1. Field of the Invention
The present invention relates to a control method, control device and electronic device, and more particularly, to a control method, control device and electronic device capable of providing intuitive control, to enhance operating fun and convenience.
2. Description of the Prior Art
A touch control display device has merits such as convenient operation, quick response and saving space, and provides a more intuitive and convenient control method, such that the touch control display device has become an important input interface and been widely used in a variety of consumer electronics products, e.g. personal digital assistants (PDAs), smart mobile communication devices, laptops and point of sale (POS) systems. Meanwhile, with the advance of touch control technique, a conventional single-point touch control method is evolved into a multiple-point touch control method, for realizing a more intuitive control method.
For example, please refer to
Via the multiple-point touch control method, the user can use both the thumb and the forefinger to control the smart mobile communication device 10, which realizes the intuitive control, and further enhances operating fun. However, for a disabled user or some applications, the user may not be able to simultaneously click multiple touch points or make big moves, which limits the application range of the multiple-point touch control method.
It is therefore an object of the present invention to provide a control method, control device and electronic device.
The present invention discloses a control method for an electronic device. The method includes detecting a distance between an object and a reference point of the electronic device, and generating a control command for the electronic device according to the distance between the object and the reference point, to control the electronic device to perform a corresponding function.
The present invention further discloses a control device for an electronic device. The control device includes a distance measuring unit, for detecting a distance between an object and a reference point of the electronic device, to generate a detection result, and a command generating unit, for generating a control command for the electronic device according to the detection result, to control the electronic device to perform a corresponding function.
The present invention further discloses an electronic device, capable of enhancing operating efficiency. The electronic device includes an operating circuit, a screen and a control device. The control device includes a distance measuring unit, for detecting a distance between an object and a reference point of the screen, to generate a detection result, and a command generating unit, for generating a control command for the operating circuit according to the detection result, to control the operating circuit to perform a corresponding function.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
In a word, the control device 20 generates the corresponding control command CMD according to the distance DT between the object OBJ and the reference point P_ref. If the above concept is applied in a portable electronic device, a variety of interesting operating methods can be realized. For example, please refer to
In the smart mobile communication device 30, after the control device 20 detects a variation of the distance H, the smart mobile communication device 30 performs different operations, and even realizes effects similar to the multiple-point touch control according to the control command CMD of the control device 20. In other words, the user only needs to use one finger to approach or leave the screen of the smart mobile communication device 30, while the control effects of the multiple-point touch control can be achieved. For example, according to the command CMD of the control device 20, the smart mobile communication device 30 can magnify a frame or a picture displayed by the screen when the control device 20 detects the finger FGR approaching, as shown in
Noticeably,
In addition, in order to avoid the frame displayed by the smart mobile communication device 30 being magnified or minified too frequently, other control conditions can be added as well. For example, when a specific program (e.g. browse program of picture, website, etc.) is started, a specific key or switch is switched on, or a graphical user interface is selected, the function of the control device 20 is activated.
Moreover, other than controlling the size of the displayed frame according to the distance between the finger FGR and the screen, the smart mobile communication device 30 can control statuses such as volume, screen bright, contrast, etc., or can be added other elements to achieve special effects as well. For example, a light emitting element can be added on a housing of the smart mobile communication device 30, and emits light when the finger FGR is approaching, and dims or emits light with a different color when the finger FGR is leaving.
On the other hand, when realizing the control device 20, the distance measuring unit 200 and the command generating unit 202 shall be properly designed, or the operating logic shall be properly adjusted according to system requirements. Take
In the above, the reference point P_ref is a point of the electronic device, and those skilled in the art can adjust the position of the reference point P_ref or add other reference points according to system requirements when realizing the distance measuring unit 200. For example, in
In addition, when the distance measuring unit 200 is applied, operating processes shall be properly designed according to elements of the corresponding electronic device. For example, in a display device, the distance measuring unit 200 can be designed to increase definition of the display device when a user is approaching, and reduce definition of the display device when the user is leaving. In a navigation device, the distance measuring unit 200 can be designed to display a detailed map (with reduced scale) when a finger is approaching, and display an outline map (with increased scale) when the finger is leaving.
Therefore, via the control device 20, the present invention can provide intuitive control, and enhance operating fun. More importantly, for disabled users or some limited applications, the present invention can provide multiple-point touch control effects, to enhance convenience. Operations of the control device 20 can be summarized into a control process 70, as shown in
Step 700: Start.
Step 702: The distance measuring unit 200 detects the distance between the object OBJ and the reference point P_ref, to generate the detection result RST.
Step 704: The command generating unit 202 generates the control command CMD according to the detection result RST, to control the electronic device to perform a corresponding function.
Step 706: End.
Detailed description of the control process 70 can be referred to the above, and is not narrated hereinafter for simplicity.
To sum up, the present invention detects a distance between an external object and a reference point of an electronic device, and controls functions of the electronic device accordingly, which can provide intuitive control, operating fun, and significantly enhance convenience for disabled users or some limited applications.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Date | Country | Kind |
---|---|---|---|
098138651 | Nov 2009 | TW | national |