The present invention relates to a control device, and more particularly to a control device with a display panel and at least one light-transmissible key structure.
A control device is widely used in a live streaming machine, a live production switcher, an ordering machine or a drawing device. The control device comprises a display panel and plural light-transmissible key structures. Due to the cooperation of the display panel and the light-transmissible key structures, the control device has the visualized buttons for facilitating the user to select desired items and perform associated operations in an intuitive manner.
In the conventional control device, the key structure needs to be light-transmissible for allowing the image or the light beam from the underlying display panel to pass through. For achieving the above purposes, the membrane switch of the key structure needs to have a hollow portion. Due to the hollow portion of the key structure, the layout space of the circuit and the contact points on an upper film layer and a lower film layer of the membrane switch is very narrow. Consequently, the layout difficulty is increased.
Moreover, a space layer is used for separating the upper film layer from the lower film layer for a specified gap when the membrane switch is not triggered. The space layer needs to avoid the direct contact with the very dense and complex circuits. In other words, the design of the membrane switch needs to be further improved.
In order to overcome the drawbacks of the conventional technologies, the present invention provides a control device. A membrane switch of the control device is specially designed. A cured ink member is formed on a surface the upper film layer facing the lower film layer or a surface of the lower film layer facing the upper film layer by using a UV printing process. Due to the ink member, a specified gap or distance between the upper film layer and the lower film layer can be maintained when they are not contacted with each other or when the membrane switch is not triggered.
In accordance with an aspect of the present invention, a control device is provided. The control device includes a display panel and at least one key structure. The at least one key structure is located over the display panel. Each key structure includes a keycap, a membrane switch and an elastic element. The keycap is light-transmissible. The membrane switch includes an upper film layer, a lower film layer and at least one ink member. The upper film layer includes a first top surface, at least one first opening and a first bottom surface. The lower film layer includes a second top surface, at least one second opening and a second bottom surface. The at least one first opening runs through the first top surface and the first bottom surface. The first bottom surface faces the lower film layer. The at least one second opening runs through the second top surface and the second bottom surface. The second top surface faces the upper film layer. A light beam emitted by the display panel is transmitted upwardly through the at least one second opening, the at least one first opening and the keycap. The at least one ink member is formed on the first bottom surface or the second top surface. The upper film layer and the lower film layer are separated from each other through the at least one ink member. The elastic element is arranged between the keycap and the membrane switch.
In an embodiment, the at least one ink member is formed on the first bottom surface or the second top surface by using a UV printing process.
In an embodiment, the at least one ink member includes a first ink structure and a second ink structure. The first ink structure is formed on the first bottom surface. The second ink structure is formed on the second top surface. The first ink structure and the second ink structure are contacted with each other along a vertical direction.
In an embodiment, the upper film layer further includes a first circuit contact point, and the lower film layer further includes a second circuit contact point. The first circuit contact point is formed on the first bottom surface. The second circuit contact point is formed on the second top surface. The first circuit contact point and the second circuit contact point are overlapped with each other along a vertical direction.
In an embodiment, the control device further includes an optical film layer and a first protrusion structure. The optical film layer is formed on the first top surface. The first protrusion structure is formed on the optical film layer. The first protrusion structure is overlapped with the first circuit contact point and the second circuit contact point along the vertical direction.
In an embodiment, the optical film layer is a light-shielding sheet.
In an embodiment, the first protrusion structure is made of rubber, epoxy resin or polyester resin, and the first protrusion structure is formed by using an attaching process, a printing process, a coating process, a glue dispensing process or an integral formation process.
In an embodiment, the elastic element includes a support part, a lateral wall and a lower part. The support part is connected with the keycap. The lateral wall is arranged between the support part and the lower part. When the keycap is pressed down, the keycap or the support part is moved downwardly to push the first protrusion structure, so that the first circuit contact point is contacted with the second circuit contact point.
In an embodiment, the keycap includes a press surface, a lateral surface and a third bottom surface, and the support part of the elastic element is connected with the lateral surface of the keycap. When the keycap is pressed down, the third bottom surface of the keycap is moved downwardly to push the first protrusion structure.
In an embodiment, the keycap includes a press surface, a lateral surface and a third bottom surface. The third bottom surface of the keycap is contacted with the support part of the elastic element. When the keycap is pressed down, the support part of the elastic element is moved downwardly to push the first protrusion structure.
In an embodiment, the keycap includes a press surface, a lateral surface, a third bottom surface and a second protrusion structure. The second protrusion structure is protruded downwardly from the third bottom surface. The second protrusion structure is overlapped with the first protrusion structure, the first circuit contact point and the second circuit contact point along the vertical direction. The support part includes a recess. The second protrusion structure is received within the recess.
In an embodiment, the control device further includes a first protrusion structure, and the first protrusion structure is installed on the optical film layer. The first protrusion structure is overlapped with the first circuit contact point and the second circuit contact point along the vertical direction.
In an embodiment, the first protrusion structure is made of rubber, epoxy resin or polyester resin, and the first protrusion structure is formed by using an attaching process, a printing process, a coating process, a glue dispensing process or an integral formation process.
In an embodiment, the elastic element includes a support part, a lateral wall and a lower part. The support part is connected with the keycap. The lateral wall is arranged between the support part and the lower part. When the keycap is pressed down, the keycap or the support part is moved downwardly to push the first protrusion structure, so that the first circuit contact point is contacted with the second circuit contact point.
In an embodiment, the keycap includes a press surface, a lateral surface and a third bottom surface. The support part of the elastic element is connected with the lateral surface of the keycap. When the keycap is pressed down, the third bottom surface of the keycap is moved downwardly to push the first protrusion structure.
In an embodiment, the keycap includes a press surface, a lateral surface and a third bottom surface. The third bottom surface of the keycap is contacted with the support part of the elastic element. When the keycap is pressed down, the support part of the elastic element is moved downwardly to push the first protrusion structure.
In an embodiment, the keycap includes a press surface, a lateral surface, a third bottom surface and a second protrusion structure. The second protrusion structure is protruded downwardly from the third bottom surface. The second protrusion structure is overlapped with the first protrusion structure, the first circuit contact point and the second circuit contact point along the vertical direction. The support part includes a recess. The second protrusion structure is received within the recess.
In an embodiment, the elastic element includes a support part, a lateral wall and a lower part. The support part is connected with the keycap. The lateral wall is arranged between the support part and the lower part. A protrusion structure is formed on the support part. The protrusion structure is overlapped with the first circuit contact point and the second circuit contact point along the vertical direction. When the keycap is pressed down, the protrusion structure is moved downwardly to push the first circuit contact point, so that the first circuit contact point is contacted with the second circuit contact point.
The above objects and advantages of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. In the following embodiments and drawings, the elements irrelevant to the concepts of the present invention are omitted and not shown.
The present invention provides a control device. The control device is applied to a live streaming machine, a live production switcher, an ordering machine or a drawing device.
An accommodation space 7 is defined by the top cover 2 and the outer casing 3 collaboratively. The plural key structures 4, the display panel 5 and the main board 6 are disposed within the accommodation space 7. Optionally, a processor, a signal processing device and a communication interface that support the key structures 4, the display panel 5 and the main board 6 are disposed within the control device 1.
According to the predetermined setting or control, different images, information or pictures generated by the display panel 5 can be shown on individual key regions of the key structures 4. Consequently, after a specified key structure 4 is selected and pressed down by the user, the control device 1 issues a control signal corresponding to the image, the information or the picture. Moreover, the image, the information or the picture that is defined according to the light beam from the display panel 5 can be set, controlled or changed by the user.
As shown in
Please refer to
The keycap 41 is made of a light-transmissible material. Consequently, the keycap 41 has the light-transmissible property. The keycap 41 comprises a press surface 411, a lateral surface 412 and a bottom surface 413. The lateral surface 412 is arranged between the press surface 411 and the bottom surface 413. The image, the information or the picture generated by the display panel 5 is transmitted upwardly through the keycap 41 and thus visible by the user.
The elastic element 43 has the elastic property. After the elastic element 43 is combined with the keycap 41, the elastic element 43 provides an elastic force for moving upwardly and downwardly the keycap 41 in a reciprocating manner. In an embodiment, the elastic element 43 comprises a support part 431, a lateral wall 432, a lower part 433 and a hollow part 434. After the light beam emitted by the display panel 5 is transmitted upwardly through the hollow part 434, the light beam is transferred to the keycap 41. The support part 431 is connected with the keycap 41. In addition, the keycap 41 is supported by the support part 431. For example, the support part 431 is attached on the lateral surface 412 of the keycap 41, or the support part 431 is attached on the bottom surface 413 of the keycap 41. In the embodiment, the support part 431 of the elastic element 43 is attached on the lateral surface 412 of the keycap 41. Moreover, the support part 431 has a sleeve structure that is arranged around the keycap 41 and the hollow part 434 of the elastic element 43. As long as the shape of the support part 431 matches the shape of the keycap 41 and the support part 431 is attachable on or connectable with the keycap 41, the structure or the profile of the support part 431 is not restricted.
In an embodiment, the elastic elements 43 of the plural key structures 4 are integrated as an integral elastic film layer. The plural elastic elements 43 comprises plural support parts 431 and plural lateral walls 432 corresponding to the plural keycaps 41. Moreover, the plural support parts 431 and the plural lateral walls 432 are connected with each other through the lower parts 433 of the plural elastic elements 43. It is noted that numerous modifications may be made while retaining the teachings of the present invention. For example, in another embodiment, the plural elastic elements 43 are individual structures rather than the integral structure. That is, each elastic element 43 has the corresponding support part 431 and the corresponding lateral wall 432.
The lateral walls 432 of the elastic elements 43 are bendable or compressible. Consequently, the elastic element 43 can be subjected to deformation and returned to its original position. Moreover, the lower parts 433 of the elastic elements 43 are upwardly connected with the top cover 2 or contacted with the bottom surface of the top cover 2. The lower parts 433 of the elastic elements 43 are downwardly contacted with the optical film layer 45. In some embodiments, the key structure 4 is not equipped with the optical film layer 45. Under this circumstance, the lower parts 433 of the elastic elements 43 are directly contacted with the membrane switches 47.
The optical film layer 45 is arranged between the elastic elements 43 and the membrane switches 47. In an embodiment, the optical film layer 45 is a light-shielding sheet for sheltering a specified region or area. For example, the region between the adjacent key structures 4 is sheltered by the optical film layer 45, or other regions of the control device 1 required to be subjected to the light-shielding function or the light-leakage preventing function are shielded by the optical film layer 45. Due to the arrangement of the optical film layer 45, the area of the image, the information or the picture shown on each key structure 4 is clearer. Moreover, the optical film layer 45 comprises a perforation 451 or a light-transmissible region. The light beam emitted by the display panel 5 can be transmitted upwardly through the perforation 451 or the light-transmissible region of the optical film layer 45. Preferably but not exclusively, the optical film layer 45 has a single-layered structure or a multi-layered structure. Optionally, the key structure 4 is equipped with additional film layers to provide different effects or functions.
The membrane switch 47 comprises an upper film layer 471 and a lower film layer 472. When the membrane switch 47 is triggered, the membrane switch 47 issues a pressing signal to the main board 6.
The upper film layer 471 comprises a top surface 4711, at least one opening 4712, a bottom surface 4713 and a circuit contact point 4714. The at least one opening 4712 runs through the top surface 4711 and the bottom surface 4713. The bottom surface 4713 faces the lower film layer 472. The circuit contact point 4714 is formed on the bottom surface 4713. Moreover, the optical film layer 45 is disposed on the top surface 4711 of the upper film layer 471.
The lower film layer 472 comprises a top surface 4721, at least one opening 4722, a bottom surface 4723 and a circuit contact point 4724. The at least one opening 4722 runs through the top surface 4721 and the bottom surface 4723. The top surface 4721 faces the upper film layer 471. The circuit contact point 4724 is disposed on the top surface 4721.
The circuit contact point 4714 of the upper film layer 471 and the circuit contact point 4724 of the lower film layer 472 are overlapped with each other along the vertical direction. In case that the membrane switch 47 is not triggered or pressed, there is a gap or a distance between the circuit contact point 4714 of the upper film layer 471 and the circuit contact point 4724 of the lower film layer 472. Moreover, the light beam from the display panel 5 can be transmitted upwardly through the at least one opening 4722 of the lower film layer 472, the at least one opening 471 of the upper film layer 471 and the keycap 41.
In the membrane switch 47, the ink member is formed on the bottom surface 4713 of the upper film layer 471 or the top surface 4721 of the lower film layer 472 by a UV printing process and then cured. Consequently, the bottom surface 4713 of the upper film layer 471 and the top surface 4721 of the lower film layer 472 are separated from each other through the ink member. Since the ink member is formed by using the UV printing process, the material of the ink member can be filled into the proper gap or region in the narrow space or layout area to be formed as the spacer between the upper film layer 471 and the lower film layer 472. In other words, the UV printing process is suitably applied to the membrane switch with the upper film layer and the lower film layer having the openings. Moreover, the use of the UV printing process can reduce the aligning and assembling complexity of the membrane switch 47.
In an embodiment, the ink member is formed and cured on the bottom surface 4713 of the upper film layer 471 individually, or the ink member is cured and formed on the top surface 4721 of the lower film layer 472 individually. Alternatively, in another embodiment, the ink member is formed and cured on both of the bottom surface 4713 of the upper film layer 471 and the top surface 4721 of the lower film layer 472.
Please refer to
In the key structure 4, a protrusion structure is selectively formed on the optical film layer 45, the membrane switch 47 or the support part 431 of the elastic element 43. The arrangement of the protrusion structure facilitates the user to trigger the underlying membrane switch 47 more easily and precisely when the keycap 41 is pressed down by the user. The protrusion structure is made of rubber, epoxy resin or polyester resin. Moreover, the protrusion structure is formed on the optical film layer 45 or the membrane switch 47 in an attaching process, a printing process, a coating process, a glue dispensing process or an integral formation process.
Please refer to
In an embodiment, the protrusion structure 49 is formed on the optical film layer 45 or the membrane switch 47 in the attaching process, the printing process, the coating process or the glue dispensing process. In another embodiment, the protrusion structure 49 is integrally formed with the optical film layer 45 in the integral formation process. In other words, when the optical film layer 45 is formed or produced, the protrusion structure 49 is formed simultaneously.
In another embodiment of the control device, when the keycap 41 is pressed down, the support part 431 of the elastic element 43 is moved downwardly to push the protrusion structure 49. Consequently, the circuit contact point 4714 of the upper film layer 471 is contacted with the circuit contact point 4724 of the lower film layer 472.
In the control device as shown in
In the second embodiment, the support part 431 of the elastic element 43 is moved downwardly to push the protrusion structure 49 when the keycap 41 is pressed down, and thus the circuit contact point 4714 of the upper film layer 471 is contacted with the circuit contact point 4724 of the lower film layer 472. In some other embodiments, each of the keycap 41 and the support part 431 of the elastic element 43 is equipped with an auxiliary structure. Due to the auxiliary structure, the tactile feel and the precision of pressing down the key structure will be enhanced.
In the control device as shown in
In the control devices of the first, second and third embodiments, the protrusion structure 49 is formed on the optical film layer 45. When the keycap 41 is pressed down by the user, the protrusion structure 49 facilitates the user to trigger the underlying membrane switch 47 more easily and precisely. In some other embodiments, the protrusion structure is formed on the membrane switch 47.
In the control device as shown in
The design of the second embodiment and the design of the third embodiment can be selectively applied to the control device of this embodiment. When the keycap 41 is pressed down, the support part 431 of the elastic element 43 is moved downwardly to push the underlying protrusion structure 49. Consequently, the circuit contact point 4714 of the upper film layer 471 is contacted with the circuit contact point 4724 of the lower film layer 472.
Optionally, the control device of the fourth embodiment is equipped with the optical film layer 45. In an embodiment, the optical film layer 45 is arranged between the membrane switch 47 and the elastic element 43. Alternatively, the optical film layer 45 is only installed on the membrane switch 47 but not directly contacted with the elastic element 43. It is noted that the installation of the optical film layer 45 is not restricted. In case that the optical film layer 45 is arranged between the membrane switch 47 and the elastic element 43, the lower part 433 of the elastic element 43 is contacted with the optical film layer 45. In case that the optical film layer 45 is only installed on the membrane switch 47 but not directly contacted with the elastic element 43, the lower part 433 of the elastic element 43 is contacted with the membrane switch 47.
In the control devices of the first, second, third and fourth embodiments, the keycap 41 and the protrusion structure 49, the circuit contact point 4714 of the upper film layer 471 and the circuit contact point 4724 of the lower film layer 472 under the keycap 41 are overlapped with each other along the vertical direction. In some other embodiments, the keycap 41 and the protrusion structure 49, the circuit contact point 4714 of the upper film layer 471 and the circuit contact point 4724 of the lower film layer 472 under the keycap 41 are not overlapped with each other along the vertical direction. Instead, the support part 431 of the elastic element 43 is overlapped with the underlying circuit contact point 4714 of the upper film layer 471 and the underlying circuit contact point 4724 of the lower film layer 472 along the vertical direction.
Moreover, in this embodiment, no protrusion structures are formed on the optical film layer 45 or the membrane switch 47. The other components of the control device of this embodiment are similar to those of the first, second, third and fourth embodiments, and not redundantly described herein.
When the keycap 41 is pressed down, the protrusion structure 4313 on the support part 431 of the elastic element 43 is moved downwardly to push the circuit contact point 4714 of the upper film layer 471. Consequently, the circuit contact point 4714 of the upper film layer 471 is contacted with the circuit contact point 4724 of the lower film layer 472. Under this circumstance, the key structure 4 induces, generates or outputs a pressing signal.
In the control device of the present invention, each key structure 4 is at least equipped or collocated with a protrusion structure 49 or 4313. In the first, second, third, fourth and fifth embodiments, each key structure 4 is aligned with four protrusion structures 49 or 4313. The four protrusion structures 49 or 4313 are respectively located at four corners of the key structure 4. Consequently, even if the pressing force is not applied to the center of the keycap 41, the keycap 41 is not pressed down in an askew or inclined manner. That is, the circuit contact point 4714 of the upper film layer 471 can be contacted with the circuit contact point 4724 of the lower film layer 472 successfully.
In this context, the term “contact” includes the direct contact and the indirect contact. In case that two objects are directly contacted or connected with each other, the two objects are in direct contact with each other. In case that two objects are not directly contacted or connected but the two objects are indirectly connected with each other through an intermediate medium, the two objects are in indirect contact with each other.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all modifications and similar structures.
This application claims priority to U.S. Provisional Patent Application No. 63/298,953 filed Jan. 12, 2022, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20080006516 | Nishino | Jan 2008 | A1 |
20160284493 | Chen | Sep 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20230223213 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
63298953 | Jan 2022 | US |