This invention pertains to the field of driver circuits for lighting devices, particularly LEDs, that employ the use of dimmers.
The use of high-brightness LEDs (light emitting diodes) in lighting applications is growing rapidly as a result of inherent benefits to LED technology such as long lifetimes, good efficiency, and the ability to use non-toxic materials. However, retrofitting existing applications with LED fixtures often requires compatibility with the large installed base of dimmers, particularly leading-edge triac-based dimmers. Because these dimmers were commonly designed for current levels much higher than those consumed by LED applications, many problems occur with existing LED driver solutions.
Triac-based dimmers function by allowing current to pass during a fraction of the half-cycle of the input AC mains voltage. One of the most common types of triac dimmers is the leading-edge type, which initially turns on at some point past the zero-crossing of the AC waveform (in both the upward direction and the downward direction), and then turns off at the next zero-crossing.
Most leading-edge triac-based dimmers were designed for use with incandescent light bulbs. In order to turn on and power the bulb, the triac requires a latching current to flow through the load. Subsequently, to maintain the triac's on state until the next AC zero-crossing, a lesser holding current must be present. This triac behavior matches well with the strongly positive temperature coefficient of incandescent bulbs. When cold and unpowered, an incandescent bulb presents a filament resistance which is a fraction of its value when powered. As current and power dissipation increase, temperature and hence resistance increase greatly. By its nature, the incandescent bulb provides a large latching current at the time of turn on, and maintains a lesser holding current while lit. Since one of the advantages of LED-based incandescent bulb replacements is power efficiency, it naturally draws less current than the hot incandescent bulb, and much less than the cold incandescent bulb.
When powered with triac-based dimmers, the performance of traditional LED driver ICs suffers in several ways. First, the driver efficiency generally falls well short of the desired targets. Even with the degraded efficiency due to a bleed of either constant current or constant resistance, many driver solutions fail in terms of gross functionality with digitally-controlled triac-based dimmers, which require low load impedance even in the standby state, when the dimmer is not explicitly powering the driver yet needs to keep standby circuits alive.
When trying to address these concerns, existing solutions can grow substantially in size, complexity, and power consumption. These concerns are addressed by the present invention.
Methods and apparati for controlling bleed current (IBLEED) in a driver circuit (20) for a lighting device (23). A method embodiment of the present invention comprises the steps of coupling a dimmer (21) to an input of the driver circuit (20), and forcing the bleed current (IBLEED) to be inversely proportional to the time-averaged voltage (VLEDP) at said lighting device (23). The dimmer (21) consumes power even when the lighting device (23) is not emitting light.
These and other more detailed and specific objects and features of the present invention are more fully disclosed in the following specification, reference being had to the accompanying drawings, in which:
The present invention controls the bleed current IBLEED in the driver circuit 20, while maintaining excellent efficiency of the driver circuit 20 and accommodating many types of dimmers 21. Flicker and other unwanted manifestations in the lighting device 23 are avoided.
Our invention is particularly well-suited for lighting devices 23 that comprise one or several LEDs (light emitting diodes) 33, but the invention also has applicability where the lighting device 23 comprises one or more fluorescent light bulbs.
Dimmer 21 is typically a dimmer comprising a triac, a semiconductor that is a three-terminal device but is bidirectional, i.e., power can flow both ways through its power terminals. This is the most convenient way to dim in the present state-of-the-art. However, the present invention can be used with dimmers 21 other than those comprising triacs. Dimmer 21 is typically operated by a person, but it can also be programmed to automatically dim and brighten lighting device 23 using, for example, a pre-programmed software program. Dimmer 21 is typically rated for between 300 watts and 600 watts of power, whereas in the embodiment where lighting device 23 comprises one or more LEDs 33, lighting device 23 is typically rated for about 10 watts.
The number of cycles in the time duration over which the averaging takes place must be greater than the frequency of changing the amplitude of dimmer 21, but less than the input AC frequency at input terminals LINE, NEUT. This AC line frequency is normally 60 Hz in the United States, but in other countries may be some other frequency, such as 50 Hz. The frequency of moving the amplitude of dimmer 21 is usually quite low, because dimmer 21 is normally activated by a human. However, as stated above, dimmer 21 can be activated by an automated means, in which case the amplitude of dimmer 21 can vary more rapidly than by human operation.
The graph in
We preselect IMAX (the maximum value of IBLEED, and the (BLEED that occurs at 0 volts) to be greater than the standby current (ISTAND) required by whatever dimmer 21 or dimmers 21 we plan to use in conjunction with the driver circuit 20 and lighting device 23. In general, the lower the quality of the dimmer 21, the higher its standby current will be, and therefore the higher we need IMAX to be.
We preselect VMAX, the voltage where IBLEED is zero, to be less than the maximum input voltage applied to circuit 20, i.e., the voltage when dimmer 21 is turned up to its maximum amplitude. VMAX is typically less than the voltage VMAXR where the LEDs 33 achieve full brightness. Finally, the third criterion that we satisfy is that the bleed current IINT present at some intermediate voltage VINT where the dimmer 21 needs to latch and hold (stay on) must be sufficient to enable said dimmer 21 to latch and hold, to avoid flicker from the lighting device 23.
An advantage that the graph of
An optional EMI (electromagnetic interference) filter 22 can be inserted between dimmer 21 and driver circuit 20. When used, filter 22 helps to filter out unwanted electromagnetic energy. Rectifier 24 is typically but not necessarily a full bridge rectifier comprising four diodes in a standard bridge configuration. Lighting device 23 is shown as an array 33 of several LEDs connected in series, with an optional capacitor C3 connected in parallel across array 33. Capacitor C3 works in conjunction with smoothing inductor L1 to smooth the current going into the lighting device 23, and in particular, going into the LED array 33, making said current closely resemble a direct current. The output voltage across lighting device 23 is taken at two terminals, LEDP and LEDN, representing positive and negative polarities, respectively. The voltage at LEDP (VLEDP) is a function of how much dimming is being employed, and may or may not vary over a given time interval.
Capacitor C1, coupled between the positive output of rectifier 24 and ground, serves to filter out high frequency noise. The negative output of rectifier 24 is grounded. The bleed current control circuit 25 has an input voltage VIN, which is measured between resistors R2 and R6. VIN is a fixed fraction of VLEDP.
The negative terminal of operational amplifier (op amp) 28 is coupled to the negative output terminal of rectifier 24 via resistors R1 and R2. A reference voltage VREF is applied to the positive input terminal of op amp 28. A fixed control voltage VCC (the supply voltage to circuit 25) is applied to the control terminal of op amp 28. A first low dropout voltage regulator (LDO) 26 is coupled between the control terminal of op amp 28 and LEDP. The output terminal of op amp 28 is applied to a first terminal of a bipolar transistor or FET 29. When a FET is used, the output terminal of op amp 28 is applied to the gate of FET 29. In that case, the drain of FET 29 is applied through resistor R3 to the negative input terminal of op amp 28, and the source of FET 29 is coupled to a first terminal of a second low dropout voltage regulator (LDO) 27, referred to as terminal BLD in
The second terminal of LDO 27 is coupled to LEDP and the negative output terminal of rectifier 24. For each LDO 26, 27, there is a relatively high voltage at its upper terminal and a relatively low fixed voltage at its lower terminal. Capacitor C2 is coupled between the negative input terminal of op amp 28, which is called terminal CBLD (capacitor bleed) in
A resistor R4 is coupled between RBLD and ground. R4 establishes IMAX. Power supply 30 provides power to control circuit 25. Op amp 28, transistor 29, resistors R1 and R3, and power supply 30 can be implemented in an integrated circuit 25.
Power supply 30 is typically a switch-mode (switching) power supply, since this type of power supply is smaller and more efficient than a conventional power supply. Voltage VCC is applied to the input power terminal of power supply 30. The SW (switch) terminal of power supply 30 is coupled to SW1, which can be a bipolar transistor or an FET.
Resistor R2 is coupled between the negative output of rectifier 24 and, via resistor R1, to the negative input terminal of op amp 28. The resistive bridge comprising resistors R2 and R6 serves to set VIN at a point that is optimal for the components within circuit 25, to stabilize VIN, and to establish VMAX.
Resistor R3, in conjunction with resistor R1, establishes the slope of the
V(RBLD)=R3*(VIN−VREF)/R1.
The above description is included to illustrate the operation of the preferred embodiments, and is not meant to limit the scope of the invention. The scope of the invention is to be limited only by the following claims. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the spirit and scope of the present invention.
This patent application claims the benefit of commonly owned U.S. provisional patent application 61/442,611 filed Feb. 14, 2011 entitled “Variable Bleed Current for Triac-Dimmed LED Circuits”, and is also related to U.S. patent application Ser. No. 13/110,724 filed May 18, 2011 entitled “Load Driver with Integrated Power Factor Correction”, which two patent applications are hereby incorporated by reference in their entireties into the present patent application.
Number | Name | Date | Kind |
---|---|---|---|
6486616 | Liu et al. | Nov 2002 | B1 |
20070121349 | Mednik et al. | May 2007 | A1 |
20080316781 | Liu | Dec 2008 | A1 |
20090251934 | Shteynberg et al. | Oct 2009 | A1 |
20100141173 | Negrete | Jun 2010 | A1 |
20100207536 | Burdalski et al. | Aug 2010 | A1 |
20110140620 | Lin et al. | Jun 2011 | A1 |
20110140622 | Suzuki | Jun 2011 | A1 |
20110193494 | Gaknoki et al. | Aug 2011 | A1 |
20120056553 | Koolen et al. | Mar 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
61442611 | Feb 2011 | US |