The invention relates to a control lever for operating a working machine, and an arm support arrangement for a working machine.
The invention is applicable on working machines within the fields of industrial construction machines, in particular excavators. Although the invention will be described with respect to an excavator, the invention is not restricted to this particular machine, but may also be used in other working machines, such as wheel loaders, articulated haulers, dump trucks or other construction equipment.
A working machine is provided with a bucket, container or other type of implement for digging, lifting, carrying and/or transporting a load. A working machine may be operated with large and heavy loads in areas where there are no roads, for example for transports in connection with road or tunnel building, sand pits, mines and similar environments. The machine has to be controlled with high precision at the same time as the terrain is very rough and bumpy. For example, during operation of an excavator the operator compartment is subjected to shakings and vibrations. This implies some problems since there is hard to control the working machine with high precision and there is also a risk of injury due to static muscular strain when the operator tries to work with the precision required.
A conventional joystick which has a pivot point is easily affected by unwanted movements of the operator's hand caused by the rough conditions. In order to solve this problem Joysticks which have an increased resistance against movement have been suggested. A disadvantage with such a joystick is that it will tend to cause muscular strain and fatigue in the hand and forearm of the operator.
It is desirable to provide a control lever defined by way of introduction, which control lever facilitates the control of a working machine during rough conditions.
By the provision of a control lever where at least a part of the gripping surface is arranged adjacent to the geometrical X-axis in such a way that the geometrical X-axis is situated inside the hand and adjacent to the centre part of the palm of the operator when the top portion being properly gripped by the operator, the operator's hand can rest on the control lever at the same time as the operator is able to use the control lever as a support by pressing the hand against the control lever in a direction towards the pivot point of the geometrical X-axis. The forearm of the operator can be positioned and orientated to extend in a direction which is substantially in line with the pivot point of the geometrical X-axis.
Hereby, an improved precision work can be performed and a more ergonomic operating position for the operator when controlling the working machine can be achieved. The invention is based on the insight that by means of a control lever which enables the operator to press the hand against the control lever, the stability can be increased and undesired movements of the top portion of the control lever due to shakings and/or vibrations can be counteracted or eliminated. Furthermore, if the forearm is subjected to an undesired force in the forward or backward direction, i.e. substantially in the extension direction of the forearm, the torque in the pivot point of the geometrical X-axis caused by this force will be considerably reduced compared to prior art control levers, since the lever arm with respect to the pivot point is substantially zero or close to zero. Thus, unintentional movements of the top portion can be counteracted.
By the expression pivoting about a geometrical “X-axis” is meant pivoting about an axis which enables the top portion of the control lever to be moved in the forward direction (away from the operator) and the backward direction (towards the operator) when the control lever is arranged in front of the operator. This definition of the X-axis is established with respect to conventional joysticks etc.
The other axes which can be defined for a joystick are the Y-axis and the Z-axis. The Y-axis enables movement of the joystick to the left and to the right with respect to the forward and backward direction. Finally the Z-axis enables the joystick to be pivoted about its own longitudinal extension axis. When the joystick is in an upright position usually corresponding to a neutral position the X-axis is horizontal. The Y-axis is horizontal and perpendicular to the X-axis and the Z-axis is perpendicular to the X-axis and the Y-axis. (The direction of the Z-axis relative to the X-axis and the Y-axis is however changed when the joystick is pivoted about the X-axis and Y-axis, respectively.) These definitions of the geometrical axes are used hereinafter when the control lever according to the invention is described.
According to one embodiment of the invention, the gripping surface has a front finger grip portion to be gripped by the fingers of an operator and a rear palm portion for supporting the palm of an operator, and a centre part of the rear palm portion is arranged closer to the geometrical X-axis compared to the front finger grip portion. Hereby, a more sensitive feeling can be achieved at the same time as a safe grip of the top portion is ensured.
Although the invention is disclosed herein with respect to a control lever with a top portion being pivotable about a geometrical X-axis, the basic idea of the invention can in the same way be applied to a control lever with a top portion being pivotable about a geometrical X-axis and/or a geometrical Y-axis.
By the provision of an arm support arrangement where the support surface of the arm rest and the geometrical X-axis are arranged at such a distance from each other that the forearm of an operator is situated substantially in line with the pivot point of the geometrical X-axis when the forearm resting against the support surface and the top portion being properly gripped by the operator, movements of the top portion caused by unintentional movements of the forearm in the forward and backward directions will be considerably reduced, since the lever arm with respect to the pivot point of the geometrical X-axis is substantially zero or close to zero.
The invention also relates to a working machine comprising a control lever according to the invention.
Further advantages and advantageous features of the invention are disclosed in the following description and in the dependent claims.
With reference to the appended drawings, below follows a more detailed description of embodiments of the invention cited as examples.
In the drawings:
In
By the expression “the gripping surface is arranged adjacent” to the geometrical X-axis is meant that the gripping surface 6 is arranged at a distance 9 from the X-axis 4 (in a direction perpendicular to the X-axis) so as to enable the forearm 10 of an operator to be substantially in alignment with the pivot point 11 of the X-axis 4 when the control lever 1 is properly gripped. See
Accordingly, the distance 9 between the X-axis and the current part 6 of the gripping surface 5 is relatively short. It has been shown that in most cases such a distance is suitably selected to be in the range 5-50 mm and often 5-30 mm. Such a distance 9 will enable the operator to press the hand against the top portion in a direction towards the pivot point 11, thereby counteracting vibrations and shakings from being transferred into undesired movements of the top portion 3 of the control lever 1. The forearm 10 of an operator can be directed substantially towards the pivot point 11, i.e. the forearm can be substantially aligned with the pivot point 11 of the geometrical X-axis 4, when the top portion 3 is gripped. Although the forearm 10 would not be exactly directed towards the pivot point, the control lever may constitute a support to the hand of the operator. However, during normal conditions it is preferred that the deviation from the pivot point is kept as low as possible in order to minimize the lever arm between the forearm 10 of the operator and the pivot point 11.
The gripping surface 5 is suitably shaped and sized to support substantially the entire palm including several or all fingers of the hand 7 of an operator to give a good support to the hand of the operator. The gripping surface 5 may have a considerable extension in the X-axis direction and the Y-axis direction for supporting the centre part of the palm of the operator, and preferably for supporting the major part of the palm of the hand of the operator. See also
As illustrated in
The width of the gripping surface 6 in the X-axis direction is preferably of approximately the same size as the width of a normal hand to suit the size of a hand for a 5-95 percentile operator. The width is preferably may be selected in the range 70-120 mm and often in the range 80-110 mm. As appears from the front view in
In the embodiment example illustrated in
In order to achieve the geometrical X-axis (and a geometrical Y-axis and/or a geometrical Z-axis where appropriate) several different designs including prior art solutions can be used. In the embodiment illustrated, the base portion 2 has a ball 14 at the top thereof and the top portion 3 has a corresponding recess 15 for receiving the ball 14. The ball 14 and the surface 15 of the recess form the pivot point 11 providing the requisite geometrical axis (axes). Furthermore, the base portion 2 may be designed as a pillar 16, one first end of which is adapted to be mounted to a working machine and the other second end of which is pivotally connected to the top portion. Although in the illustrated embodiment the top portion 3 is provided with the recess 15 and the base portion 2 is provided with the ball 14, the same function can be achieved by providing the top portion with a ball and the base portion with a recess for receiving the ball. As already mentioned, also other arrangements using an axle, pin or similar can be used to provide a pivot axis so as to enable the top portion and the base portion to pivot relative each other about a geometrical X-axis.
Each control lever 1a, b is provided with at least two pivot axes, i.e. a geometrical X-axis 4 for movement of the top portion in the forward direction (away from the operator) and the backward direction (towards the operator) and a geometrical Y-axis 25 for movement of the top portion to the left and right. In the embodiment example the control levers are used for controlling the functions of the excavator. The top portions of the control levers are moved in accordance with the following pattern:
1. Stick Out: Left top portion 3b is moved in the forward direction
2. Stick In: Left top portion 3b is moved in the backward direction
3. Turn Left: Left top portion 3b is moved to the left
4. Turn Right: Left top portion 3b is moved to the right
5. Boom Lower: Right top portion 3a is moved in the forward direction
6. Boom Raise: Right top portion 3a is moved in the backward direction
7. Bucket Close: Right top portion 3a is moved to the left
8. Bucket Dump: Right top portion 3a is moved to the right
Thus, for the functions of items 1, 2, 5, and 6 the control lever is pivoted around the X-axis 4, and for the functions of items 3, 4, 7 and 8 the control lever is pivoted around the Y-axis 25. In addition, the control lever/levers can optionally be provided with a geometrical Z-axis for rotation of the top portion in order to obtain further functions controlled by pivoting the top portion to left or right. For example, the rotation of an implement can be controlled by rotation of the top portion around the Z-axis. Other functions may also be included in the control lever by providing the control lever with for example additional buttons and/or thumb-wheels.
The control lever 1a has a base portion 2 arranged at the arm rest 20 and a top portion 3a which is pivotally connected to the base portion 2 for pivoting about a geometrical X-axis 4 (extending perpendicularly relative to the paper plane in
The support surface 22 of the arm rest 20 and the geometrical X-axis 4 are arranged at such a distance 23 from each other that the forearm 10 of an operator is situated substantially in line with the pivot point 11 of the geometrical X-axis when the forearm 10 resting against the support surface 22 and the top portion 3a being properly gripped by the operator. The support surface 22 is preferably arranged below the pivot point 11 of the X-axis. The distance 23 between the support surface 22 and the X-axis is preferably selected in the interval 5-50 mm, and more preferably in the interval 0-40 mm.
It is to be understood that the present invention is not limited to the embodiments described above and illustrated in the drawings; rather, the skilled person will recognize that many changes and modifications may be made within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2009/000525 | 12/17/2009 | WO | 00 | 11/10/2012 |