This application claims benefit of and priority to Korean Patent Application No. 10-2018-0073184, filed on 26 Jun. 2018. The entire disclosure of the applications identified in this paragraph are incorporated herein by reference.
The present invention relates to a method of controlling local release of target compounds by patterning a hydrogel on a nanoporous membrane.
In the field of dentistry and orthopedics in the related art, for formation and reconstruction of a bone tissue which has been damaged, bone morphogenetic proteins have been used. These materials can only be used for regeneration and treatment of the damaged tissue if the materials are released locally in a human body. However, in the current techniques, there have been used methods of synthesizing carriers or nanoparticles in a drug in a polymeric-based fibrous membrane and attaching the carriers or nanoparticles or immobilizing attaching the carriers or nanoparticles by injection to a desired tissue region. However, because the growth of bone may be induced in an undesired tissue region and delivery of the drug is not quantitative, the technique has difficulties in correct treatment for bone formation.
The following Table 1 lists the types of bone morphogenetic proteins used for the regeneration of damaged bone.
In addition, in order to regenerate the damaged bone, it is necessary to use a membrane to prevent the formation of scar tissue by blocking a connective tissue from infiltrating into the damaged region for a certain period of time. However, in the techniques, only the blocking of infiltration of the connective tissue into an existing membrane is is performed (in
Therefore, in the present invention, the delivery of the bone morphogenetic protein and the function of the membrane are simultaneously performed.
According to many clinical researches, it is known that a bone morphogenetic protein is directly helpful for regeneration of damaged bone tissue and formation of bone. Many studies have been actively made to develop a delivery system for the bone morphogenetic protein.
Meanwhile, in the related art, a method of delivering the bone morphogenetic protein have performed by using a form of a hydrogel, a microsphere, a nanoparticle, a fiber, and the like configured with a material such as a metal, a ceramic, a polymer, and a composite. In addition, these materials are intended to be dissolved in a desired site. However, there is a problem called an ectopic growth, and there is a limit in the quantitative, localized delivery of the bone morphogenetic protein.
In order to solve the above-described problems, the present invention is to provide a method of controlling local release of target compounds by patterning a hydrogel on a nanoporous membrane.
Preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the target compounds contain a bone morphogenetic protein or a drug.
In addition, preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the nanoporous membrane is any one of a biodegradable nanoporous membrane and a non-biodegradable nanoporous membrane.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the nanoporous membrane is manufactured by an electrospinning process.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the hydrogel contains at least one of gelatin methacryloyl (gel-MA), hyaluronic acid, and Na-alginate.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, including steps of: (S1) preparing a micromold having a plurality of concave grooves; (S2) pouring a hydrogel solution into the micromold; (S3) filling the plurality of concave grooves on the micromold with the hydrogel solution; (S4) covering a semi-permeable nanoporous membrane on the micromold filled with the hydrogel solution; (S5) cross-linking the hydrogel to the micromold covered with the nanoporous membrane; (S6) detaching the micromold from the semi-permeable nanoporous membrane; and (S7) forming a hydrogel micropattern on the semi-permeable nanoporous membrane.
More preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the cross-linking in the step (S5) is performed by any one of a photo cross-linking method using light or an ion cross-linking method using ion exchange.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the micromold of step (S1) is made of any one of polydimethylsiloxane (PDMS), Teflon, and polymethylmethacrylate (PMMA).
On the other hand, the present invention also provides a nanoporous membrane manufactured by a method including steps: (S1) preparing a micromold having a plurality of concave grooves; (S2) pouring a hydrogel solution into the micromold; (S3) filling the plurality of concave grooves on the micromold with the hydrogel solution; (S4) covering a semi-permeable nanoporous membrane on the micromold filled with the hydrogel solution; (S5) cross-linking the hydrogel to the micromold covered with the nanoporous membrane; (S6) detaching the micromold from the semi-permeable nanoporous membrane; and (S7) forming a hydrogel micropattern on the semi-permeable nanoporous membrane.
According to the present invention, it is possible to control local release of a bone morphogenetic protein by using a nanoporous membrane which can serve as a carrier of the bone morphogenetic protein while performing a basic function of the membrane. The bone morphogenetic protein is essentially used in orthopedic and dental fields, but the delivery method is not quantitative and causes a lot of side effects. However, in the present invention, a delivery method and process capable of performing local release quantitatively can be applied in the clinical field. In addition, it is also expected that the present invention can be used for a case where quantitative release of a drug as well as a bone morphogenetic protein inside and outside a human body is required.
Hereinafter, a preferred embodiment of the present invention will be described in detail with a manufacturing process.
It should be noted that the specific numerical values given as examples are only for explaining the technical idea of the present invention in more detail, and that the technical idea of the present invention is not limited thereto and that various modifications are possible.
In addition, in the specification of the present invention, the same components are denoted by the same reference numerals, and those components which are well known in the technical field and can be easily created by the ordinary skilled in the art will be omitted in detailed description.
The present invention provides a method of controlling local release of target compounds by patterning a hydrogel on a nanoporous membrane.
Preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the target compounds contain a bone morphogenetic protein or a drug.
In addition, preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the nanoporous membrane is any one of a biodegradable nanoporous membrane and a non-biodegradable nanoporous membrane.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the nanoporous membrane is manufactured by an electrospinning process.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the hydrogel contains at least one of gelatin methacryloyl (gel-MA), hyaluronic acid, and Na-alginate.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, including steps of: (S1) preparing a micromold having a plurality of concave grooves; (S2) pouring a hydrogel solution into the micromold; (S3) filling the plurality of concave grooves on the micromold with the hydrogel solution; (S4) covering a semi-permeable nanoporous membrane on the micromold filled with the hydrogel solution; (S5) cross-linking the hydrogel to the micromold covered with the nanoporous membrane; (S6) detaching the micromold from the semi-permeable nanoporous membrane; and (S7) forming a hydrogel micropattern on the semi-permeable nanoporous membrane.
The carrier of the bone morphogenetic protein in hydrogel and the patterning process on the nanoporous membrane are illustrated in
More preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the cross-linking in the step (S5) is performed by any one of a photo cross-linking method using light or an ion cross-linking method using ion exchange.
In addition, more preferably, the present invention provides a method of controlling local release by patterning a hydrogel on a nanoporous membrane, wherein the micromold of step (S1) is made of any one of polydimethylsiloxane (PDMS), Teflon, and polymethylmethacrylate (PMMA).
On the other hand, the present invention also provides a nanoporous membrane manufactured by a method including steps: (S1) preparing a micromold having a plurality of concave grooves; (S2) pouring a hydrogel solution into the micromold; (S3) filling the plurality of concave grooves on the micromold with the hydrogel solution; (S4) covering a semi-permeable nanoporous membrane on the micromold filled with the hydrogel solution; (S5) cross-linking the hydrogel to the micromold covered with the nanoporous membrane; (S6) detaching the micromold from the semi-permeable nanoporous membrane; and (S7) forming a hydrogel micropattern on the semi-permeable nanoporous membrane.
The present invention provides a method of manufacturing a semi-permeable nanoporous membrane, including: (S1) preparing a micromold having a plurality of concave grooves; (S2) pouring a hydrogel solution into the micromold; (S3) filling the plurality of concave grooves on the micromold with the hydrogel solution; (S4) covering the semi-permeable nanoporous membrane on the micromold filled with the hydrogel solution; (S5) cross-linking the hydrogel to the micromold covered with the nanoporous membrane through light irradiation or ion diffusion; (S6) detaching the micromold from the semi-permeable nanoporous membrane; and (S7) forming a hydrogel micropattern on the semi-permeable nanoporous membrane.
The micromold may be made of polydimethylsiloxane (PDMS), Teflon, or polymethylmethacrylate (PMMA).
Particularly, in the present invention, nanoporous membranes are manufactured according to biodegradable and non-biodegradable methods by using biopolymers of polyurethane and polylactide-co-glycolide (PLGA), which have been approved by the US Food and Drug Administration, for in vivo transplantation. The nanoporous membrane is manufactured by an electrospinning process.
In addition, for local release of the bone morphogenetic protein, patterning by using cross-linking of hydrogel with excellent biocompatibility is used. In the present invention, a the cross-linking method, there are used a photo cross-linking method using light and an ion cross-linking method using ion exchange. The material used was hydrogel patterned with gelatin methacryloyl (gel-MA), hyaluronic acid, and Na-alginate. The hydrogel patterning is performed by using the bone morphogenetic protein contained in the hydrogel in accordance with each condition.
In addition, for the patterning, a master mold for supporting hydrogel is required. On the other hand, various master molds are manufactured through a soft-lithography process and a 3D printing process. From the manufactured master mold (intaglio), a replica mold (embossing) is manufactured by using a photomicrograph (PDMS) with excellent biocompatibility and excellent optical transparency. The above-mentioned hydrogel is inserted into the replica mold formed as an embossing mold. A nanoporous membrane manufactured by electrospinning is covered with the mold. The hydrogel is formed by light transmission and ion exchange, and thus, various patterns containing the bone morphogenetic protein is manufactured.
This can be confirmed in
The concentration of the bone morphogenetic protein used can be selected widely depending on the shape, size, and type of the pattern.
In addition, with respect to the membrane, the release rate of the carried drug can be also controlled by using a biodegradable membrane and a non-biodegradable membrane.
In detail, patterning is performed by using a fluorescent material of fluorescence FITC-BSA (70 kDa) with the concentration of hydrogel being 2.5, 5, and 10% (w/v), and the intensity of the fluorescence attenuated along with the release of the fluorescent material in the hydrogel is tracked for six days.
It can be seen that, in a) to c) of
In detail, it is expended that, the higher the concentration of the hydrogel, the lower the release rate of the drug, and the lower the concentration of the hydrogel, the higher the release rate of the drug. In addition, it is expected that the release rate depends on the concentration of the bone morphogenetic protein.
In the comparative group, since there is no release of the bone morphogenetic protein in comparison with the experimental group, it is observed that the skeleton of the cells is not developed relatively. In the experiment group, it is observed that, a lot of cells proliferate around the pattern where the bone morphogenetic protein is immobilized around the pattern, and the skeleton is greatly developed.
In contrast, in the comparative group, since there is no release of the bone morphogenetic protein in comparison with the experimental group, it is observed that the calcification of the cells is not progressed relatively. In the experiment group, it is observed that the calcification of the cells is greatly progressed around the pattern where the bone morphogenetic protein is immobilized around the pattern.
Due to the development of the delivery method capable of controlling local release of a bone morphogenetic protein through a hydrogel on a semi-permeable nanoporous membrane used in the present invention and the manufacturing method thereof, it is possible to simultaneously realize localized and quantitative release of the bone morphogenetic protein for bone regeneration and the effect of membrane to prevent the infiltration of connective tissue used in existing clinic fields such as orthopedics and dentistry, it is expected that new applications to the existing clinic and a rapid entry into the market can be achieved. Fundamental technologies and products having both local delivery and release functions of membranes, such as bone morphogenetic proteins and drugs, have not yet been disclosed in the world. Therefore, it is essential to secure the fundamental technologies.
In addition, the fundamental technology disclosed in the present invention has not yet been reported in academic or industrial fields. Above all, the local delivery of the bone morphogenetic protein and the drug and the effect of the membrane that can prevent the infiltration of connective tissue can be achieved simultaneously. Therefore, in the fields such as orthopedics, dentistry, and dermatology, the possibility of transferring technology to medical companies and pharmaceutical companies is very high.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0073184 | Jun 2018 | KR | national |