This invention generally relates to a system for controlling a heating and cooling system for a multi-level building, and more specifically to control of air circulation in a multi-level space.
In heating multi-level structures, the flow of warm air rising up stairways reduces the heating requirement of the upper floors, while cool air falling increases the demand for heating on the lower level. Likewise, in cooling multi-level structures, the flow of warm air rising up stairways increases the cooling requirement of the upper levels while decreasing the demand for cooling on the lower level. The end result is that the greater portion of warm air in the space resides in the upper levels, while the greater portion of cool air resides in the lower level. This stratification of temperature across multiple levels can be problematic for conventional heating and cooling systems, which substantially distribute conditioned air evenly through out multiple levels. For this reason, separate heating and cooling systems are often installed and employed to supply conditioned air to each level as needed. Where an upper level is often warmer than the lower level, a lower level heating system would typically operate more during the winter than an upper level heating system, and an upper level cooling system would operate more during the summer than a lower level cooling system. However, installing and operating a heating and cooling system for each level is more costly than installing only one heating and cooling system with sufficient capacity. Previous attempts have also been made to employ individual zone dampers at various vent outlets to supply conditioned air to only those zones that require air conditioning (eg.—upper level zones). However, zoning systems can also involve considerable costs associated with installing zone dampers and zone temperature sensors in each room of an existing home, where a conventional heating and cooling system may comprise as many as eight or more vent outlets in a multi-level space.
The present invention relates to a control system for controlling return air flow in a heating and cooling system for a multilevel space. In one embodiment, a heating and cooling system for a multi-level space is provided that comprises at least one lower level return air duct and at least one upper level return air duct, and a thermostat for controlling the operation of the heating or cooling system, using low voltage activation signals. The heating and cooling system further comprises a first motorized damper having connection means for receiving at least a low voltage heating activation signal from the thermostat, the first motorized damper being installed in each lower level return duct and configured to drive the damper to an open position when the connection means receives a low voltage heating activation signal, wherein the first motorized damper is operatively closed when the thermostat alternatively transmits a low voltage cooling activation signal such that the cooling system substantially receives no air flow through each lower level return air duct and effectively receives only air flow from the upper level of the space.
In accordance with one aspect of the present invention, some embodiments of a heating and cooling system for a multi-level space are provided that comprise controllable motorized dampers in each lower level return air duct which are operably closed when the thermostat activates the cooling system, such that the cooling system substantially receives no air flow through each lower level return air duct and effectively receives only air flow from the upper level of the space. In these embodiments, the cooling system removes the greater portion of warm air in the space that resides on the upper levels, and conditions the warm air for even distribution through out all levels of the space.
In accordance with another aspect of the present invention, some embodiments of a heating and cooling system for a multi-level space are provided that further comprise controllable motorized dampers in each upper level return air duct which are operably closed when the thermostat activates the heating system, such that the heating system substantially receives no air flow through each upper level return air duct and effectively receives only air flow from the lower level of the space. In these embodiments, the heating system removes the greater portion of cold air in the space that resides on the lower levels, and conditions the warm air for even distribution through out all levels of the space.
In yet another aspect of the present invention, one embodiment of a controllable damper for a lower level return air duct is provided that comprises a connection means for receiving at least a low voltage heating activation signal transmitted by the thermostat, at least one pivotal damper operable to move between an open and a closed position, and a motor configured to drive the pivotal damper to an open position when the connection means receives a low voltage heating activation signal, wherein the pivotal damper is operatively closed when the thermostat alternatively transmits a low voltage cooling activation signal such that the cooling system substantially receives no air flow through the lower level return air duct and effectively receives only air flow from the upper level of the space. The controllable damper for upper level return air ducts includes a connection means for receiving at least a low voltage cooling activation signal transmitted by the thermostat, at least one pivotal damper operable to move between an open and a closed position, and a motor configured to drive the pivotal damper to an open position when the connection means receives a low voltage cooling activation signal, wherein the pivotal damper is operatively closed when the thermostat alternatively transmits a low voltage heating activation signal, When the damper is in the closed position, the damper restricts air flow through the upper level return air duct, such that the heating system receives substantially all return air flow from the lower level of the space and substantially no return air flow from the upper level return air duct.
Further aspects of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments and methods of the invention, are for illustration purposes only and are not intended to limit the scope of the invention.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
One embodiment of a control system for a heating and cooling unit in a multi-level space is shown generally at 20 in
Referring to
In one embodiment of a lower level return air damper, the first motorized damper comprises a motor 42 for driving the damper 44 to an open position, and a return spring (not shown) to operatively return the damper 44 to an open position in the absence of a low voltage heating activation signal. The first motorized damper 36 is operatively closed when the thermostat 30 alternatively transmits a low voltage cooling activation signal, such that the cooling unit 22 substantially receives no air flow through each lower level return air duct 24 and 26 and effectively receives only air flow from the upper level 48 of the space. Thus, this embodiment of a control system comprises a thermostat 30 that provides for activating a cooling unit 22 and at least one controllable motorized damper 36 in at least one lower level return air duct. The controllable damper 36 is operably closed when the thermostat 30 activates cooling such that the cooling unit 22 substantially receives no air flow through each lower level return air duct 24 and 26 and effectively receives only air flow from the upper level 48 of the space. Utilizing this embodiment, the cooling unit 22 removes the greater portion of warm air from the space that resides on the upper level 48, and conditions the warm air for even distribution through out all levels of the space, to significantly reduce stratification across multiple levels.
A second embodiment of a lower level motorized damper 36 may also be employed, which alternately comprises connection means 40 for receiving a low voltage cooling activation signal transmitted by the thermostat 30 via wire 34, where the motor is configured to drive the pivotal damper 44 to a closed position when the connection means 40 receives a low voltage cooling activation signal from the thermostat 30. In this second embodiment, the motorized damper may alternately be driven to an open position and a closed position by the motor without employing a return spring.
In some embodiments of a control system for a heating and cooling unit 22 in a multi-level space, the control system may further comprise at least one upper level return air duct 28, and at least one upper level controllable motorized damper 50 in the at least one upper level return air duct 28. In some applications, the at least one upper level return air duct 28 may comprise two or more controllable motorized dampers 50 in the upper level return air duct. The control system further comprises a thermostat 30 in connection with the heating and cooling unit 22 for controlling the operation of the heating or cooling unit 22 through either a low voltage cooling activation signal or a low voltage heating activation signal. Upon sensing a temperature that is more than a predetermined amount above the set point temperature, the thermostat 30 transmits a low voltage signal to the cooling system via wire 34. When the thermostat 30 sends a low voltage cooling activation signal, the first motorized dampers 36 are operatively closed, such that the cooling unit 22 substantially receives no air flow through each lower level return air duct 24 and 26. The thermostat 30 transmits the cooling activation signal by switching a low voltage source, such as a 24 volt alternating current source, to connect the low voltage source to wire 34. A connection means 38 for the second motorized damper 50 is preferably connected to the termination of wire 34 at the cooling unit 22, and is connected in parallel with a circulating fan contactor of the cooling unit 22. The second motorized damper 50 comprises a motor 42 that is configured to drive a damper 44 to an open position when the connection means 38 receives a low voltage cooling activation signal via wire 34. Thus, the thermostat 30 initiates cooling by switching a voltage source to activate the compressor contactor and by switching a low voltage source to wire 34. The low voltage applied to wire 34 also activates the circulating fan contactor and drives the second motorized damper 50 to an open position. In this position, the cooling system draws or receives return air for the cooling system through the open upper level return air damper 50, since the lower level return air dampers 36 are each in a closed position. As a result, the cooling unit 22 receives a substantial portion of its return air from the upper level where the greater portion of warm air from the space resides. The cooling system then conditions the warm air for even distribution through out all levels of the space, to significantly reduce stratification.
A second embodiment of a control system for a heating and cooling unit in a multi-level system is also provided, which further comprises at least one remote temperature sensor 52 in the upper level 48 for communicating upper level temperature information to a thermostat 30. The thermostat 30 is capable of initiating heating or cooling operation when the at least one remote temperature sensor senses an upper level temperature that differs from the set point temperature by more than a predetermined amount. The thermostat 30 is further capable of transmitting a low voltage activation signal for only the circulating fan of the cooling unit 22, independent of compressor operation. Thus, the thermostat 30 can also initiate operation of only the cooling system's circulating fan. The remote temperature sensor 52 senses the upper level temperature information and periodically transmits the sensed temperature information via wireless communication means to the thermostat 30. The thermostat 30 receives the transmitted temperature information from the remote sensor 52, and is configured to send a low voltage signal via wire 34 for activating the circulating fan when the upper level temperature elevates relative to the lower level temperature. The circulating fan pulls air from substantially the upper level of the space by virtue of the closed damper 36, and evenly distributes the elevated temperature air throughout all levels of the space. The thermostat 30 may be configured to activate the circulating fan when the sensed upper level temperature is more than a predetermined amount above the sensed lower level temperature. Alternatively the thermostat 30 may be configured to activate the circulating fan when the average of the sensed upper level and sensed lower level temperatures is within a predetermined amount of the set point temperature.
The thermostat 30 of the control system sends a low voltage circulating fan activation signal when the first motorized dampers 36 are operatively closed. In this position, the circulating fan substantially receives no air flow through each lower level return air duct 24 and 26. The thermostat 30 sends the low voltage circulating fan activation signal by switching a low voltage source, such as a 24 volt alternating current source, to connect the low voltage source to a wire 34. A connection means 38 for the second motorized damper 50 is preferably connected to the termination of wire 34 at the cooling unit 22, and is connected in parallel with the circulating fan contactor of the cooling system. Thus, when the thermostat 30 switches a low voltage source to wire 34 and the circulating fan contactor, the thermostat 30 activates both the circulating fan contactor and drives the second motorized damper 50 to an open position. In this position, the circulating fan draws or receives return air through the open upper level return air damper 50, since the lower level return air dampers 36 are each in a closed position. As a result, the circulating fan receives a substantial portion of its return air from the upper level where the greater portion of warm air from the space resides, and evenly redistributes the warm air through out all levels of the space to prevent stratification from occurring.
In operation, the control system may be employed to prevent the stratification exemplified in
In another embodiment, the thermostat 30 is configured to activate the circulating fan when the average of the sensed upper level and sensed lower level temperatures is within a predetermined amount of the set point temperature. In the example shown in
The advantages of the above described embodiment and improvements should be readily apparent to one skilled in the art, as to enabling control of a heating and cooling unit in a multi-level space. Additional design considerations may be incorporated without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited by the particular embodiment or form described above, but by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 11/207,300, entitled “Control Of A Heating And Cooling System For A Multi-Level Space”, filed Aug. 19, 2005, now U.S. Pat. No. 7,475,558.
Number | Name | Date | Kind |
---|---|---|---|
2118949 | Scott | May 1938 | A |
2300848 | Shelton | Nov 1942 | A |
4168797 | Luke | Sep 1979 | A |
4182401 | Pinnell et al. | Jan 1980 | A |
4245779 | Ardiente | Jan 1981 | A |
4250917 | Jespersen et al. | Feb 1981 | A |
4598558 | Bingham | Jul 1986 | A |
4676144 | Smith, III | Jun 1987 | A |
4915294 | Wylie | Apr 1990 | A |
4993629 | Wylie | Feb 1991 | A |
5390206 | Rein et al. | Feb 1995 | A |
5413165 | Wylie | May 1995 | A |
5803357 | Lakin | Sep 1998 | A |
5833134 | Ho et al. | Nov 1998 | A |
5927599 | Kath | Jul 1999 | A |
6012384 | Badalament et al. | Jan 2000 | A |
6449533 | Mueller et al. | Sep 2002 | B1 |
20090076658 | Kinnis | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090114731 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11207300 | Aug 2005 | US |
Child | 12352943 | US |