The invention relates generally to chemical dispensing systems for laundry, ware-wash, and healthcare, and more particularly to the transfer and input of data related to the operation of the chemical dispensing control.
The dispensing of liquid chemical products from one or more chemical receptacles is a common requirement of many industries, such as the laundry, textile, ware wash, healthcare instruments, and food processing industries. For example, in an industrial laundry facility, one of several operating washing machines will require, from time to time, aqueous solutions containing quantities of alkaloid, detergent, bleach, starch, softener and/or sour.
Increasingly, such industries have turned to automated methods and apparatus systems for dispensing chemical products. Such automated methods and apparatus systems provide increased control of product use and minimize human contact with potentially hazardous chemicals.
Contemporary automatic chemical dispensing systems used in industry require pumps for the liquid chemical products. Generally, these pumps deliver raw chemical product directly to a machine for use or to a dilution manifold or container where the chemical product is mixed with a diluent, typically water. Such systems are relatively simple in concept, but they can be expensive to build and operate. A number of methods for the control of dispensing chemicals have been developed and employed and are well known in the art. Each method generally utilizes techniques that require a means of input, typically through direct user interface or connectivity to a host device, e.g. Personal Computer (PC), not always available in the immediate environment, and provides limited features and capabilities through “out-of-the-box versions” of the devices. This is usually accomplished with a micro-controller built into the dispensing system or as an integral portion of the system. While these systems expand the capabilities of the dispensing systems, they are also limited in scope and are difficult to update with additional or new features and capabilities. Additionally, other more specialized modules may require specialized connections and/or complicated wiring in order to be used with contemporary dispensing systems.
It is therefore desirable to have the ability to move data to and from, or connect additional devices to an intelligent dispensing system.
A chemical dispensing system is provided including a micro-controller and at least one expansion module. The expansion module has an expansion module interface for communicating with the micro-controller or other components of the chemical dispensing system. The expansion module is in communication with the components of the chemical dispensing system via the expansion module interface. The expansion module expands the capabilities of the chemical dispensing system beyond a base operation of the system.
In some embodiments, the expansion module interface includes a uni-directional communication link, while in other embodiments the expansion module interface includes a bi-directional communication link. In some embodiments, the micro-controller includes at least one USB port. In these embodiments, the USB port may be used for the communication between an expansion module and the micro-controller.
In some embodiments, the expansion module interface may be a data storage device. In a particular embodiment having the data storage device, a USB port may be used to read and write chemical dispensing program files. The chemical dispensing program files may be used to automatically configure the chemical dispensing system. Additionally, the USB port may be used to write chemical dispensing activity reports.
In some embodiments, the chemical dispensing system includes a computer in communication with the micro-controller. In these embodiments, data may be transferred between the computer and the micro-controller. The data may include: a chemical dispensing program, a single program parameter, activity reports, a single activity report, or combinations thereof. The chemical dispensing system may be configured to include application software for execution on the computer, where the application software may be designed to generate data used for automatically configuring the chemical dispensing system.
In other embodiments including a computer, the micro controller may be reprogrammed using a local connection with the computer. In still other embodiments including a computer, the micro controller may be reprogrammed using a remote connection with the computer. In some embodiments, the expansion module may provide wireless communication to a machine interface, a pump interface, a machine, additional expansion modules, a computer, or a computer network.
A method for controlling a chemical dispensing system is also provided. The method includes establishing communication between a micro-controller and an expansion module having an expansion module interface. The capabilities of the chemical dispensing system are expanded beyond a base operation using at least one expansion module.
In some embodiments, communication between the micro-controller and the expansion module may be established using at least one USB port. Chemical dispensing program files may be read using the USB. Additionally, chemical dispensing program files may be written using the USB. The chemical dispensing system may be automatically configured using the chemical dispensing program files. In some embodiments, wireless communications may be provided using the expansion module to a machine interface, a pump interface, a machine, additional expansion modules, a computer, or a computer network.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below, serve to explain the invention.
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features illustrative of the basic principles of the invention. The specific design features of the sequence of operations as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes of various illustrated components, will be determined in part by the particular intended application and use environment. Certain features of the illustrated embodiments have been enlarged or distorted relative to others to facilitate visualization and clear understanding. In particular, thin features may be thickened, for example, for clarity or illustration.
The present invention addresses limited input/output methods, thus providing improved efficiency and improved programming, as well as a means for expansion of features and expansion of capabilities. Technology embedded within the micro-controller of the system may provide the capability of direct bi-directional communication to multiple types of devices. The input/output of data can be accomplished via display of information on a screen associated with a micro-controller, through non-volatile memory devices, through computer devices, or through external modules that provide additional means, e.g. wireless communications, network connectivity, etc. This capability may enable an operator to more easily manage chemical programs, monitor chemical usage and/or dispenser activities, make adjustments in dispensing control, monitor system functions, or to increase the capabilities and features of the system without having to implement a new dispensing system itself.
Embodiments of the present invention address the need to replace equipment to provide additional features and capabilities, or the need to provide a feature-rich system that contains capabilities that are not fully utilized. This is accomplished by embedding technology within the micro-controller of the system, which allows for adding capabilities and features that are not contained within the base system. These capabilities and features can be increased through added modules that connect and utilize the bi-direction communication for a specific single-function or group of functions.
Turning now to the drawings,
As seen in the block diagram representation of the chemical dispensing system 10 in
As illustrated in
As seen in
There are numerous interfaces that can be used to connect the expansion modules 30-36 to the micro-controller 12 of the dispensing system 10. In some embodiments, the micro-controller 12 may be configured with USB ports. In other embodiments, RS-485 ports may be used as an interface 26. Universal Serial Bus (USB) and RS-485 are examples of serial buses standard to interface devices. Both were designed to allow many peripherals to be connected using a single standardized interface socket and to improve the plug-and-play capabilities by allowing devices to be connected and disconnected without tearing down the system for a physical upgrade. Other convenient features include providing power to low-consumption devices without the need for an external power supply and allowing many devices to be used without requiring manufacturer specific, individual device drivers to be installed.
Embodiments of the micro-controller 12 may be configured with USB host functionality, allowing the micro-controller 12 to connect through the USB interface to other devices such as storage systems, network connections or other human interface devices. This type of connection may allow for data to be transferred to and from the micro-controller 12 and could be used, for example, for ease of set-up of the chemical dispensing system and its programming, field upgrades of system software, or data extraction for monitoring of the dispensing system 10.
Additionally, and as seen in
While the present invention has been illustrated by a description of one or more embodiments thereof and while these embodiments have been described in considerable detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope of the general inventive concept.
This application claims priority to U.S. Provisional Application Ser. No. 61/050,340, filed on 5 May 2008 and entitled CONTROL FOR DISPENSING SYSTEM, the disclosure of which is hereby incorporated by reference in its entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5390385 | Beldham | Feb 1995 | A |
| 6325286 | Howland et al. | Dec 2001 | B1 |
| 6377868 | Gardner, Jr. | Apr 2002 | B1 |
| 20010049846 | Guzzi et al. | Dec 2001 | A1 |
| 20040143368 | May et al. | Jul 2004 | A1 |
| 20060113322 | Maser et al. | Jun 2006 | A1 |
| 20070118862 | Jeong et al. | May 2007 | A1 |
| 20090221059 | Williams et al. | Sep 2009 | A1 |
| Entry |
|---|
| Patent Cooperation Treaty, International Search Report, PCT/US2009/042694, Jun. 29, 2009. |
| BrightLogic Computer Software, Revolutionary Dispensing Solutions, 20 pages, www.brightwell.co.uk, Brightwell Dispensers Ltd., East Sussex, U.K., Jul. 14, 2009. |
| Laundry Systems BrightLogic, Revolutionary Dispensing Solutions, 44 pages, Brightwell Dispensers Ltd., East Sussex, U.K., Mar. 19, 2010. |
| Computer Software & USB, Revolutionary Dispensing Solutions, 2 pages. |
| Number | Date | Country | |
|---|---|---|---|
| 20090276101 A1 | Nov 2009 | US |
| Number | Date | Country | |
|---|---|---|---|
| 61050340 | May 2008 | US |