The field is internal combustion engines, particularly uniflow-scavenged, opposed-piston engines. More specifically, the field is related to location of a mass airflow sensor in the air handling system of an opposed-piston engine.
In a conventional four-stroke cycle, internal combustion engine, a single piston in a cylinder completes a cycle of operation during two complete revolutions of a crankshaft. During an intake stroke, movement of the piston from top to bottom dead center creates a low pressure environment that draws air into the cylinder in preparation for the following compression stroke. In this manner, the flow of gas through the engine is aided by the pumping action of the piston during the intake stroke.
In a two-stroke cycle, opposed-piston engine, two oppositely-disposed pistons in a cylinder complete a cycle of operation during a single revolution of a crankshaft. The cycle includes a compression stroke followed by a power stroke, but it lacks a distinct intake stroke during which the cylinder is charged with fresh air by movement of a piston. Instead near the end of the power stroke, pressurized fresh air enters the cylinder through an intake port near one end of the cylinder and flows toward an exhaust port near an opposite end of the cylinder as exhaust exits. Thus, gas (charge air, exhaust, and mixtures thereof) flows through the cylinder and the engine in one direction, from intake port to exhaust port. The unidirectional movement of exhaust gas exiting through the exhaust port, followed by pressurized air entering through the intake port, is called “uniflow scavenging”. The scavenging process requires a continuous positive pressure differential from the intake ports to the exhaust ports of the engine in order to maintain the desired unidirectional flow of gas through the cylinders. Without this continuous positive pressure differential, combustion can falter and fail. At the same time, a high air mass density must be provided to the intake ports because of the short time that they are open. All of this requires pumping work in the engine, which is unassisted by a dedicated piston pumping stroke as in a four-stroke cycle engine.
The pumping work required to maintain the unidirectional flow of gas in an opposed-piston engine is done by an air handling system (also called a “gas exchange” system) which moves fresh air into and transports combustion gases (exhaust) out of the engine's cylinders. The air handling elements that do the pumping work may include one or more gas-turbine driven compressors (e.g., a turbocharger) and/or a pump, such as a supercharger (also called a “blower”), which may be mechanically or electrically driven. In one example, a compressor is disposed in tandem with a supercharger in a two-stage pumping configuration. The pumping arrangement (single stage, multi-stage, or otherwise) drives the scavenging process, which is critical to ensuring effective combustion, increasing the engine's indicated thermal efficiency, and extending the lives of engine components such as pistons, rings, and cylinders. Manifestly, in a two-stroke cycle, opposed-piston engine, airflow is one of the most fundamental factors by which engine operation is controlled.
For effective control of airflow, information regarding the mass of incoming air (“mass airflow”) is vital to measurement of airflow conditions and to determination of precise and accurate control parameter values with which the air handling devices are actuated. Additionally, mass airflow measurement is important to controlling fuel provisioning in an opposed-piston engine equipped for fuel injection. Mass airflow measurement also plays an important role in control of exhaust gas recirculation (EGR). Parametrically, mass airflow is often expressed in SI units, for example kg/s (kilograms per second). In many instances, measurement of air mass entering the air handling system of an opposed-piston engine is enabled by an electronic mass airflow (MAF) sensor positioned in a charge air channel of the air handling system, through which charge air is transported to the intake ports of the engine's cylinders, at a point where fresh air first enters the air handling system. In a turbocharged opposed-piston engine this places the MAF sensor in the charge air channel, upstream of the compressor inlet. In cases where the charge air channel may include a supercharger as well as a turbocharger, the MAF sensor is located upstream of both charge devices. One example of such an arrangement is described in US publication 2018/0223750 A1. An alternative approach to measuring mass airflow in an opposed-piston engine is by means of a virtual mass airflow sensor, usually an algorithmically-based control routine that calculates a mass airflow value to generate a mass airflow signal, using inputs from other engine sensors. Examples of calculations used for determining mass airflow as would be used in designing a virtual MAF sensor are found in US publication 2014/0373814 A1. A virtual sensor is not a component or an element of the invention to be described.
Other means and/or locations for monitoring and measuring mass airflow in an opposed-piston engine may provide advantages related to increased precision in determination of fuel quantities, rail pressures, and start of injection that need to be commanded to a fuel injection system so as best to meet a torque demand, while controlling emissions and minimizing fuel consumption.
According to the invention, an opposed-piston engine includes an electronic sensor located in a charge air channel, at position between an outlet of a charge air cooler and an air intake component for distributing charge air to cylinder intake ports of the engine. The electronic sensor is configured and disposed to measure a rate of mass airflow between the outlet of the charge air cooler and the intake component and generate electronic signals indicative of the rate of mass airflow from the charge air cooler.
In other aspects of the invention, a control mechanization of the opposed-piston engine is electrically connected to the electronic sensor for controlling air handling devices, fuel provisioning devices, and/or EGR devices in response to the electronic signals.
Operation of the opposed-piston engine 8 is well understood. In response to combustion the opposed pistons move away from locations in the cylinder 10 where they are at their innermost positions, toward their respective associated ports. While moving outwardly from their innermost locations, the pistons keep their associated ports closed until they approach respective BDC locations where they are at their outermost positions in the cylinder and their associated ports are open. The pistons may move in phase so that the intake and exhaust ports 14, 16 open and close in unison. Alternatively, one piston may lead the other in phase, in which case the intake and exhaust ports have different opening and closing times. Charge air 34 enters the cylinder 10 through the intake port 14 and flows in the direction of the exhaust port 16. Turbulence of the charge air 34 promotes air/fuel mixing, combustion, and suppression of pollutants.
The air handling system 15 includes a turbocharger arrangement that may comprise one or more turbochargers. For example, a turbocharger 50 includes a turbine 51 and a compressor 52 that rotate on a common shaft 53. The turbine 51 is disposed in the exhaust subsystem 40 and the compressor 52 is disposed in the charge air subsystem 38. The turbocharger 50 extracts energy from exhaust gas that exits the exhaust ports and flows into the exhaust subsystem 40 directly from engine exhaust ports 16, or from an exhaust collector 57 that collects exhaust gases output by the opposed-piston engine. In this description the exhaust collector 57 may comprise an exhaust manifold assembly attached to a cylinder block 75 of the opposed-piston engine or an exhaust plenum or chest formed with the cylinder block 75 that communicates with the exhaust ports 16 of all cylinders 10, which are supported in the cylinder block 75, The turbine 51 is rotated by exhaust gas passing through it to an exhaust outlet 58. This rotates the compressor 52, causing it to generate charge air by compressing fresh air.
Exhaust gases from the exhaust ports of the cylinders 50 flow from the exhaust collector 57 into the inlet of the turbine 51, and from the turbine's outlet into an exhaust outlet channel 55. In some instances, one or more after-treatment devices (not shown) may be provided in the exhaust outlet channel 55. The air handling system 15 may be constructed to reduce NOx emissions produced by combustion by recirculating exhaust gas through the ported cylinders of the engine by way of an exhaust gas recirculation (EGR) loop 59. If the air handling system is equipped with EGR, exhaust gas transported through the EGR loop 59 is mixed with charge air in a mixer 63 positioned in the charge air subsystem, downstream of the outlet of the compressor 52
The charge air subsystem may provide ambient inlet air to the compressor 52 via an air filter 81. As the compressor 52 rotates it compresses the ambient inlet air. The compressed air flows into the inlet of the supercharger 60. Air pumped by the supercharger 60 flows through the supercharger's outlet to an inlet of a charge air cooler 67, and from the outlet of the charge air cooler 67 into an air intake component 68. Pressurized charge air is distributed by the air intake component 68 to the intake ports 14 of the cylinders 10. In this description the air intake component 68 may comprise an intake manifold assembly attached to the cylinder block 75, or an intake plenum or chest formed with the cylinder block 75 that communicates with the intake ports 14 of all cylinders 10, which are supported in the cylinder block 75.
The charge air subsystem includes at least one cooler coupled to receive and cool charge air before delivery to the intake ports of the engine 8. In this regard, the charge air cooler 67 is provided between the outlet of the supercharger 60 and the air intake component 68. In some instances, charge air output by the compressor 52 may flow through another cooler 69, positioned in the charge air channel downstream of a mixer in which charge air flowing from the outlet of the compressor 52 is mixed with whence it is pumped by the supercharger 60 to the intake ports.
With further reference to
In some instances, additional control of gas flow and pressure is provided by way of a variable speed supercharger. In these aspects, the supercharger 60 is coupled by a drive mechanism 95 to a crankshaft 30 or 32 of the engine 8, to be driven thereby. The drive mechanism 95 may comprise a stepwise transmission device, or a continuously variable transmission device (CVD), in which cases charge air flow, and boost pressure, may be varied by varying the speed of the supercharger 60 in response to a speed control signal provided to the drive mechanism 95. In other instances, the supercharger may be a single-speed device with a mechanism to disengage the drive, thus giving two different drive states. In yet other instances, a disengagement mechanism may be provided with a stepwise or continuously variable drive. In any event, the drive mechanism 95 is operated by a computer-controlled actuator that responds to drive commands issued by an engine control unit.
In some aspects, the turbine 51 may be a variable-geometry turbine (VGT) device having an effective aspect ratio that may be varied in response to changing speeds and loads of the engine. Alteration of the aspect ratio enables control of the speed of the turbine. Regulation of the turbine speed enables regulation of the compressor speed which, in turn, permits control of charge air boost pressure. Thus, in many cases, a turbocharger comprising a VGT may not require a wastegate valve. A VGT device is operated by a computer-controlled actuator that responds to turbine commands issued by an engine control unit.
As seen in
In this disclosure, and with reference to
For the air handling system, the ECU 94 controls one or more air handling devices by issuing backpressure (Backpressure), wastegate (Wastegate), EGR, and shunt (Shunt) commands to actuate the exhaust backpressure valve 90, the wastegate valve 91, the EGR valve 92, and the supercharger shunt valve 82, respectively. In cases where the supercharger 60 is operated by a variable drive, the ECU 94 also controls this air handling device by issuing drive (Drive) commands to actuate the supercharger drive 95. And, in those instances where the turbine 51 is configured as a variable geometry device, the ECU 94 also causes actuation of this air handling device by issuing VGT commands to set the aspect ratio of the turbine.
For the fuel provisioning system, the ECU 94 controls injection of fuel into the cylinders by issuing rail pressure (Rail) commands to actuate the fuel source 40, and by issuing injector (Injector) commands to actuate the injectors 17.
When the opposed-piston engine 8 runs, the ECU 94 determines the current engine operating state based on engine load and engine speed, and governs the amount, pattern, and timing of fuel injected into each cylinder 10 by control of the common rail fuel pressure and injection duration, based on the current operating state. For this purpose, the ECU 94 may receive signals from other engine sensors which may include an accelerator sensor, a speed governor, or a cruise control system, or equivalent means that detects accelerator position, an engine speed sensor that detects the rotational speed of the engine, and a pressure sensor that detects rail pressure. The ECU 94 configures the air handling system 15 to provide the optimal AFR for the current operational state. For this purpose, in addition to the MAF sensor 100, the ECU receives electrical signals from other engine sensors that may include pressure and temperature sensors that detect ambient air pressure and temperature upstream of the inlet of the compressor 52, pressure and temperature sensors that detect charge air pressure and temperature upstream of the inlet of the supercharger 60, intake pressure and temperature sensors that detect charge air pressure and temperature at the inlet of the air intake component 68, exhaust pressure and temperature sensors that detect exhaust pressure and temperature at the outlet of the exhaust collector 57, exhaust pressure and temperature sensors that detect exhaust pressure and temperature downstream of the outlet of the turbine, and, possibly other sensors.
As will be evident to the reasonably skilled craftsman, although the invention has been described with reference to presently preferred examples and embodiments, it should be understood that various modifications can be made without departing from the scope of the following claims.
This Project Agreement Holder (PAH) invention was made with U.S. Government support under Agreement No. W15KQN-14-9-1002 awarded by the U.S. Army Contracting Command-New Jersey (ACC-NJ) Contracting Activity to the National Advanced Mobility Consortium. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
4984456 | Takahashi | Jan 1991 | A |
8965628 | Brevick et al. | Feb 2015 | B2 |
20080066715 | Jankovic | Mar 2008 | A1 |
20140373814 | Herold | Dec 2014 | A1 |
20150219030 | Naik | Aug 2015 | A1 |
20150219052 | Petrovic | Aug 2015 | A1 |
20150240826 | Leroy | Aug 2015 | A1 |
20160160781 | Nagar et al. | Jun 2016 | A1 |
20170204790 | Nagar | Jul 2017 | A1 |
20180223750 | Kulkarni | Aug 2018 | A1 |
Entry |
---|
Grimes, Michael R., Verdejo, Julian R., and Bogden, Dennis M., “Development and Usage of a Virtual Mass Airflow Sensor,” SAE Technical Paper 2005-01-0074, 2005. |
Number | Date | Country | |
---|---|---|---|
20210156298 A1 | May 2021 | US |