The present invention relates to a control of a suspension system of a vehicle provided with four semi-active suspensions. In particular, the present invention relates to an independent control of four controllable force generators comprised in four respective semi-active suspensions of a suspension system mounted on a four-wheel vehicle, in particular a motor vehicle, to which explicit reference will be made in the following description without therefore loosing in generality.
As known, latest-generation vehicles are provided with a suspension system having the function of damping the oscillatory motion of the vehicle so as to reduce oscillations, pitch and heave of the same, to ensure, on one hand, ride comfort of the passengers aboard the vehicle as the roughness of the terrain varies and, on the other hand, to guarantee handling as the contact force between tire and road surface varies.
In particular, latest-generation suspension systems essentially comprise four suspensions of semi-active type, each of which is interposed between the body or chassis of the vehicle, herein indicated as “sprung mass” and a respective wheel of the vehicle, indicated hereinafter as “unsprung mass”. It is worth specifying that the unsprung mass, comprises, in addition to the rim and to the tire which compose a wheel, also the braking system and the motion transmission members associated to the wheel itself.
Each semi-active suspensions typically comprises a spring, characterized by a predetermined elastic constant interposed between the sprung mass and the unsprung mass; and a force generator device or shock absorber, which interconnects the sprung mass to the unsprung mass.
The force generator device is structured so as to adjust the damping force exerted between the sprung mass and the unsprung mass, as a function of an electric control signal generated by an electronic control system.
In particular, the electronic control system comprises measuring system which determines some predetermined physical quantities, such as, for example, the speed of the unsprung mass or by the sprung mass along a vertical direction and/or the vertical acceleration induced on the semi-active suspension when the vehicle runs on a road profile; and an electronic control device, which generates the control signal to be imparted to each force generator device, on the basis of a determined damping law applied to the determined physical quantities.
The measuring system essentially contemplates at least one accelerometer installed on the sprung mass and/or on the unsprung mass at each vehicle suspension.
In the case in point, international application WO 2008/010075, filed by “Politecnico di Milano”, describes a method for controlling a force generator comprised in a semi-active suspension, wherein it is contemplated to essentially discriminate a dominating energizing frequency on the basis of the measured vertical acceleration of the suspension; and to select the damping coefficient to be controlled by the semi-active suspension, by means of the force generator, on the basis of the calculated dominating vertical energizing frequency.
In particular, the method described in the aforementioned international application essentially contemplates detecting a first signal representative of the sprung mass acceleration; detecting a second signal representative of the sprung mass speed; determining a value of the difference between the first signal squared and the second signal squared; and applying to the force generator a control signal as a function of the value of the difference between the first and the second signal squared so as to determine whether the semi-active suspension has high or low frequency vertical dynamics.
In the case in point, the method described in the aforementioned international application assigns to the damping coefficient used by the force generator a predetermined minimum value or a maximum value on the basis of the frequency of high or low frequency vertical dynamics.
The aforesaid method completely disregards the entity of the energizing determined by the road profile, but only considers the stress frequency that it implies on the sprung mass of the vehicle. Therefore, by implementing the method described above, it may occur that low frequency events which are not very relevant in energy terms determine the selection of the maximum predetermined value, causing a maximum damping, and introducing, as a consequence, undesired vibrations with negative repercussions on comfort aboard the vehicle. In other words, the aforementioned method contemplates selecting an alternative maximum or minimum damping coefficient on the basis of the body dynamics. It may consequently occur that the method determines the instantaneous selection of maximum damping when instead a continuous transition would be more effective in terms of comfort.
Furthermore, the application of the solution described in the international application published under number WO 2008/010075 on a four-wheel vehicle necessarily contemplates using four accelerometers each associated to a corresponding semi-active suspension.
The applicant has conducted an in-depth study with the objective of identifying a solution which specifically allows to reach the following objectives:
It is thus the object of the present invention to make a solution available which allows to reach the objectives indicated above.
This object is reached by the present invention because it relates to a device and a method for controlling the vertical dynamics of a vehicle provided with four semi-active suspensions, as defined in the attached claims.
The present invention will now be described in detail with reference to the appended figures to allow a person skilled in the art to make it and use it. Various changes to the described embodiments will be immediately apparent to people skilled in the art, and the described generic principles may be applied to other embodiments and applications without because of this departing from the scope of protection of the present invention, as defined in the appended claims. Therefore, the present invention must not be considered limited to the described and illustrated embodiments but instead confers the broadest scope of protection, in accordancewith the principles and features described and disclosed herein.
The suspension system 4 comprises four semi-active suspensions 5 associated to the wheels 3, thus arranged at the four angles 2a, 2b, 2c and 2d of the body/chassis 2 of the vehicle 1 i.e. at the ends of the front and rear axles of the vehicle 1, and are interposed between the sprung mass Ms and the unsprung mass Ns in known manner and thus not described in detail.
Each semi-active suspension 5 is structured so as to adjust the damping force exerted between sprung mass Ms and unsprung mass Ns according to an electric control signal Sci (i comprised between 1 and 4) associated to a damping coefficient CiT(t) calculated in the manner described in detail below.
With reference to the diagrammatically example shown in
The suspension system 4 is further provided with an electronic control system 8 comprising a measuring system 9, which is adapted to measure a series of physical quantities introduced by the road profile R on the three semi-active suspension 5 of the vehicle 1, such as, for example, vertical acceleration, {umlaut over (z)} of the sprung mass Ms and/or the speed ż of the sprung mass Ms along a vertical direction.
With reference to a preferred embodiment shown in
It is however worth specifying that the arrangement of the acceleration sensors 10 in the three angles of the vehicle 1 shown in
With reference to the preferred embodiment shown in
With reference to
The acceleration estimate module 12 is configured to estimate the acceleration along a vertical direction of the sprung mass Ms associated to the fourth angle 2d of the vehicle 1 free from accelerator sensor.
In the embodiment shown in
The acceleration estimate module 12 is further configured to process the three accelerations {umlaut over (z)}1, {umlaut over (z)}2 , {umlaut over (z)}3 so as to estimate the acceleration {umlaut over (z)}4 of the sprung mass Ms4 associated to the fourth angle 2d, free from acceleration sensor, according to an estimate law associated to a predetermined rigid conduction of the chassis 2 in a given frequency band of interest for controlling the vertical dynamics.
In the embodiment shown in
{umlaut over (z)}
4=β1{umlaut over (z)}1+β2{umlaut over (z)}2+β3{umlaut over (z)}3 [1]
where β1, β2 and β3 are predetermined coefficients associated to the respective accelerations and determined by the predetermine rigidity condition of the chassis, to minimize the acceleration {umlaut over (z)}4.
With reference to the embodiment shown in
The first control module 13 is configured for: receiving in input the three measured accelerations {umlaut over (z)}1, {umlaut over (z)}2, {umlaut over (z)}3 and the estimated acceleration {umlaut over (z)}4; determining the vertical speeds ż1, ż2, ż3, ż4 associated to the respective sprung masses Ms1, Ms2, Ms3 and Ms4, as a function of the accelerations {umlaut over (z)}1, {umlaut over (z)}2, {umlaut over (z)}3, {umlaut over (z)}4; determining each of the first damping coefficients cH1, cH2, cH3, and cH4 according to the following calculation law:
Si(t)={umlaut over (z)}i2(t)−αi2żi2(t)
c(t)i=fi(Si(t)) [2]
where:
żi(t) is the speed expressed in m/s of the i-th sprung mass Msi determined in instant t;
{umlaut over (z)}i(t) is the acceleration expressed in m/s2 of the i-th sprung mass Msi determined in instant t;
αi is the first value indicative of the invariance frequency or cross-over frequency expressed in radians/second; in particular, the cross-over frequency is indicative of the so-called “dominating energizing frequency” to which the i-th sprung mass Msi is subjected, and comprises an intermediate predetermined value which is, on one hand, higher than the frequencies of the low energizing frequency set at of the i-th sprung mass Msi and, on the other hand, lower than the frequencies of the high energizing frequencies set of the i-th sprung mass Msi; al is preferably a fixed parameter determined beforehand during a step of designing of the i-th semi-active suspension 5;
Si(t) is s a first function with provides a second value indicative of the frequency of the energizing energy to which the i-th sprung mass is subjected in instant t; in particular, the negative sign Si(t) is indicative/associated to a low band; the positive sign Si(t) is indicative/associated to the high band; while the width of Si(t)is associated to a measure of the energy quantitative; and
fi(Si(t)) is a second function providing a third value which is indicative of the variance of the first damping coefficient cHi to be set on the force generator 7 of the i-th semi-active suspension 5, as the second value Si(t) indicative of the frequency and energizing energy to which the i-th sprung mass is subjected in instant t. In other words, the second function fi(Si(t)) is a function which is indicative of the variance of the first damping coefficient CHi as the energizing frequency to which the i-th sprung weight is subjected in instant t varies.
From the above, it is worth specifying that the second function fi(Si(t)) differs from the first and second control law described in the aforesaid international patent application WO 2008/010075 because the latter are both based on a continuous step function comprising a maximum damping value and a minimum damping value both constant as the frequency varies and associated to the high and low energizing frequencies. In particular, the maximum value of the discontinuous function, described in international patent application WO2008010075, is associated to a constant maximum damping coefficient c(t)=cmax and is provided by the discontinuous function when S(t)<0, i.e. when the energizing frequency of the sprung mass, determined by means of the function S(t), is lower than the cross-over frequency, while the second value associated to a minimum predetermined damping coefficient c(t)=cmin is provided by the discontinuous function when S(t)>=0 when the energizing frequency is higher than the cross-over frequency. Thus the first and second law contemplate a behavior similar to that of a frequency selector, which “switches” the damping coefficient to be set to the force generator device 7 between a maximum and a minimum value predetermined as a function of the determined high/low energizing frequency. The method described in the aforementioned international application WO 2008/010075 is thus limited to considering only the energizing/stress frequency that the road causes on the sprung mass to the vehicle but does not consider the energy, i.e. the energy associated to the energizing caused on the mass itself when subjected to a given energizing frequency. It thus occurs that events which are not very relevant in energy terms, i.e. having a low intensity/energy characterized by a low frequency, determine the switching of the selector which selects the maximum damping coefficient, causing undesired vibrations with negative repressions on comfort aboard the vehicle. Thus, the control method of the suspension described in international application n. WO2008010075 is based exclusively on the information related to the sign of the selector in frequency S(t).
However, studies carried out by the applicant have demonstrated that the value of the module of the value obtained by. means of the frequency selector S(t) contains useful information related to the energizing energy, which is bound in terms of quadratic acceleration and vertical speed of the sprung mass Ms. In light of this study, the applicant has identified a method which conveniently determines by means of the selecting function S(t) not only the value correlated to the energizing frequency of the sprung mass Ms, but also a value which is indicative of the energizing energy in instant t caused on the sprung mass by the road profile run by the vehicle 1.
The second function fi(Si(t)) is representative of a
Cartesian diagram in which the abscissa axis shows the energizing frequency calculated by means of the first function, i.e. the value of the measure provided by Si(t), while the ordinate axis shows the variation of the first damping coefficient cHi as the energizing frequency varies.
In particular, in the embodiment shown in
With regards to the above, it is worth underlining that the trend of the second function fi(Si(t)) shown in
With reference to
According to a preferred embodiment shown in
Each heave calculation block MIX-Ci further comprises a multiplier device 19, which receives in input the speed żi(t); and multiplies the speed żi(t) for the cross-over αi frequency; a squarer device 20, which receives in input the value αi·żi(t) and squares it so as to output the value (αi·żi(t))2; a squarer device 21, which receives in input the acceleration {umlaut over (z)}i(t) and squares it so to output ({umlaut over (z)}i(t))2; a adder node 22, which receives in input the acceleration squared ({umlaut over (z)}i(t)) and the value (αi·żi(t))2 and calculates the difference between acceleration squared ({umlaut over (z)}i(t))2 and the value (αi·żi(t))2 so as to provide the second value S(t).
Each heave calculation block MIX-Ci finally comprises a control block 23, which receives in input the second value Si(t), which is indicative of the energizing frequency of the i-th sprung mass Msi and determines by means of the second function fi(Si(t)) the third value, which is indicative of the variation of the first damping coefficient cHi to be set on the force generator 7 of the i-th semi-active suspension 5, as the second value indicative of the energizing frequency to which the i-th sprung mass Msi is subjected in instant t.
With reference to
It is indeed possible to process two of the four accelerations which in the illustrated example corresponds to the accelerations {umlaut over (z)}1 and {umlaut over (z)}3 , associated to the two sprung masses Ms1 and Ms3 arranged in two respective angles, e.g. the angles 2a and 2c, arranged on the same right hand Dx or left-hand SX side, so as to determine the second damping coefficients cPi (i comprised between 1 and 4) to be imposed to the semi-active suspensions 5 by controlling the force generator 7 for minimizing the dynamics associated to the pitch of the vehicle 1.
In particular, the pitch acceleration is correlated to the difference between the accelerations {umlaut over (z)}1 and {umlaut over (z)}3 associated to two sprung masses Ms1 and Ms3.
According to a preferred embodiment, the second control module 14 calculates the second damping coefficients cPi by means of the following calculation law:
{umlaut over (θ)}(t)={umlaut over (z)}1(t)−{umlaut over (z)}3 (t)
S
θ(t)={umlaut over (θ)}2(t)−(αθ{dot over (θ)}(t))2
C
1
p(t)=C2P(t)=ffront(Sθ(t))
C
3
P(t)=C4P(t)=frear(Sθ(t)) [3]
where:
{umlaut over (θ)}(t) is the pitch acceleration of the vehicle in instant t expressed in m/s2;
{dot over (θ)}(t) is the pitch speed of the vehicle in instant t expressed in m/s;
αθ is the first value indicative of the invariance frequency or cross-over frequency expressed in radians/second for the pitch motion of the vehicle;
Sθ(t ) is a third function which provides a second value indicative of the frequency of the energizing energy to which the i-th sprung mass is subjected in instant t caused by the pitch dynamics;
ffront(Sθ(t)) is a fourth function providing a third value which is indicative of the variance of the two second damping coefficients Cip(t)e C2p(t) to be set on the force generators 7 of the respective semi-active suspensions 5 arranged in angles 2a and 2b present on the front side of the vehicle; and
frear(Sθ(t)) is a fourth function providing a third value which is indicative of the variance of the two second damping coefficients C3p(t) e C4p(t) to be set on the force generators 7 of the respective semi-active suspensions 5 arranged in the angles 2c and 2d present on the rear side of the vehicle.
With reference to
With reference to
The second control module 14 further comprises a second control block 30 which receives in input the second value Sθ(t) and implements the fourth function frear(S74 (t)) so as to output the third value which is indicative of the variation of the two second damping coefficients C3p(t) and C4p(t) to be set on the force generators 7 of the respective semi-active suspensions 5 arranged in the angles 2c and 2d present on the first side of the vehicle 1.
The supervisor module 15 is configured to generate the damping reference for each angle of the vehicle 1 by comparing the first damping coefficients cHi associated to the vertical dynamics of each semi-active suspension 5 generated by the first control module 13 with the second damping coefficients cPi generated by the second control module 14.
The supervisor module 15 is configured so as to privilege damping/contrast of low frequency, high energy dynamics, the most perceivable by passengers. Thus supervision is carried out by selecting for each angle of the vehicle the higher damping requested by either the first 13 or the second control module 14.
In particular, the supervisor module 15 is configured so as to receive in input the first and second damping coefficients and cHi and cPi generated by the first 13 and, respectively, by the second control module 14; determining the higher damping coefficient CTi=MAX(cHi, cPi) between the two and generated for each semi-active suspension 5 the electric control system Sci which is indicative of the higher damping coefficient CTi to be set to the semi-active suspension 5 present in the angle itself, by means of the force generator device 7.
In the embodiment shown in
The control method of the semi-active suspensions 5 provided according to the dictates of the present invention thus contemplates:
The present invention is advantageous because it allows to use only three accelerometers for controlling the four semi-active suspensions, determining in this manner, on one hand, a reduction of the overall manufacturing costs of the system and obtaining, on the other, a simplification of the same in terms of wiring, wire fastening systems, brackets etc.
Furthermore, by virtue of the calculation of the damping coefficient to the imparted to the force generator based on energizing frequency and entity, it is possible to increase the comfort perceived by passengers in case of events which are not very relevant in energy terms, i.e. in case of vehicle stresses having low intensity/energy characterized by a low frequency.
Finally, the method allows to explicitly control pitch dynamics and consequently better results can be obtained also for this type of dynamics.
It is finally apparent that changes and variations can be made to that described and illustrated without departing from the scope of protection of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
EP 11425120.0 | Apr 2011 | EP | regional |