The present invention relates generally to equipment for use in limited oxygen environments and, more particularly, to a group for controlling a second-stage regulator for scuba divers.
In scuba diving, for instance, a supply of air, or of an air-oxygen mixture, is typically fed to a mouthpiece of the scuba diver from a high-pressure tank. Enroute to the diver, the air passes via a first-stage pressure-reducing regulator to a second-stage regulator which, in turn, supplies the mixture to the mouthpiece, when pressure within the regulator is diminished upon the diver's inhalation.
Second-stage regulators of the known type have an inlet chamber connected to the outlet of the first-stage regulator, and an outlet chamber connected to the mouthpiece of the user and separated from the outside environment by an elastically deformable diaphragm which blocks an opening formed in the regulator body. The diaphragm is connected via a lever to a poppet which closes off the passage between the two chambers. The pressure inside the inlet chamber is maintained constant at approximately ten bars as the pressure in the tank varies thanks to appropriate calibration of the first-stage regulator. When the user does not breathe, his or her lungs, the mouthpiece, the outlet chamber and the outside environment are at the same pressure. When the user inhales, a vacuum is created inside the outlet chamber and the diaphragm bends towards the interior of said chamber, moving the poppet, which normally closes the passage between the inlet chamber and the outlet chamber, to an opening position.
The opening of the passage between the inlet chamber and outlet chamber creates an overpressure in the outlet chamber, so that the diaphragm returns into the rest position, moving the lever and returning the poppet into the starting position wherein the passage between the inlet chamber and the outlet chamber is closed once again.
In second-stage regulators of the known type the regulator seat, on which the seal of the head of the poppet rests, is housed inside the inlet conduit of the regulator which is integral to the body of the same regulator. This configuration complicates the regulator calibration operations required during assembly to compensate the unavaoidable dimensional deviations, within the design tolerances, of the various components from the optimum values. Moreover minor maintenance work on the regulator, which could be performed without problems even by the user, instead requires intervention by a specialised technician in that the device has to be recalibrated each time.
Accordingly, it is an object of the present invention to provide a group for controlling a second-stage regulator for scuba divers with a structure simplfies regulator calibration during assembly and which enables simple maintenance work to be performed by the user without necessity of disassembling the control mechanism.
This object is achieved with the group for controlling a second-stage regulator for scuba diver according to the present invention whose feature consists in that it comprises a first bushing defining an intermediate chamber with a bottom wall wherein a central hole is formed wherein a poppet engages loosely, the end of the poppet being connected to lever means, and a second bushing engaged in the first bushing and defining a regulator seat at one of its ends, on which the head of the poppet engages tightly, elastic means being provided coaxial to the poppet in the intermediate chamber for maintaining the head against the regulator seat, the whole group being removably engaged in the inlet conduit.
A specific, illustrative control group of a second-stage regulator for scuba divers, in accordance with the present invention, is described below with reference to the accompanying drawings, in which:
The same numerals are used throughout the drawing figures to designate similar elements. Still other objects and advantages of the present invention will become apparent from the following description of the preferred embodiments.
Referring now to the drawings and, more particularly, to
A regulator control group, shown in
The control group 6 also comprises a first bushing 10 whose bottom 11 has a central hole 11a wherein the poppet 8 is engaged loosely. The first bushing 10 has internal threading 12 whereon an externally threaded end 13 of a second bushing 14 is screw engaged. Second bushing 14 in turn has an internal threaded portion 15 whereon a corresponding threaded portion 16 of a third bushing 17 is screw engaged. The end 18 of third bushing 17, turned towards the poppet 8, has an annular ribbing forming the regulator seat, on which a seal 19 of the head 20 of the poppet 8 is engaged.
The second bushing 14 defines an inlet chamber 21 wherein the third bushing 17 is engaged, while the first bushing 10 defines an intermediate chamber 22 communicating with the inlet chamber 21 through the regulator seat 18 cut off by the seal 19.
The seal 19 is kept forced against the regulator seat 18 by means of a coil spring 23 extending coaxially to the poppet 8 inside the intermediate chamber 22. In particular the spring 23 abuts on one side against a ring nut 24 which covers the head 20 of the poppet 8 and on the other side against a flange 25a of a tubular seal 25 connected tightly to the poppet 8 and to the bottom 11 of the first bushing 10 around the opening 11a.
The end 7b of the lever 7 is fork-shaped and engages on the tail 9 of the poppet 8 projecting from the hole 11a of the first bushing 10, between the bottom wall 11 and a washer 26. The washer 26 is tightened against the fork-shaped end 7b of the lever 7 by means of a nut 27 screwed to the tail 9 of the poppet 8.
The control group 6 is mounted as follows:
By adjusting the nut 27, the degree of tightness of the second bushing 14 inside the first bushing 10 and the degree of tightness of the third bushing 17 inside the second bushing, on the one hand it is possible to calibrate the force with which the seal 19 of the poppet 8 is pressed against the regulator seat 18 and, on the other hand, by adjusting the degree of tightness of the nut 27 it is possible to calibrate the exact position of the end 7a of the lever 7 intended to come into contact with the diaphragm, not shown, of the regulator.
Control group 6 is preferably calibrated using an appropriate mechanism before it is mounted in regulator body 1 via inlet conduit 2, as shown in
Thanks to the structure of the control group for second-stage regulator according to the invention, the operation of calibration is simpler and more accurate in that it can be performed before mounting the group in the regulator body. It is also clear that by removing the entire group routine maintenance on the regulator is possible without having to dismount the group and therefore without having to calibrate it again, which would require assistance from a specialised technician.
Various modifications and alterations to the present invention may be appreciated based on a review of this disclosure. These changes and additions are intended to be within the scope and spirit of the invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
FI20030070 U | Jul 2003 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
3570808 | Wrenn | Mar 1971 | A |
4219017 | Shamlian et al. | Aug 1980 | A |
5190030 | Semeia | Mar 1993 | A |
5259375 | Schuler | Nov 1993 | A |
6718977 | Matsuoka | Apr 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050016538 A1 | Jan 2005 | US |