This application claims the benefit of Korean Patent Application No. P2003-0051346filed on Jul. 25, 2003, Korean Patent Application No. P2003-0051351 filed on Jul. 25, 2003, and Korean Patent Application No. P2003-0059060 filed on Aug. 26, 2003, which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a dryer, and more particularly, to a control method and system for a belt-driven clothes dryer that are able to automatically detect a breakage of a power transmission system coupled between a drum and a motor included in the dryer.
2. Discussion of the Related Art
A dryer is a device that automatically dries wet objects (e.g., clothes or shoes) by providing heated air under the control of a controller, and smarter and more efficient dryers that are able to meet the user's various requirements are in great demand. In general, a typical clothes dryer includes a tub (drum) containing the wet objects to be dried, a motor, and a power transmission system which is coupled between the motor and the drum for transmitting the power generated by the motor during a dry operation of the dryer. During the dry operation, the heated air flows into the drum and the drum continuously rotates so that the wet clothes inside of the drum could be dried. The moisturized air within the drum is continuously discharged from the drum and heated dry air flows into the drum simultaneously, while the drum rotates in the dry operation.
If there is a breakage in the power transmission system coupled between the motor and the drum, this could result very serious damages to the dryer and the objects within the drum. For example, if electric power is continuously supplied to the motor and the heater when a belt coupled between the motor and the drum for power transmission is broken, there is no motion of the drum and the objects within the drum. Therefore, the heated air will continuously make contact with same portions of the objects for a long time, and this could result serious damages to the objects. In order to substantially obviate the problems due to these limitations and disadvantages, many dryer manufactures have been trying to make clothes dryers capable of automatically detecting a breakage of the power transmission system and controlling operation of the dryer based on such breakage detection.
One of the examples of the existing breakage-detectable clothes dryers includes a mechanical breakage detection assembly including an arm which mechanically moves when the belt provided between the motor and the drum is broken, and a switch which automatically shuts off the power supply to the motor based on the motion of the arm. However, this detection assembly requires a complicated mechanical structure. For example, the arm must be provided at a predefined location within the dryer so as to accurately detect the breakage of the belt, and this could create a serious structural limitation when manufacturing the dryer. In addition, a slight dislocation of the switch which operates due to the rotation of the arm could result malfunction of the breakage detection assembly. Therefore, there are great necessities for a control system and method for a clothes dryer, which are able to detect the breakage of the power transmission system without requiring any complicate mechanical system.
Accordingly, the present invention is directed to a control method and system for a belt-driven clothes dryer that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a control method for a clothes dryer, which is able to detect a breakage of a power transmission system included in the dryer and to control the dry operation of the dryer based on the breakage detection.
Another object of the present invention is to provide a control system for a clothes dryer, which is able to detect a breakage of a power transmission system included in the dryer and to control the dry operation of the dryer based on the breakage detection.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a control method for a clothe dryer according to a first embodiment of the present invention includes the steps of performing a dry operation of the clothes dryer by supplying power to a motor for rotating a drum containing a load of wet clothes and to a heater for heating air flowing into the drum, which is coupled to a power transmission system driven by the motor, and receiving a sensor signal outputted from a moisture sensor provided within the drum during the dry operation. The moisture sensor outputs a voltage pulse each time it makes contact with the wet clothes during the dry operation. The control method further includes the steps of detecting a breakage of the power transmission system based upon analyzing the sensor signal, and interrupting the dry operation of the clothes dryer if the breakage of the power transmission system is detected. The breakage may be detected if the sensor signal received from the moisture sensor for a predetermined time includes no voltage pulse.
In another aspect of the present invention, a control system for a clothes dryer according to the first embodiment of the present invention includes a drum containing a load of wet clothes to be dried, a heater configured to heat air flowing into the drum so as to dry the wet clothes, a motor coupled to the drum by a power transmission system such as a belt for rotating the drum, and a driving unit supplying power to the motor and the heater during a dry operation of the clothes dryer. The control system further includes a moisture sensor provided within the drum for outputting a sensor signal, and a microprocessor configured to detect a breakage of the power transmission system based upon analyzing the sensor signal received from the moisture sensor. The moisture sensor outputs a voltage pulse each time it makes contact with the wet clothes during the dry operation. Then the microprocessor detects the breakage of the power transmission system if the sensor signal includes no voltage pulse for a predetermined time.
In another aspect of the present invention, a control method for a clothes dryer according to a second embodiment of the present invention includes the steps of performing a dry operation of the clothes dryer by supplying power to a motor for rotating a drum containing a load of wet clothes and to a heater heating air flowing into the drum, which is coupled to a power transmission system driven by the motor, and receiving voltage pulses which are outputted from a photo coupler coupled to the motor when the motor is in operation during the dry operation. The control method further includes the steps of detecting a breakage of the power transmission system based upon analyzing the voltage pulses, and interrupting the dry operation of the clothes dryer if the breakage of the power transmission system is detected. The breakage of the power transmission may be detected if a pulse width of the voltage pulses is less than a reference pulse width, or if a frequency of the voltage pulses is greater than a reference frequency.
In another aspect of the present invention, a control system for a clothes dryer according to the second embodiment of the present invention includes a drum containing a load of wet clothes to be dried, a heater configured to heat air flowing into the drum, and a motor mechanically coupled to the drum by a power transmission system for rotating the drum. The control system further includes a power supply configured to supply power to the motor and the heater during a dry operation of the clothes dryer, a photo coupler which outputs voltage pulses when the motor is in operation during the dry operation, and a microprocessor which detects a breakage of the power transmission system based upon analyzing the voltage pulses outputted from the photo coupler. The microprocessor interrupts the dry operation of the clothes dryer if the breakage of the power transmission system is detected.
In another aspect of the present invention, a control method for clothes dryer according to a third embodiment of the present invention includes the steps of initiating a dry operation of the clothes dryer by performing a pre-dry operation. During the pre-dry operation, power is supplied to a motor for predetermined time so as to accelerate a drum containing a load of wet clothes and the power is shut off thereafter, where the drum is coupled to a power transmission system driven by the motor. The control method further includes the steps of measuring a counter electromotive force generated by the motor during the pre-dry operation, detecting a breakage of the power transmission system if the measured counter electromotive force is greater than a reference level, and interrupting the dry operation of the clothes dryer if the breakage of the power transmission system is detected. The control method may further include the step of performing a main dry operation of the clothes dryer by supplying power to the motor and a heater only if no breakage of the power transmission system is detected during the pre-dry operation, where the heater is configured to heat air flowing into the drum. In addition, the counter electromotive force is measured based on a frequency of voltage pulses outputted from a photo coupler coupled to the motor. The voltage pulses are outputted when the motor is in operation during the pre-dry operation.
In another aspect of the present invention, a control system for clothes dryer according to the third embodiment of the present invention includes a drum containing a load of wet clothes to be dried, a motor mechanically coupled to the drum by a power transmission system for rotating the drum, and a power supply configured to supply power to the motor for a predetermined time and to shut off the power thereafter during a pre-dry operation of the clothes dryer. The control system further includes a photo coupler coupled to the motor to output voltage pulses when the motor is in operation after the power is shut off, and a microprocessor configured to measure a counter electromotive force generated by the motor during the pre-dry operation based on a frequency of the voltage pulses. The microprocessor detects a breakage of the power transmission system if the measured counter electromotive force is greater than a reference level. The microprocessor further performs a main dry operation of the clothes dryer only if no breakage of the power transmission system is detected during the pre-dry operation.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings;
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The dryer shown in
Reference will now be made in detail to the preferred embodiments of the control systems and methods for a belt-driven dryer according to the present invention.
When the drum 2 of the belt-driven clothes dryer shown in
If the belt 6 mechanically coupled between the motor 5 and the drum 2 is in a normal condition (e.g., no breakage) during the dry operation of the clothes dryer, the drum 2 containing the wet clothes rotates simultaneously with the motor 5 and the wet clothes are continuously lifted and dropped within the drum 2.
Referring back to
If it is determined in step S103 that the portion of the sensor signal does include at least one voltage pulse or a predetermined number of voltage pulses, the microprocessor 104 determines that the belt 6 is in a normal condition (no breakage) and it continues performing the dry operation (S104). Thereafter, the microprocessor 104 further determines whether the dry operation is completed in step S105. On the other hand, if it is determined in step S103 that the amplitude of the sensor signal remain constant (no voltage pulse in the sensor signal) for the predetermined time, the microprocessor 104 determines that a breakage of the belt 6 exists and it interrupts the dry operation of the dryer by transmitting interrupt signals to the driving unit 105 (S106). When the driving unit 105 receives the interrupt signals, it stops supplying power to the motor 5 and the heater 11 in order to prevent any damages to the dryer. Additionally, the microprocessor 104 may further transmit a display control signal to the display unit of the dryer shown in
As described above, the control system and the method of controlling operation for a dryer according to the first embodiment of the present invention provide an extremely, efficient way of detecting a breakage of the power transmission system of the dryer during a dry operation without using any additional mechanical system for detecting the breakage. For example, the microprocessor 104 of the control system shown in
During a dry operation of the clothes dryer shown in
The microprocessor 202 may determine that a breakage of the belt 6 exists if the pulse width of the voltage pulses generated by the photo coupler 203 is less than a predetermined pulse width value (w1), which may be stored in a memory (not illustrated) coupled to the microprocessor 202. Alternatively, it may determine that a breakage of the belt 6 exists if the frequency of the voltage pulses generated by the photo coupler 203 is greater than a predetermined frequency value (f1), which may also be stored in the memory. When the microprocessor 202 determines that a breakage of the belt 6 exists, it interrupts the dry operation of the dryer by transmitting an interrupt signal to the switch 201 to shut off the power being supplied to the motor 5 and the heater 11 in order to prevent any damages to the dryer. In addition, it may transmit a display control signal to a display panel (not illustrated) of the dryer in order to display a warning message indicative of the breakage in the power transmission system of the dryer. Furthermore, it may transmit a sound control signal to a sound generating unit (not illustrated) of the dryer in order to generate warning sound (e.g., beep sound) such that the user could be easily informed of the breakage of the power transmission system.
If no breakage of the belt 2 is detected by the microprocessor 202 in step S203, it continues performing the dry operation of the dryer (S204). Thereafter, the microprocessor 202 further determines whether the dry operation is completed in step S205. On the other hand, if the breakage of the belt 2 is detected in step S203, the microprocessor 202 interrupts the dry operation of the dryer by transmitting interrupt signals to the switch 201 to shut off the power being supplied to the motor 5 and the heater 11 (S206). In step S206, the microprocessor 202 may additionally transmit a display control signal to the display panel of the dryer to display a warning message so as to inform a user of the detected breakage of the belt 6. Similarly, it may further transmit a sound control signal to the sound generating unit of the dryer for informing the user of the breakage of the belt 6.
During a pre-dry operation of the clothes dryer shown in
When there is a breakage in the belt 6, the belt 6 does not exert any force on the motor 5. Therefore, the motion of the motor 5 during the pre-dry operation of the dryer is comparatively faster (higher frequency) and the counter electromotive fore generated by the motor 5 is comparatively higher. On the other hand, when the belt 6 is in a normal condition, the belt 6 coupled to the drum 2 exerts a force on the motor 5. Therefore, the motion of the motor 5 during the pre-dry operation is comparatively slower (lower frequency) and the counter electromotive force generated by the motor 5 is comparatively lower. The motions of the motor 5 in both cases are described and compared earlier in detail with reference to
Due to the above reasons, the microprocessor 302 then detects a breakage of the belt 6 if the measured counter electromotive force is greater than a predetermined force value, which may be stored in a memory (not illustrated) coupled to the microprocessor 302. When the microprocessor 302 determines that no breakage of the belt 6 exists during the pre-dry operation, it generates control signals to perform a main dry operation of the clothes dryer, during which power is supplied to the motor 5 and the heater 11 configured to heat air flowing into the drum 2. In addition, it may transmit a display control signal to the display panel of the dryer in order to display a warning message indicative of the breakage of the power transmission system of the dryer. Furthermore, it may transmit a sound control signal to a sound generating unit (not illustrated) of the dryer in order to generate warning sound (e.g., beep sound) such that the user could be easily informed of such breakage.
If the measured force is greater than the predetermined force value, the microprocessor 302 determines that there is a breakage of the belt 6 and interrupts the dry operation of the clothes dryer by shutting off the power supplies to the motor 5 and the heater 11 (S306). In step S306, the microprocessor 302 may additionally transmit a display control signal to the display panel of the dryer to display a warning message to inform a user of the detected breakage. Similarly, it may further transmit a sound control signal to the sound generating unit of the dryer for informing the user of the breakage of the belt 6. On the other hand, if the measured force is determined to be equal or less than the predetermined force value in step S303, the microprocessor 302 determines that there is no breakage in the belt 6 and continues the dry operation by performing a main dry operation (S304). During the main dry operation, the microprocessor 302 generates control signals to supply power to the motor 5 and the heater 11, which heats the air flowing into the drum 2.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
P 2003-51346 | Jul 2003 | KR | national |
P 2003-52351 | Jul 2003 | KR | national |
P 2003-59060 | Aug 2003 | KR | national |