The present invention relates to control of wind turbines where a noise measure is taken into account.
In general, a wind turbine or a wind turbine park is operated with the aim to obtain maximum yield of the capital invested in it, and consequently the wind turbine control systems are configured to maximize the output power, i.e. to operate the wind turbine to capture the maximal power that is available in the wind, with due regard to keeping the wind turbine within operational limits.
When a wind turbine is running it generates noise. This may be problematic for neighbours of the wind turbines. The noise emitted from a wind turbine has two main contributions: noise produced by the machine part of the wind turbines (e.g. the gear box and the generator), and aerodynamic sound due to the air flow across the rotor blades.
Generally, noise generation depends on the specific operational parameter settings. However atmospheric conditions are important in relation to propagation of noise in the surroundings. Also such factors as time of day may be important as to how sensitive the surroundings are to noise.
To handle noise emissions turbine operation is subjected to comply with noise regulation in many countries around the world. Such noise regulation may vary somewhat from country to country.
It would be advantageous to control a wind turbine in a manner which takes into account a predicted noise measure during the operation of the wind turbine, and which uses the actual operational state in connection with continued operation of the wind turbine in order to determine the predicted noise measure.
Accordingly, in a first aspect, there is provided a method of controlling a wind turbine, comprising:
In the present invention, the operation of the turbine is based on a calculated control trajectory. A trajectory is a time series of a variable for a given time slot, which includes the next variable value for the operational parameter related to the variable, as well as a predicted or an expected number of future variable values for the given parameter. For example, the control trajectory may be a pitch trajectory which includes the next pitch command, as well as an expected or a predicted number of future pitch commands.
A wind turbine includes a control system for controlling the various components of the wind turbine, such as the blade pitch setting, the power converter set-points, the yaw motors, etc. The level of generated noise depends on the imposed control actions.
In the present invention, the control system is arranged for determining at least one noise measure from at least one predicted operational trajectory, i.e. the control system is arranged to determine a predicted noise measure based on the actual operational state and a predicted operation in a future time slot and control the wind turbine based on such predicted or expected noise measure.
This is an advantage since the expected noise impact of the surroundings can be taken into account in the control of the wind turbine directly during the actual operation and based on the actual conditions. The noise impact can be taken into account, not just for current operational settings of the wind turbine, but for the entire duration of predicted operational trajectory.
In important embodiments, the predicted operational trajectories are calculated by optimizing at least one cost function, and wherein the at least one noise measure is included in the cost function and/or as one or more constraints used for the optimization.
Compliance with noise regulation is often a trade-off between how close to the noise limits the turbine is operated and how much the power output is reduced. Since in most situations, any measures taken to reduce noise generation will reduce the power output, as the turbine needs to be run less aggressive.
Such trade-off can advantageously be handled by including a noise measure in a cost function or as a properly set constraint, since by properly constructed cost functions and/or constraints the math will handle the trade-off in the optimization process.
In important embodiments, the one or more predicted operational trajectories are calculated by using a receding horizon control routine, such as a model predictive control (MPC) routine, in such embodiments, the noise measure may advantageously be calculated in the prediction horizon.
Further embodiments are described in connection with the section Description of embodiments.
In a second aspect, the invention also relates to a method of controlling a wind power plant comprising a plurality of wind turbines, comprising:
In this aspect, embodiments of the invention relate to noise handling in a wind power plant.
In further aspects there are provided a control system for a wind turbine, comprising a controller for carrying out the method of the first aspect, and a wind power plant controller arranged for controlling at least a selected wind turbines in accordance with the method of the second aspect.
In general, a controller may be a unit or collection of functional units which comprises one or more processors, input/output interface(s) and a memory capable of storing instructions that can be executed by a processor.
Aspects of the invention may be implemented by a computer program product comprising software code adapted to control a wind turbine when executed on a data processing system, to a controller for a wind turbine, to a wind turbine park controller which is implemented to control at least selected turbines of the wind turbine park.
Moreover, the invention relates to a wind turbine or collection of wind turbines being controlled in accordance with any of the various aspects of the present invention.
In general the various embodiments and aspects of the invention may be combined and coupled in any way possible within the scope of the invention. These and other aspects, features and/or advantages of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which:
The control system comprises a number of elements, including at least one main controller 200 with a processor and a memory, so that the processor is capable of executing computing tasks based on instructions stored in the memory. In general, the wind turbine controller ensures that in operation the wind turbine generates a requested power output level. This is obtained by adjusting the pitch angle and/or the power extraction of the converter. To this end, the control system comprises a pitch system including a pitch controller 27 using a pitch reference 28, and a power system including a power controller 29 using a power reference 26. The wind turbine rotor comprises rotor blades that can be pitched by a pitch mechanism. The rotor may comprise a common pitch system which adjusts all pitch angles on all rotor blades at the same time, as well as in addition thereto an individual pitch system which is capable of individual pitching of the rotor blades.
In embodiments of the invention, the main controller 200 is programmed to receive a current operational state of the wind turbine. Based on the current operational state, one or more predicted operational trajectories are calculated and at least one noise measure is determined from at least one predicted operational trajectory. A control trajectory is determined based on the noise measure; and the wind turbine controlled based on the determined control trajectory.
In embodiments, the predicted operational trajectories and the predicted control trajectories are calculated using a model predictive control (MPC) routine.
The operational trajectories and control trajectories may include, but are not limited to, one or more of the following parameters: pitch value, including collective pitch values and individual pitch values, rotor speed, rotor acceleration, tower movement, power related parameters, torque related parameters and derivatives of these parameters.
In an embodiment, the operational trajectory is a predicted operational state trajectory. A state is a collection, often expressed as a vector, of operational parameters. An example wind turbine state is:
comprising pitch value, θ, rotor angular speed, ω, and tower top position, s, as well as time derivatives of those parameters. Other and more parameters may be used to define the wind turbine state, x*. In general the operational trajectory includes operational parameters which are used to calculate the desired fatigue load measure.
The state values of the current operational state of the wind turbine may be based on measured sensor readings from sensors arranged to measure sensor data relating to the wind turbine's physical state values. Additionally, estimated values or calculated values may also be used. In an embodiment, the state may be determined by a state calculator, e.g. in the form of a dedicated computational unit in charge of determining the current operational state, such as an observer or a Kalman filter.
The trajectory may also be expressed as a control trajectory. An example control trajectory may be:
comprising the pitch reference signal and the power reference signal. Other and more parameters may be used to define the wind turbine control signal, u1*.
As an example, the trajectory shows the rotor speed ω in a situation where a set-point is given to increase the rotor speed. The trajectory shows the current rotor speed 32 together with the predicted future rotor speeds. Allowed maximum and minimum values are also shown for the illustrated variable.
While the current k-th value is known for measured variables 32, the current value 37 of the control trajectory is calculated by use of the MPC routine.
The figure also shows maximum and minimum allowed values for the control trajectory values of u.
As an example, the trajectory shows the trajectory for the pitch angle, i.e. u=θ. Thus a set-point is given to increase the rotor speed, and as a consequence the pitch angle is lowered.
The trajectory shows the next pitch setting 37 together with the predicted future pitch settings to fulfil the new set-point setting.
MPC is based on iterative, finite horizon optimization. At time t the current state is sampled and a cost minimizing control strategy is computed for a time horizon in the future: [t, t+T]. Only the first predicted value for the current sample k is used in the control signal, then the turbine state is sampled again and the calculations are repeated starting from the new current state, yielding a new control trajectory and new predicted state trajectory. The prediction horizon keeps being shifted forward and for this reason MPC is a receding horizon controller.
Model Predictive Control (MPC) is a multivariable control algorithm that uses an optimization cost function J over the receding prediction horizon, to calculate the optimal control moves.
The optimization cost function may be given by:
With reference to
In the above cost function the noise measure is included in the cost function as a weighted element by the function ρ n (u, y). The weight ρ may be used to set the importance of the noise measure function in the optimization process.
In an embodiment, the noise measure used in connection with the optimization of the cost function may be defined as the sound power, LwA.
ρn(u,y)=ρLwA(u,y)=ρ(ƒ(θ)+g(ω)) Eq. 2
The sound power LwA can be expressed as a functional expression which takes into account the pitch angle and the rotor speed. The pitch angle may be taken into account by a function, ƒ(θ) and the rotor speed may be handled by a function g(ω).
In
By use of a transmission loss function TRL, the noise measure over the prediction horizon can be expressed for a given immission point 52.
In an embodiment the at least one noise measure is included in the optimization as one or more constraints. This inclusion may be made as an alternative to including the noise measure in the cost function itself, or it may be included as an addition to the noise measure in the cost function itself. This may depend on the specific implementation selected for the optimization problem.
In an embodiment, an optimization criteria used to optimize the at least one cost function is an optimization criterion to keep the noise measure under a predefined level. This may in embodiment be implemented by the cost function, by a properly set constraint, or by a combination of the two.
Typically, the optimization problem is formulated in terms of an objective function (a cost function) as well as a number of constraints (e.g., max/min limits, rate-of-change limits, etc.). When applying such a control scheme for normal operation, the objective function is typically formulated to provide a trade-off between noise level and power production, and with certain operating parameters such as rotor speed, pitch position and speed, and generator torque being governed by constraints.
In an example embodiment, the optimization problem used for normal production has the form:
u*(t)=argmin J0(S(t),P(t),u(t)),
subject to the constraints:
ωR≤δω
−5≤θi≤90,i∈{1,2,3}
−20≤{dot over (θ)}i≤20,i∈{1,2,3}
PE≤3 MW
LpA≤noise limit.
The function argmin is the standard mathematical operator which stands for argument of the minimum, and finds points in the parameter space spanned by S, P, u and t where the cost function J0 attains its smallest value. The parameter Γω
Here, the nominal cost function J0 provides a trade-off between power (P) and loads (S) using the control signal u(t), while the constraints limit the rotor speed, blade pitch angle, blade pitch speed, electrical power and generated sound pressure over the prediction horizon. The control signal would typically consist of blade pitch angles and power reference for the converter:
By implementing in the controller an MPC routine to calculate the control trajectory an optimization problem over N time steps (the control and prediction horizon) is solved.
As shown in connection with Eq. 1, the noise measure may be included into the cost function by use of a weight, ρ. The weight may be used as a sensitivity measure of the noise generated by a wind turbine. For example the weight may be correlated with a measured atmospheric condition, such as wind speed, rain, snow or other factors which influence noise propagation between the wind turbine an a given immission point. The weight may also be correlated with a measured background noise level, since wind turbine noise may be less disturbing if the background noise is high.
The weight may also be correlated with an estimated noise level determined by a wind turbine noise emission model. In this manner, if operational parameters are used which do not generate much noise, the weight may be set to be low or even zero in order not to take this into account in the control of the wind turbine. Alternatively, if the generated noise level is high or close to a given threshold, the weight may be set high to ensure that the wind turbine is operated accordingly.
In embodiments, the weight may be correlated with a function of the time of day and/or a date. In this manner the turbine may e.g. be set to generate more noise during day time or during working days where the environment may be less sensitive to the generated noise, and to generate less noise during night time or other times where the environment is more sensitive to the generated noise.
As shown in
The predefined level may be variably set depending upon various parameters. For example the predefined level may be correlated with a function of the time of day and/or a date or with a measured background noise level.
In an embodiment, the noise measure may include one or more tonal components. For example the noise measure may take into account specific frequencies or amplitudes of the generated noise. For example, Eq. 2 may be formulated to include a tonal dependency. This may in general be done by a including a functional dependency between rotor speed and/or set pitch angle on generated noise level at a given frequency. However, it may also be implemented by weighing the noise measure with a given frequency profile to diminish the noise effect in certain frequency intervals and enhance the noise effect in other frequency intervals. In an embodiment, the turbine may also include a look-up table or similar which based on measured noise emissions provides a weight factor either to be combined with, or to replace, the shown weight factor ρ.
The wind turbine 1 may be included among a collection of other wind turbines belonging to a wind power plant 60, also referred to as a wind farm or wind park.
In an embodiment, the one or more predicted operational trajectories for the selected at least one wind turbine are calculated by optimizing at least one cost function, and wherein the at least one noise measure is included in the cost function and/or the at least one noise measure is included in the optimization as one or more constraints in a manner as described for a single turbine. By properly defined cost functions and/or properly set constraints, the operation of individual turbines in a wind park may continuously be adjusted in order to ensure specified noise levels in one or more immission points.
The optimization objective may be to optimize the output power of the wind power plant under the constraint that the sound pressure should be below legal thresholds for selected immission points. Like in the situation of a single turbine, the immission points may be externally supplied in a continuous manner from an external source for continuous adaptation to a real time noise situation at one or more immission points.
The figure thus illustrates a resulting trade-off between the output power and the generated which is the result of the optimization process.
The figure is also applicable for single turbine operation, with appropriate modifications.
In embodiments, the general aspects of the embodiments of the present invention may be implemented in a wind turbine power plant controller 61 arranged for controlling one or more wind turbines of a wind power plant. In such embodiment, the wind park controller may control one or more selected wind turbines. The wind turbine power plant controller may be implemented in a distributed manner, where parts of the controller are implemented in the wind turbine whereas other parts of the controller are implemented in the wind power plant controller.
Although the present invention has been described in connection with the specified embodiments, it should not be construed as being in any way limited to the presented examples. The invention can be implemented by any suitable means; and the scope of the present invention is to be interpreted in the light of the accompanying claim set. Any reference signs in the claims should not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
2016 70209 | Apr 2016 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DK2017/050103 | 4/3/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/174089 | 10/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7822560 | LeMieux | Oct 2010 | B2 |
8237301 | Delmerico et al. | Aug 2012 | B2 |
8332077 | Kondo et al. | Dec 2012 | B2 |
8489247 | Engler | Jul 2013 | B1 |
8853877 | Zalar et al. | Oct 2014 | B1 |
10267291 | Hammerum et al. | Apr 2019 | B2 |
10337497 | Hammerum et al. | Jul 2019 | B2 |
20030168864 | Heronemus et al. | Sep 2003 | A1 |
20030170123 | Heronemus | Sep 2003 | A1 |
20060113801 | Schubert et al. | Jun 2006 | A1 |
20070104318 | Schwarz | May 2007 | A1 |
20080086281 | Santos | Apr 2008 | A1 |
20090102195 | Altemark et al. | Apr 2009 | A1 |
20090180875 | Egedal | Jul 2009 | A1 |
20100283246 | Christensen | Nov 2010 | A1 |
20110144816 | Morjaria et al. | Jun 2011 | A1 |
20120049516 | Viassolo | Mar 2012 | A1 |
20120051939 | Marvin et al. | Mar 2012 | A1 |
20120104753 | Nakashima et al. | May 2012 | A1 |
20120104756 | Beekmann et al. | May 2012 | A1 |
20120313742 | Kurs | Dec 2012 | A1 |
20130035798 | Zhou | Feb 2013 | A1 |
20130106107 | Spruce | May 2013 | A1 |
20130127173 | Lee et al. | May 2013 | A1 |
20130257051 | Spruce et al. | Oct 2013 | A1 |
20130259686 | Blom et al. | Oct 2013 | A1 |
20130297266 | Brincker | Nov 2013 | A1 |
20140178195 | Blom et al. | Jun 2014 | A1 |
20140248123 | Turner | Sep 2014 | A1 |
20160032892 | Herrig | Feb 2016 | A1 |
20160032894 | Ambekar | Feb 2016 | A1 |
20160053745 | Blom et al. | Feb 2016 | A1 |
20160108736 | Schuring | Apr 2016 | A1 |
20160146190 | Ravindra et al. | May 2016 | A1 |
20170051723 | Kjaer et al. | Feb 2017 | A1 |
20170089325 | Timbus et al. | Mar 2017 | A1 |
20180012137 | Wright | Jan 2018 | A1 |
20180100488 | Miranda | Apr 2018 | A1 |
20180142674 | Hammerum | May 2018 | A1 |
20180171977 | Kjaer et al. | Jun 2018 | A1 |
20180266392 | Hovgaard | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
101247049 | Aug 2008 | CN |
101560950 | Oct 2009 | CN |
102317622 | Jan 2012 | CN |
102536657 | Jul 2012 | CN |
102619685 | Aug 2012 | CN |
102725520 | Oct 2012 | CN |
102797631 | Nov 2012 | CN |
103216383 | Jul 2013 | CN |
103291551 | Sep 2013 | CN |
203552029 | Apr 2014 | CN |
204082445 | Jan 2015 | CN |
104533714 | Apr 2015 | CN |
201570721 | Nov 2015 | DK |
2302208 | Mar 2011 | EP |
2461025 | Jun 2012 | EP |
2541052 | Jan 2013 | EP |
2541053 | Jan 2013 | EP |
2644887 | Oct 2013 | EP |
2644888 | Oct 2013 | EP |
2743500 | Jun 2014 | EP |
2746576 | Jun 2014 | EP |
2784303 | Oct 2014 | EP |
2798198 | Nov 2014 | EP |
2878811 | Jun 2015 | EP |
2443886 | May 2008 | GB |
2476316 | Jun 2011 | GB |
101545839 | Aug 2015 | KR |
2006037576 | Apr 2006 | WO |
2008043762 | Apr 2008 | WO |
2010037387 | Apr 2010 | WO |
2011000453 | Jan 2011 | WO |
2011035976 | Mar 2011 | WO |
2012136277 | Oct 2012 | WO |
2013028172 | Feb 2013 | WO |
2014114295 | Jul 2014 | WO |
2014121974 | Aug 2014 | WO |
20140121800 | Aug 2014 | WO |
2016023560 | Feb 2016 | WO |
2016150447 | Sep 2016 | WO |
Entry |
---|
Danish Patent and Trademark Office First Technical Examination for Application No. PA 2016 70209 dated Nov. 8, 2016. |
PCT International Search Report for Application No. PCT/DK2017/050103 dated Jun. 7, 2017. |
Written Opinion of the International Searching Authority for Application No. PCT/DK2017/050103 dated Jun. 7, 2018. |
Chinese Office Action for Application No. 201780034800.7 dated Sep. 16, 2019. |
International Search Report for PCT/DK2015/050238, dated Oct. 22, 2015. |
Danish Search Report for PA 2014 70492, dated Mar. 12, 2015. |
Arne Koerber et al: “Combined Feedback Feed Forward Control of Wind Turbines Using State-Constrained Model Predictive Control”, IEEE Transactions on Control Systems Technology, IEEE Service Center, New York, NY, US, vol. 21, No. 4, Jul. 1, 2013(Jul. 1, 2013), pp. 1117-1128. |
International Search Report for PCT/DK2015/050239, dated Oct. 22, 2015. |
Danish Search Report for PA 2014 70491, dated Mar. 10, 2015. |
Danish Patent and Trademark Office, Search Report, Danish Application No. PA 2015 70162 dated Sep. 21, 2015. |
Patent Cooperation Treaty, International Search Report, Application No. PCT/DK2016/050087 dated Jun. 8, 2016. |
Chinese Office Action for Application No. 201680023698.6 dated Oct. 22, 2018. |
Jose de Jesus Barradas-Berglind, Rafael Wisniewski and Mohsen Soltani, “Fatigue damage estimation and data-based control for wind turbines,” Received on Jun. 29, 2014, Revised on Oct. 3, 2014, Accepted on Nov. 21, 2014; www.ietdl.org, 10 pages. |
International Search Report for Application No. PCT/01<2016/050143, dated Aug. 5, 2016. |
Danish Search Report for Application PA 2015 70315, dated Dec. 17, 2015. |
Patent Cooperation Treaty International Search Report for Application No. PCT/DK2016/050319 dated Dec. 14, 2016. |
Baccion, et al., “An Optimal Model-Based Control Technique to Improve Wind Farm Participation to Frequency Regulation,” IEEE Transactions on Sustainable Energy, vol. 6, No. 3, Jul. 2015, 12 pages. |
Hovgaard et al., “MPC for Wind Power Gradients-Utilizing Forecasts, Rotor Inertia, and Central Energy Storage,” 2013 European Control Conference (ECC), Jul. 17-19, 2013, 6 pages. |
Danish Patent and Trademark Office Search Opinion for Application No. PA 2015 70641 dated May 18, 2016. |
Chinese Office Action for Application No. 2016800655833 dated Apr. 12, 2019. |
Chinese Office Action for Application No. 2017800266 dated Aug. 20, 2019. |
L. C. Henriksen, M. H. Hansen and N. K. Poulsen, “Wind turbine control with constraint handling: a model predictive control approach,” in IET Control Theory & Applications, vol. 6, No. 11, pp. 1722-1734, Jul. 19, 2012. (Year 2012). |
Number | Date | Country | |
---|---|---|---|
20190154000 A1 | May 2019 | US |