The invention generally relates to a control device with an electromagnetic switchgear apparatus. Preferably, it relates to one having a switchgear apparatus housing with a bottom wall, which is extended for the purpose of fixing the switchgear apparatus and forms the base area of the switchgear apparatus, and with an electronic power module—electrically connected to the switchgear apparatus—with a module housing for the soft starting of a motor or a group of motors. The switchgear apparatus preferably serves as an electrical bridging unit. The electronic power module may be placed onto the switchgear apparatus on its side remote from the bottom wall, with the structural width b of the power module not exceeding the width of the base area of the switchgear apparatus.
A control device is known which is constructed from an electronic power module and a separate commercially available switchgear. For the purpose of soft starting and during rotational-speed-controlled operation of a motor, the semiconductor valves of the electronic power module are operated by phase gating control. When the steady-state operation of the motor is reached, the current is taken over by bridging by use of the mechanical switching contact of the switchgear, as is illustrated in a simplified manner in the single-phase electrical circuit according to FIG. 1.
Significantly smaller losses arise compared with electronic motor control units without bridging. In the steady-state ON operating state, the losses of a switchgear amount to approximately {fraction (1/10)} of the losses of power semiconductors. Through suitable driving of switchgear and electronic power part by the control unit of the electronic power part during the transition from rotational-speed-controlled operation to steady-state operation, from steady-state operation to rotational-speed-controlled operation and from steady-state operation to the OFF state, the arc loading on the switchgear contacts can be restricted to a minimum amount and the switching lifetime of the contacts can thus be increased to the region of the mechanical switching lifetime of the switchgear.
The known control devices are constructed in accordance with
EP 0 860 145 B1 discloses a control device of the type mentioned above. In the case of this control device, the semiconductors are driven in such a way that only a minimal voltage occurs at the mechanical switching contacts during the very short switch-on and -off phases. This considerably prolongs the electrical lifetime of the switching contacts. The duration of the switch-on and -off phases is very short, i.e. only a few power supply periods, so that likewise only very little power loss arises in the semiconductors. In a motor control unit, however, starting and stopping operations occur which can last from a few seconds to a few minutes. During these control operations, exclusively the semiconductor elements are in use, with the consequence of correspondingly high losses which must be dissipated by means of suitable cooling measures.
Therefore, an embodiment of the invention can be based on an object of providing a control device with a commercially available switchgear apparatus and an electronic power module, which is suitable for relatively lengthy starting and stopping operations.
The arrangement of the electronic power module on the switchgear affords an advantage, in the case of mounting in a switchgear cabinet in one embodiment, that the heat loss generated by the electronic power module can be dissipated well and without influencing other apparatuses. By virtue of the internal space of the module housing having three mutually insulated chambers in one embodiment, in each of which an electronic switching unit is arranged, the situation where a fault in one electronic switching unit spreads to an adjacent electronic switching unit may be avoided in this way.
An advantageous embodiment of the control device according to the invention exists if the control device is embodied as a motor control unit encapsulated toward the outside by the switchgear apparatus housing and the module housing, and if only connecting rails of the electronic power module and connection rails of the switchgear apparatus are accessible externally. Depending on the embodiment, the connecting rails of the electronic power module or the connection rails of the switchgear apparatus or else both can be used for the connection of the control device. The pitch of the connection rails of the switchgear apparatus is maintained as a result of this, which makes it possible to replace the switchgear apparatus by the higher-quality control device.
This embodiment advantageously corresponds to the type that is customary in electrical switchgear apparatuses, in particular switchgears, where only the connection rails are externally accessible.
If the electronic power module is placed onto the switchgear apparatus housing in a positively locking manner, then the positively locking connection already results in a fixed mechanical connection between both components, so that additional connecting devices that are costly and complicated in terms of mounting remain obviated.
A further advantageous embodiment of the invention exists if the connecting rails of the electronic power module and the connection rails of the switchgear apparatus serve for electrically and mechanically connecting both components.
With regard to the arrangement of the electronic switching units and their connection to the connection rails of the switchgear apparatus, it is advantageous if these are arranged according to a pitch and the position of the chambers is adapted thereto.
Furthermore, it is advantageous if the electronic switching units each have semiconductor cells which are electrically connected back-to-back and are clamped in between two metal plates of high thermal conductivity, since, in the case of this embodiment, the metal rails serve not only for current transmission, but also for heat dissipation.
An additional improvement in the heat dissipation is achieved if the connecting rails have a high thermal conductivity.
The measures described for dissipating the heat loss as optimally as possible enable the components of the electronic power module to be arranged correspondingly compactly.
An exemplary embodiment of the invention is explained in more detail below with reference to the drawings, in which:
The sectional view of the control device 1 according to an embodiment of the invention in accordance with
In the internal space of the switchgear 2, an electromagnetic system 6 is arranged on the bottom wall 5, the armature of which system is connected to a contact carrier 7, via which movable contacts 8 can be connected to fixed contacts 9. The switchgear 2 is connected via connection rails 10 which are accessible outside the switchgear apparatus housing 4 and are electrically connected to the fixed contacts 9. The contact system 8, 9 is accommodated in a switching chamber 11, which lies in the upper region of the switchgear 2, with arc runner plates (not illustrated here).
The electronic power module 3 with its module housing 12 is placed onto the switchgear 2, on its side remote from the bottom wall 5. The internal space of the module housing 12 includes three chambers 13, in each of which is situated an electronic switching unit for in each case one of the three electrical phases of the three-phase system used for supply purposes. The electronic switching units are constructed in a sandwich design with two copper plates 14 which are arranged parallel and between which two power semiconductors 15 which are electrically connected back-to-back are clamped in by use of a clamping-in device 20. The upper copper plate 14 is fixedly connected to a heat sink 16 whilst complying with a minimum heat transfer resistance. Heat is dissipated via fans 17 fitted laterally to the module housing 12 of each chamber 13.
Connected to each of the copper plates 14 is an L-shaped connecting rail 18 which is routed in the inter-space between the switchgear apparatus housing 4 and the module housing 12 and bears in a planar manner on one of the two connection rails 10 of the switchgear 2. The connecting rails 18 are composed of material that conducts heat well, as a result of which the continuous current-carrying capacity of the switchgear 2 is increased.
Depending on the embodiment, the connecting rails 18 of the electronic power module or the connection rails 10 of the switchgear apparatus, or both, can be used for the connection of the control device. The pitch of the connection rails of the switchgear apparatus is maintained as a result of this, which makes it possible to replace the switchgear apparatus by the higher-quality control device.
The compact construction of the control device 1 according to an embodiment of the invention becomes possible essentially by virtue of the fact that the power loss of the electronic switching units is avoided in continuous operation. For this purpose, the electronic switching units are bridged by the contacts 8, 9 of the switchgear 2 (FIG. 3).
For starting and rotational-speed-controlled operation, the electronic power semiconductors 15 (
The above-described compact construction of the motor device with the electronic power module placed onto the switchgear represents an optimization of the structural volume, in which its peripheral contour does not at any point exceed the base area contour of the switchgear 2 by more than 30% and/or its width does not exceed the width b of the switchgear 2. This is illustrated with reference to
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
100 22 343 | May 2000 | DE | national |
This application is the national phase under 35 U.S.C. § 371 of PCT International Application No. PCT/DE01/01567 which has an International filing date of Apr. 25, 2001, which designated the United States of America and which claims priority on German Patent Application number DE 100 22 343.5 filed May 8, 2000, the entire contents of which are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTDE01/01567 | 4/25/2001 | WO | 00 | 11/8/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0186681 | 11/15/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3769551 | Corman et al. | Oct 1973 | A |
4060847 | Penrod | Nov 1977 | A |
4459638 | Brehm et al. | Jul 1984 | A |
4845308 | Womack et al. | Jul 1989 | A |
4943890 | Schaltenbrand et al. | Jul 1990 | A |
5297025 | Shoquist et al. | Mar 1994 | A |
5337214 | Lindsey et al. | Aug 1994 | A |
6087800 | Becker et al. | Jul 2000 | A |
6104602 | Morris et al. | Aug 2000 | A |
6141206 | Bruner et al. | Oct 2000 | A |
6488214 | Nicolai et al. | Dec 2002 | B1 |
Number | Date | Country |
---|---|---|
0680145 | Nov 1995 | EP |
2546659 | Nov 1984 | FR |
Number | Date | Country | |
---|---|---|---|
20040109293 A1 | Jun 2004 | US |