1. Technical Field
The present invention relates to technology for printing images by forming dots on a printing medium.
2. Related Art
As output devices of images created by computers or images taken by digital cameras, printing devices that print images by scanning printing media and thereby forming thereon are widely used. As one of causes of degradation of image quality in such printing devices, aggregation of ink (phenomenon in which inks are clustered together to form dapples) and/or bleed of ink (blurring of ink) occurs. In order to deal with such a cause of degradation of image quality, a variety of methods have conventionally been taken to reduce degradation of image quality, such as improving permeability or other physical properties of ink and creatively using inks with different physical properties, putting restrictions on ink duty, or sorting halftone processed dot data to respective recording scans. Such techniques are disclosed in, for example, JP-A-6-143795, JP-A-7-314656, JP-A-2002-166538, JP-A-6-328678, JP-A-2002-307671, and JP-A-2002-166536.
However, conventionally, no consideration has been given to the idea of reducing aggregation and/or bleed of ink by exercising ingenuity on halftone processing.
An advantage of some aspect of the invention is to provide a technique for reducing image deterioration due to the bleed and/or aggregation of inks.
The invention provides a printing method of printing on a printing medium. The method includes: performing a halftone process with a dither matrix on image data that represents a tone value of each pixel making up an original image to determine a state of dot formation at each of print pixels of a print image that is to be formed on the printing medium, and generating dot data that represents the determined state of dot formation; and generating a print image by mutually combining each of dot groups that are formed at each of a plurality of pixel groups in a common print region according to the dot data, the plurality of pixel groups being assumed to have different physical conditions with respect to the dot formation. The dither matrix stores each threshold value such that a number of dots to be allocated to each of the plurality of dot groups is determined according to a dot formation order of each of the plurality of dot groups in the common print region in the halftone process.
According to the printing method of the present invention, state of dot formation is determined by using a specific dither matrix, in which a number of dots to be allocated to each of a plurality of dot groups is determined according to a dot formation order of each of the plurality of dot groups in a common print region. Accordingly, it is possible to determine the number of dots to be allocated to each of the plurality of dot groups and thereby reduce flowage of ink, according to a variety of printing environments such as type of printing medium, characteristic of ink, and the combination thereof. This allows aggregation and/or blurring of ink to be reduced, so that ink density can be increased while image quality of printing is kept high, and therefore the range of color reproduction can be expanded. Note that the expression “different physical conditions with respect to dot formation” indicates different print heads (or nozzle columns) responsible for dot formation, different main scans, and the like.
Note that, in techniques disclosed in JP-A-2005-236768 and JP-A-2005-269527 that employ intermediate data (number data) for specifying state of dot formation, the use of the dither matrix of the present invention has a broader concept that also includes a halftone process employing a conversion table (or a correspondence relationship table) generated using a dither matrix. Such a conversion table is not restricted to the one generated directly from a dither matrix generated by a generation method of the present invention, but may sometimes be adjusted or modified as well, and such cases also fall under the category of the dither matrix generated by the generation method of the present invention.
The present invention may also be reduced to practice by a diversity of forms such as a dither matrix, a dither matrix generation apparatus, and a printing apparatus, a printing method, and a printed matter generation method employing the dither matrix, or by a diversity of forms such as a computer program used to attain functions of such method or apparatus, and recording medium in which such computer program is recorded.
Furthermore, the use of a dither matrix in a printing apparatus, a printing method, or a printed matter generation method permits whether or not a dot is to be formed on a pixel (hereinafter referred to as dot on/off state) to be determined through comparison on a pixel-by-pixel basis of threshold values established in the dither matrix to the tone values of image data; however, it would also be acceptable to determine the dot on/off state by comparing the sum of threshold value and tone value to a fixed value, for example. It would also be acceptable to determine dot on/off state according to tone values, and data created previously on the basis of threshold values, rather than using threshold values directly. Generally speaking, the dither method of the invention may be any method that permits dot on/off state to be determined according the tone values of pixels, and threshold values established at corresponding pixel locations in a dither matrix.
A. One Example of the Configuration of a Printing System:
Embodiments of the present invention will be described below in the following order, for the purpose of providing a clearer understanding of operations and working effects of the present invention.
A. One example of the configuration of a printing system:
B. Method of dither matrix generation in a first embodiment of the present invention:
C. Method of dither matrix generation in a second embodiment of the present invention:
A. One Example of the Configuration of a Printing System:
On the computer 90, an application program 95 runs on a prescribed operating system. The operating system incorporates a video driver 91 and a printer driver 96; print data PD for transfer to the color printer 20 is output from the application program 95 via these drivers. The application program 95 performs the desired processing of images targeted for processing, as well as outputting images to a CRT 21 via the video driver 91.
Within the printer driver 96 are a resolution conversion module 97 for converting the resolution of an input image to the resolution of the printer; a color conversion module 98 for color conversion from RGB to CMYK; a halftone module 99 that, using an error diffusion method and/or the dither matrices M generated in the embodiments to be discussed later, performs halftone process of input tone values and transform them into output tone values representable by forming dots; a print data generating module 100 that uses the halftone data for the purpose of generating print data to be sent to the color printer 20; a color conversion table LUT serving as a basis for color conversion by the color conversion module 98; and a recording rate table DT for determining recording rates of dots of each size, for the halftone process. The printer driver 96 corresponds to a program for implementing the function of generating the print data PD. The program for implementing the functions of the printer driver 96 is provided in a format recorded on a computer-readable recording medium. Examples of such a recording medium are a CD-ROM 126, flexible disk, magneto-optical disk, IC card, ROM cartridge, punch card, printed matter having a bar code or other symbol imprinted thereon, a computer internal memory device (e.g. RAM, ROM, or other memory) or external memory device, or various other computer-readable media.
The plurality of nozzles contained in each nozzle column are respectively lined up at a constant nozzle pitch k·D, in the sub-scanning direction. Here, k is an integer, and D represents pitch equivalent to the print resolution in the sub-scanning direction (also termed “dot pitch”). This will also be referred to herein as “the nozzle pitch being k dots.” The “dot” unit means the dot pitch of the print resolution. Similarly, sub-scan feed distance is also expressed in “dot” units.
In each of the nozzle columns C, Mz, Y, K equipped by each of the two print heads 10A, 10B, the nozzle pitch k is 2. On the other hand, since the two print heads 10A, 10B are disposed at locations shifted from each other by a distance of the nozzle pitch k in a direction perpendicular to the paper feed direction, each color of ink can be ejected on each pixel without dropouts by using the print heads 10A, 10B.
In this way, regarding a common print region, a print head that ejects ink droplets beforehand is called a preceding head; whereas a print head that ejects ink droplets afterwards is called a succeeding head. Here, note that a group of plural dots (dot group) formed by the print head 10A and a group of plural dots (dot group) formed by the print head 10B respectively correspond to “each of a plurality of dot groups” in the scope of claim for patent.
The present invention is implemented by configurations such as generation, employment, and the like of a dither matrix that is attainable of such allocation.
As described above, with a systematic dither process it is possible to actively control dot production conditions by means of the storage locations of the threshold values established in the dither matrix. Accordingly, there is a feature that dot dispersion and other image qualities can be controlled by means of adjusting the settings of the threshold value storage locations. This means, subjecting the dither matrix to optimization processing allows for direct control over numbers of dots to be allocated to the preceding head and the succeeding head.
Such quantification of graininess perception by the human visual faculty makes possible fine-tuned optimization of a dither matrix for the human visual system. Specifically, a Fourier transform can be performed on a dot pattern hypothesized when input tone values have been input to a dither matrix, to arrive at a power spectrum FS; and a graininess evaluation value that can be derived by integrating all input tone values after multiplying the power spectrum FS with the visual spatial frequency characteristic VTF (Formula F2) can be utilized as a evaluation coefficient for the dither matrix. In this example, the aim is to achieve optimization by adjusting threshold value storage locations to minimize the dither matrix evaluation coefficient.
The feature that is common to such dither matrices established in consideration of the characteristics of human visual perception such as the blue noise matrix and the green noise matrix is that, on a printing medium, an average value of components within a specified low frequency range is set small, where the specified low frequency range is a spatial frequency domain within which visual sensitivity of human is at a highest level and ranges from 0.5 cycles per millimeter to 2 cycles per millimeter with a central frequency of 1 cycle per millimeter. For example, the inventors have ascertained that, by configuring a matrix to have such frequency characteristic that the average value of components within the specified low frequency range is smaller than an average value of components within another frequency range, where the another frequency range is a domain within which visual sensitivity of human is reduced to almost zero and ranges from 5 cycles per millimeter to 20 cycles per millimeter with a central frequency of 10 cycles per millimeter, it is possible to reduce granularity in a domain within which visual sensitivity of human is at a high level, thereby effectively improving image quality with a focus on visual sensitivity of human.
B. Method of Dither Matrix Generation in a First Embodiment of the Present Invention:
In step S100, a grouping process is performed. The grouping process is a process of dividing a dither matrix M into groups of elements that respectively correspond to a group of pixels (first pixel group) on which dots are formed by the print head 10A (preceding head) and a groups of pixels (second pixel group) on which dots are formed by the print head 10B (succeeding head).
In step S150, a dot number allocation table is read out. The dot number allocation table is a table that represents numbers of dots to be allocated to be formed by the print head 10A (preceding head) and the print head 10B (succeeding head).
In step S200, a target threshold value determination process is performed. The target threshold value determination process is a process of determining a threshold value that is targeted for determination of storage element. In the present embodiment, the determination of threshold value is performed by selecting threshold values in ascending order, i.e. in order of decreasing tendency to dot formation. Selecting threshold values in order of decreasing tendency to dot formation allows threshold values to have its storage elements determined in order of decreasing conspicuity of dot graininess i.e. level of highlight of regions for which the threshold values are used to control dot arrangements. It is thus possible to provide greater degrees of design freedom to highlight regions having conspicuous dot graininess.
In step S300, a storage element determination process is performed. The storage element determination process is a process of determining an element for storing the target threshold value. A dither matrix is generated by alternately repeating these target threshold value determination process (step S200) and storage element determination process (step S300). Threshold values to be targeted may be all threshold values, or alternatively be a part of threshold values.
In step S320, a candidate storage element selection process is performed. The candidate storage element selection process is a process of selecting each element other than those for which threshold values to be stored are already determined (in the example of
In step S330, a dot that corresponds to the candidate storage element is made on. The process is performed in such a way that adds the dot to the group of dots that were made on as dots corresponding to the already determined threshold values in step S310.
In step S340, an evaluation value determination process is performed. In the present embodiment, the evaluation value determination process is a process of calculating an evaluation value based on an evaluation value calculation formula shown in
The first term calculates a level of consistency with the target number of dots to be made on as a sum of squares of differences between the target numbers of dots to be made on Td1, Td2 read from the dot number allocation table Dn (
The second term calculates a graininess index Ga by using all pixels as the target of evaluation. In the present embodiment, the graininess index Ga is calculated by using the formulas F1, F2 shown in
Here, note that weighting coefficients Wd, Wa are values that represent assignments of weights to the first and second terms, respectively. Specifically, in case where greater importance is given to the consistency with the target numbers of dots to be made on, the weighting coefficient Wd may be made larger; whereas in case where greater importance is given to the graininess, the weighting coefficient Wa may be made larger.
In step S350, the currently calculated evaluation value is compared with a previously calculated evaluation value (stored in buffer not shown). As a result of comparison, if the currently calculated evaluation value is smaller (more preferable), then the calculated evaluation value is stored (updated) in the buffer in association with the candidate storage element, and the current candidate storage element is tentatively determined as the storage element (step S360).
Such a process is performed for every candidate element, and the candidate storage element stored in the buffer in the ending is determined as the storage element (step S370). Furthermore, such a process is performed for every threshold value or for every threshold value within a predetermined range, and the generation of dither matrix is thus complete (step S400,
As described above, in the first embodiment a dither matrix M can be generated that is configured to allocate appropriate numbers of dots to the preceding head and the succeeding head based on the dot number allocation table Dn that stores numbers of dots to be allocated to be formed by the preceding head and numbers of dots to be allocated to be formed by the succeeding head. The use of such a dither matrix allows for direct control over numbers of dots to be allocated to the preceding head and the succeeding head so as to reduce flowage of ink on the printing medium P, thereby attaining printing with improved image quality.
Note that, although the consistency with the target number of dots to be made on is calculated as the evaluation value for optimizing the allocation of numbers of dots in the present embodiment, more simplified method based on the dot number allocation table Dn may be employed as well. For example, in the range of relatively small tone values in the dot number allocation table Dn, the number of dots to be formed on the first pixel group is increased by 2 as the number of dots to be formed on the second pixel group is increased by 1. It is thus possible to exercise ingenuity on the selection order of candidate storage element to successively select two candidates from the first pixel group and select only one candidate from the second pixel group in an alternating manner, so as to generate a dither matrix only through the calculation of graininess index. The same applies to the range of relatively larger tone values only if the first pixel group and the second pixel group are reversed. In this way, adjusting the selection ratio of candidate storage elements can also ensure the consistency with the target number of dots to be made on.
Note that as the evaluation value for representing graininess, not only the graininess index but RMS granularity may be used as well. The RMS granularity is obtained by a process of subjecting the dot density matrix to a low pass filtering process and then calculating its standard deviation. The calculation of RMS granularity can be performed by using, for example, a calculation formula shown in
C. Method of Dither Matrix Generation in a Second Embodiment of the Present Invention:
The calculation formula of the second embodiment (
As can be seen from
However, the generation of low-frequency components in the preceding head dot pattern Dp1 and the succeeding head dot pattern Dp2 will serve to make blurring and/or aggregation of ink due to flowage of ink to become evident in low-frequency ranges within which visual sensitivity of human are at high levels. Furthermore, if the preceding head dot pattern Dp1 and the succeeding head dot pattern Dp2 have different ink densities from each other as described above, then one of the dot patterns will become more conspicuous than the other so that graininess in the low-frequency ranges caused by the one dot pattern will lead to degradation of image quality.
In view of the foregoing, the inventors of the present invention came up with an idea of reducing graininess indices Gg1, Gg2 of respective pixel groups in order to prevent blurring and/or aggregation of ink due to flowage of ink from becoming evident in low-frequency ranges within which visual sensitivity of human are at high levels.
As above, the second embodiment has an advantage of reducing degradation of image quality that may be caused by the organic relationship between unevenness in low-frequency ranges due to dot patterns respectively generated by the preceding head and the succeeding head and blurring and/or aggregation of ink due to flowage of ink, thereby further improving image quality.
D. Modifications:
Although the present invention has been described above in terms of several embodiments, the present invention is not restricted to these embodiments, but may be implemented in various modes without departing from the scope of the present invention. For example, the present invention allows for optimization of dither matrix as described in the following modifications.
D-1. Although in the above embodiments, the present invention has been disclosed in terms of applications where the printing apparatus employs two print heads; however, the present invention would also be applicable to applications where, for example, four print heads are employed for printing as shown in a first modification (
D-2. Although in the above embodiments, the present invention is applied to a line printer that performs printing only by means of paper feed; however, the present invention is also applicable to cases where printing is performed by forming dots while performing main scan of print head and sub-scan of printing medium.
D-3. Although in the above embodiments, the preceding head is set to eject a greater amount of ink than the succeeding head does; however, depending on the printing environment (type of printing medium and/or characteristic of ink), there may also be other cases where flowage of ink can be reduced more in a reversed condition. In general, it is sufficient for the halftone processing of the present invention if it is configured such that state of dot formation is determined by using a specific dither matrix in which a number of dots to be allocated to each of a plurality of dot groups is determined according to a dot formation order of each of the plurality of dot groups in a common print region.
Note that, although using pigment as the color material and a glossy paper as the printing medium has been proven to be the optimum printing environment that makes the effect of setting the amount of ink ejection by the preceding head larger than the amount of ink ejection by the succeeding head prominent; however, it is also possible to apply the present invention to various printing environments other than this by ascertaining them in experiments performed from the viewpoints described above.
D-4. Although in the above embodiments and modifications, optimality of a dither matrix is evaluated based on graininess index or RMS granularity; however, it would also be acceptable to determine each storage element such that a target threshold value is stored in an element corresponding to a pixel in a region of nondense dot formation (potential method). Furthermore, it would also be acceptable to evaluate optimality of a dither matrix by subjecting dot patterns to Fourier transformation as well as by using a VTF function. Specifically, it would be acceptable to apply an evaluation scale used by Dooley et al. of Xerox Corporation (GS value: Grainess scale) to dot patterns and evaluate optimality of a dither matrix by using the GS value. Here, the GS value is a graininess evaluation value that can be obtained by: digitizing dot patterns by performing a predetermined process including two-dimensional Fourier transformation; performing a filtering process of multiplying them by a visual spatial frequency characteristic VTF; and integrating them thereafter (reference: Fine Imaging and Hardcopy, Corona Publishing Co., Ltd, Japan, edited by The Society of Photographic Science and Technology of Japan, The Imaging Society of Japan, and Committee of Joint Publishing, P534). Note that the former has an advantage of eliminating the need for any complicated calculation such as Fourier transformation.
D-5. Although in the above embodiments, the evaluation process is performed for each storage element for storing a threshold value; however, the present invention would also be applicable to cases where, for example, storage elements for storing a plurality of threshold values are determined simultaneously at one time. Specifically, for example, in case where storage elements for first to sixth threshold values have been determined and storage elements for seventh and eighth threshold values are now to be determined in the above embodiments, storage elements for the seventh and eighth threshold values may be determined based on an evaluation value associated with the time a dot has been added to a storage element for the seventh threshold value and an evaluation value associated with the time dots have respectively been added to storage elements for the seventh and eighth threshold values, or alternatively, only a storage element for the seventh threshold value may be determined.
D-6. In the above embodiments, the dither matrix is generated by determining each target threshold value by: selecting threshold values in ascending order i.e. in order of decreasing tendency to dot formation; and then, based on a matrix evaluation value that represents correlation with a predetermined target state and is calculated based on state of dot formation under the assumption that the target threshold value thus determined is stored in each element, determining a storage element for the target threshold value out of the plurality of candidate storage elements. However, such a method is not restrictive, and it would also be acceptable to select threshold values in descending order. However, the method used in the above embodiments is advantageous in that greater degrees of design freedom can be provided to highlight regions having conspicuous dot graininess.
Furthermore, threshold values are not necessarily determined in sequence, but it would also be acceptable to generate a dither matrix by preparing a dither matrix as initial state, and determining each element for storing each threshold value while replacing a part of a plurality of threshold values stored in respective elements with different threshold value(s) stored in other element(s). In this case, an evaluation function can be established by including difference of dot density formed in each of predetermined element groups into the evaluation function (punishment function). Note that a dot density matrix, which works as a criterion of evaluation, may be generated based on a minimum input tone value that allows the target threshold value to have a dot formed, or alternatively, may be generated based on an input tone value equal to or greater than the minimum input tone value.
Note that within a range of tone values equal to or greater than a predetermined first tone value and equal to or less than a predetermined second tone value, the dither matrix may also be configured such that a number of dots of each of the plurality of dot groups gets closer to each of the numbers of dots to be allocated.
Since there is tendency of ink flowage and conspicuous dot granularity at such tone values, configuring the dither matrix in this way allows for effective reduction of blurring while keeping restraints on granularity of dots.
The dither matrix may also be configured to store each threshold value in each element such that each of the plurality of dot groups has a predetermined common characteristic.
In this way, since blurring and/or aggregation of ink caused by ink flowage occurred in low-frequency ranges can be reduced in each of the plurality of dot groups, so that a prominent effect can be produced. Furthermore, since the preceding head dot pattern Dp1 and the succeeding head dot pattern Dp2 have different ink densities from each other in the present invention, one of the dot patterns will become more conspicuous than the other so that graininess in the low-frequency ranges caused by the one dot pattern will lead to degradation of image quality.
Finally, the Japanese patent application (JP2006-316975 filed on Nov. 24, 2006) on which the priority claim of the present application is based is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2006-316975 | Nov 2006 | JP | national |