque to a torque that can be potentially output from the internal combustion engine. Next, request values expressed by the same physical quantity are collected. One value is then determined from a plurality of collected request values in accordance with predetermined calculation rules. This determination process is referred to as mediation.
The calculation rules for mediation can be set up as desired. However, if the calculation rules are inappropriate, only requests having relatively high priority may be reflected in a final mediation value, that is, a target control amount value, while requests having relatively low priority are left unreflected. To properly control the internal combustion engine, it is necessary to make not only requests having relatively high priority but also requests having relatively low priority be reflected as appropriate in the target control amount value.
As regards the above matter, an effective solution is described in JP-A-2009-162199. A mediation method disclosed in JP-A-2009-162199 does not express a request with one numerical value, but expresses it in the form of a request value range and of an expected value distribution indicative of the degree of expectation of each request value within the request value range. The sum of expected values of all requests expressed by the same physical quantity is then calculated. Eventually, a request value that maximizes the sum is calculated as the mediation value, that is, the target control amount value. When the above-described mediation method is used to determine the target control amount value, all requests including those having relatively low priority can be reflected in the target control amount value in accordance with their importance.
In the above-described “request mediation,” it is assumed that requests to be mediated are expressed by the same physical quantity, or more precisely, expressed by a physical quantity used as a control amount. Therefore, it is necessary that all requests issued from a vehicle control device to an internal combustion engine control device be expressed in the form of a requested control amount value. However, using the form of a specific requested control amount value may not always be appropriate depending on the type or description of a request. In such a case, a request may not be properly reflected in a target control amount value.
The present invention has been made in view of the above circumstances. An object of the present invention is to provide an internal combustion engine control device that is capable of making various requests concerning internal combustion engine performance be reflected in target control amount values while the requests need not be expressed in the form of a requested control amount value.
In accomplishing the above-mentioned object, according to a first aspect of the present invention, there is provided an internal combustion engine control device that acquires various requests concerning internal combustion engine performance and sets a request-specific constraint for the value of a control amount. More specifically, the control device expresses constraints to be set for control amount values as a set of constraint index values assigned to individual control amount values, and varies the distribution of the constraint index values assigned to the control amount values in accordance with the type of a request. Next, the control device integrates, for each control amount value, the constraint index values assigned to individual requests with respect to each control amount value. Then, in accordance with the distribution of the integrated constraint index value for a control amount, the control device determines a limitation of the control amount, which is defined by an upper-limit value and a lower-limit value. Finally, the control device determines a target control amount value within the range of the determined limitation.
When the above-described process is performed, various requests concerning internal combustion engine performance are converted to a constraint on a control value amount. The various requests are then reflected in a target control amount value through the constraint. Therefore, each request need not be expressed beforehand in the form of a requested control amount value. Further, the integrated constraint index value is an integrated value of a constraint index value for each control amount value, which is assigned to each request with respect to each control amount value. According to the integrated constraint index value, therefore, the level of satisfaction of each control amount value with the entire request can be quantitatively evaluated. As the limitation used for determining the target control amount value is determined in accordance with the distribution of such an integrated constraint index value for a control amount, all requests including those having relatively low priority are properly reflected in the target control amount value.
In the above-described aspect, the constraint index value to be assigned to each control amount value may be either a discrete value assigned to each of a plurality of bands into which a control amount is divided or a continuous value that is continuous in each control amount value.
Further, it is preferred that the distribution of the constraint index value assigned to each control amount value not only vary with the type of a request but also vary with a change in the description of the request. When, for instance, the constraint index value is a discrete value assigned to each band, it is possible to change the constraint index value of each band to a different numerical value in accordance with a change in the description of a request, change the width of each band, or change the constraint index value of each band to a different numerical value in accordance with a change in the description of a request and change the width of each band. When, on the other hand, the constraint index value is a continuous value, the shape of its distribution can be changed with a high degree of freedom.
Further, in the above-described aspect, the constraint index value assigned to each request with respect to each control amount value can be weighted in accordance with the importance of each request. In such an instance, the control device integrates the weighted constraint index value for each control amount value and determines a control amount limitation in accordance with the distribution of the integrated constraint index value. When the above-described process is performed, the importance of each request can be reflected in the setting of a target control amount value.
In the above-described aspect, it is preferred that either of the following two policies be employed when a constraint index value is to be assigned to each control amount value. A first policy is to assign the constraint index value such that the more appropriate the control amount value is for the description of a request, the greater the constraint index value assigned to the control amount value will be with reference to zero or other predetermined finite value. When the first policy is employed, the greater the constraint index value assigned to the control amount value is, the smaller the deviation between the target control amount value and the constraint index value can be lead to.
When the first policy is employed, it is preferred that either of the following two methods be used to determine the control amount limitation. A first method is to use a limitation that represents a band in which the integrated constraint index value is greater than a predetermined threshold value. A second method is to select such a threshold value that a band in which the constraint index value is greater than the threshold value has a predetermined width, and use a limitation that represents a band defined by the selected threshold value. When the first method is employed, it is preferred that the predetermined threshold value vary with the operating environment of the internal combustion engine. When the second method is employed, it is preferred that the predetermined width vary with the operating environment of the internal combustion engine.
A second policy is to assign the constraint index value such that the more inappropriate the control amount value is for the description of a request, the greater the constraint index value assigned to the control amount value will be with reference to zero or other predetermined finite value. When the second policy is employed, the greater the constraint index value assigned to the control amount value is, the greater the deviation between the target control amount value and the constraint index value can be lead to.
When the second policy is employed, it is preferred that either of the following two methods be used to determine the control amount limitation. A first method is to use a limitation that represents a band in which the integrated constraint index value is smaller than a predetermined threshold value. A second method is to select such a threshold value that a band in which the constraint index value is smaller than the threshold value has a predetermined width, and use a limitation that represents a band defined by the selected threshold value. When the first method is employed, it is preferred that the predetermined threshold value vary with the operating environment of the internal combustion engine. When the second method is employed, it is preferred that the predetermined width vary with the operating environment of the internal combustion engine.
In accomplishing the earlier-mentioned object, according to a second aspect of the present invention, there is provided an internal combustion engine control device that acquires various requests concerning internal combustion engine performance and sets a request-specific constraint for the value of a control amount. More specifically, the control device expresses constraints to be set for control amount values as a set of constraint index values assigned to individual control amount values, and varies the distribution of the constraint index values assigned to the control amount values in accordance with the type of a request. Next, the control device sets a plurality of request groups, each of which includes a plurality of requests. Next, the control device integrates the constraint index value assigned to each request with respect to each control amount value on an individual control amount value basis in each request group, and resets the distribution of the constraint index value in each request group in accordance with the distribution of the integrated constraint index value. Next, the control device integrates the constraint index value assigned to each request group with respect to each control amount value on an individual control amount value basis. Then, in accordance with the distribution of the integrated constraint index value for a control amount, the control device determines a limitation of the control amount, which is defined by an upper-limit value and a lower-limit value. Finally, the control device determines a target control amount value within the range of the determined limitation.
When the above-described process is performed, various requests concerning internal combustion engine performance are converted to a constraint on a control value amount. The various requests are then reflected in a target control amount value through the constraint. In such an instance, the individual requests are grouped into a plurality of request groups, the distribution of the constraint index value is recalculated on an individual request group basis, and the control amount limitation is determined in accordance with the distribution of the constraint index value on such an individual request group basis. Therefore, each request can be hierarchically reflected in the target control amount value.
In the above-described second aspect, the constraint index value to be assigned to each control amount value may be either a discrete value assigned to each of a plurality of bands into which a control amount is divided or a continuous value that is continuous in each control amount value.
As regards the policy to be employed when the constraint index value is to be assigned to each control amount value in the second aspect, the more appropriate the control amount value is for the description of a request, the greater the constraint index value assigned to the control amount value will preferably be with reference to zero or other predetermined finite value. Further, the more inappropriate the control amount value is for the description of a request, the greater the constraint index value assigned to the control amount value will preferably be with reference to zero or other predetermined finite value.
In accomplishing the earlier-mentioned object, according to a third aspect of the present invention, there is provided an internal combustion engine control device that acquires various requests concerning internal combustion engine performance, and sets a plurality of control amount limitations, which are defined by an upper-limit value and a lower-limit value, for individual requests while varying the degree of constraint severity. Next, the control device ultimately determines the control amount limitation in accordance with a limitation overlap between requests and the degree of constraint severity defined by each limitation. Finally, the control device determines a target control amount value within the range of the ultimately determined limitation.
When the above-described process is performed, various requests concerning internal combustion engine performance are converted to a plurality of limitations that differ in the degree of constraint severity. The various requests are then reflected in a target control amount value through constraints defined by such limitations. Therefore, each request need not be expressed in the form of a requested control amount value beforehand. Further, as the final limitation used for determining the target control amount value is determined in accordance with the limitation overlap between requests and with the degree of constraint severity defined by each limitation, all requests including those having relatively low priority are properly reflected in the target control amount value.
In accomplishing the earlier-mentioned object, according to a fourth aspect of the present invention, there is provided an internal combustion engine control device that acquires various requests concerning internal combustion engine performance, and sets a plurality of control amount limitations, which are defined by an upper-limit value and a lower-limit value, for individual requests while varying the degree of constraint severity. Next, the control device sets a plurality of request groups, each of which includes a plurality of requests. Next, the control device integrates a request-specific limitation in each request group and resets a limitation for each request group. Then, in accordance with a limitation overlap between the request groups and with the degree of constraint severity defined by each limitation, the control device ultimately determines the control amount limitation. Finally, the control device determines a target control amount value within the range of the ultimately determined limitation.
When the above-described process is performed, various requests concerning internal combustion engine performance are converted to a plurality of limitations that differ in the degree of constraint severity. The various requests are then reflected in a target control amount value through constraints defined by such limitations. In such an instance, the individual requests are grouped into the plurality of request groups, the limitation is reset for each request group, and a final limitation is determined in accordance with the limitation for each request group. Consequently, each request can be hierarchically reflected in the target control amount value.
First Embodiment
A first embodiment of the present invention will now be described with reference to
A control device according to the first embodiment is applied to an automotive internal combustion engine (hereinafter referred to as the engine). The type of an applicable engine is not limited. The control device can be applied to various types of engines, including a spark ignition engine, a compression ignition engine, a four-stroke engine, a two-stroke engine, a reciprocating engine, a rotary engine, a single-cylinder engine, and a multi-cylinder engine. The control device according to the present embodiment controls one or more actuators provided for such an engine, such as a throttle and an ignition device, in accordance with an engine control amount, such as a target torque value.
Various engine performance requests supplied to the control device with the requested torque are considered when the target torque is determined from the requested torque. As shown in
Each constraint includes a plurality of limitations (three limitations in
As indicated in
As shown in
In the present embodiment, each constraint includes a plurality of limitations differing in severity in order to avoid the above-mentioned empty set and make all requests be reflected in the target torque setting. Even if the target torque for a certain constraint is outside the range of the first limitation, which is the severest, a request on which the constraint is based can be satisfied to a certain extent as far as the target torque is within the range of the second limitation, which is the second severest. Further, if the target torque for most of the other constraints turns out to be within the range of the first limitation, which is the severest, an overall request concerning the entire engine is satisfied to a great extent. In the example shown in
As described above, the present embodiment converts various requests concerning engine performance to a plurality of limitations differing in constraint severity and makes the requests be reflected in the target torque setting through the constraints based on the limitations. Therefore, each request need not be expressed beforehand in the form of a requested control amount value. Further, as the final limitation used for determining the target torque is determined in accordance with the limitation overlap between requests and with the degree of constraint severity defined by each limitation, all requests including those having relatively low priority are properly reflected in the target torque.
In the example shown in
In the example shown in
Second Embodiment
A second embodiment of the present invention will now be described with reference to
The control device according to the second embodiment has the same configuration as the control device according to the first embodiment whose configuration is shown in the block diagram of
The control device according to the present embodiment integrates the constraint index values assigned to individual constraints, namely, to individual requests for each torque value. As a result, a distribution of integrated constraint index values, which is named “Constraint-total”, is obtained as indicated at the rightmost end of
As described above, the present embodiment converts various requests concerning engine performance to a constraint on a torque value and makes the requests be reflected in the target torque setting through the constraint. Therefore, each request need not be expressed beforehand in the form of a requested control amount value. Further, the integrated constraint index value makes it possible to quantitatively evaluate the level of satisfaction of each torque value with the entire request. Therefore, when the target torque is determined in accordance with the distribution of the integrated constraint index value, all requests including those having relatively low priority are properly reflected in the target torque.
Meanwhile, as shown in
In the examples shown in
Third Embodiment
A third embodiment of the present invention will now be described with reference to
“Constraint-total”, which is indicated at the rightmost end of
The constraint index value to be assigned to each band may be set to vary from one constraint to another. One example is shown in
In the examples shown in
Fourth Embodiment
A fourth embodiment of the present invention will now be described with reference to
“Constraint-total”, which is indicated at the rightmost end of
In the present embodiment, a band in which the integrated constraint index value is greater than a predetermined threshold value α1 is set as the torque limitation, as shown in
The constraint index value to be assigned to each torque value may be set to vary from one constraint to another. In other words, the shape of the distribution of the constraint index values for the torque values may be set to vary from one constraint to another. One example is shown in
Fifth Embodiment
A fifth embodiment of the present invention will now be described with reference to
The fifth embodiment is based on the fourth embodiment. The fifth embodiment differs from the fourth embodiment in the method of determining the torque limitation from the distribution of the integrated constraint index value. As shown in
Sixth Embodiment
A sixth embodiment of the present invention will now be described with reference to
“Constraint-total”, which is indicated at the rightmost end of
In the sixth embodiment, a band in which the integrated constraint index value is smaller than a predetermined threshold value α2 is set as the torque limitation, as shown in
The shape of the distribution of the constraint index values for the torque values may be set to vary from one constraint to another. One example is shown in
Seventh Embodiment
A seventh embodiment of the present invention will now be described with reference to
The seventh embodiment is based on the sixth embodiment. The seventh embodiment differs from the sixth embodiment in the method of determining the torque limitation from the distribution of the integrated constraint index value. As shown in
Eighth Embodiment
An eighth embodiment of the present invention will now be described with reference to
The eighth embodiment is based on the second embodiment and is characterized in that the constraints, namely, the requests, are variously weighted. In the example shown in
The control device according to the eighth embodiment multiplies the constraint index value assigned to each band by the weight, which varies from one constraint to another, and integrates the resulting values for each torque value. As a result, a distribution of integrated constraint index values, which is named “Constraint-total”, is obtained as indicated at the rightmost end of
Ninth Embodiment
A ninth embodiment of the present invention will now be described with reference to
The ninth embodiment is based on the third embodiment and is characterized in that the constraints, namely, the requests, are variously weighted. As is the case with the eighth embodiment, the weight to be applied to each request is variable and each request is weighted according to its importance. “Constraint-total”, which is indicated at the rightmost end of
Tenth Embodiment
A tenth embodiment of the present invention will now be described with reference to
The tenth embodiment is based on the fourth embodiment and is characterized in that the constraints, namely, the requests, are variously weighted. As is the case with the eighth and ninth embodiments, the weight to be applied to each request is variable and each request is weighted according to its importance. “Constraint-total”, which is indicated at the rightmost end of
Eleventh Embodiment
An eleventh embodiment of the present invention will now be described with reference to
The eleventh embodiment is based on the sixth embodiment and is characterized in that the constraints, namely, the requests, are variously weighted. As is the case with the eighth to tenth embodiments, the weight to be applied to each request is variable and each request is weighted according to its importance. “Constraint-total”, which is indicated at the rightmost end of
Twelfth Embodiment
A twelfth embodiment of the present invention will now be described with reference to
The twelfth embodiment is based on the first embodiment and is characterized in that a request group into which a plurality of requests are grouped is formed to reset the limitation on the request group by integrating request-specific limitations within the request group. In the example shown in
The control device according to the twelfth embodiment additionally performs the above-described process on the other requests to set a plurality of request-group-specific limitations as indicated in
Thirteenth Embodiment
A thirteenth embodiment of the present invention will now be described with reference to
The thirteenth embodiment is based on the second embodiment and is characterized in that a request group into which a plurality of requests are grouped is formed to reset the distribution of constraint index values for the request group. In the example shown in
The control device according to the thirteenth embodiment additionally performs the above-described process on the other requests to set a plurality of request-group-specific limitations as indicated in
Other
While the present invention has been described in connection with the foregoing embodiments, it should be understood that the present invention is not limited to the foregoing embodiments. The present invention extends to various modifications that nevertheless fall within the scope and spirit of the present invention.
For example, the foregoing embodiments assume that torque is handled as an engine control amount. However, the present invention can also be applied to the determination of a target control amount value other than the torque. More specifically, the present invention is also applicable to the determination of a target control amount value such as an air-fuel ratio or efficiency.
Further, although the thirteenth embodiment is based on the second embodiment, the technical features offered by the thirteenth embodiment can also be applied to the third to eleventh embodiments in which each constraint is quantified by the constraint index value.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/050348 | 1/14/2010 | WO | 00 | 3/28/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/086679 | 7/21/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20040014561 | Jessen | Jan 2004 | A1 |
20100211246 | Kawai | Aug 2010 | A1 |
20100211287 | Ohtsuka et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2004 52769 | Feb 2004 | JP |
2008 169825 | Jul 2008 | JP |
2009 162199 | Jul 2009 | JP |
2009 162200 | Jul 2009 | JP |
2009 167916 | Jul 2009 | JP |
2009 197720 | Sep 2009 | JP |
Entry |
---|
International Search Report Issued Feb. 9, 2010 in PCT/JP10/50348 Filed Jan. 14, 2010. |
Number | Date | Country | |
---|---|---|---|
20120185148 A1 | Jul 2012 | US |