Claims
- 1. In a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating said hot pool and said cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on said lower pressure sodium cold pool and an outlet to a reactor core; said reactor core for heating the sodium and discharging the sodium to said reactor hot pool; a heat exchanger for receiving sodium from said hot pool, and removing heat from the sodium and discharging the sodium to said lower pressure cold pool; the improvement across said reactor vessel liner comprising: a jet pump having a venturi installed across said reactor vessel liner, said jet pump having a lower inlet from said reactor vessel cold pool across said reactor vessel liner and an upper outlet to said reactor vessel hot pool;
- a pumping fluid inlet from the high pressure discharge of said main sodium reactor coolant pumps, said inlet having a high velocity outflow to said jet pump venturi whereby upon normal operation of said main sodium reactor coolant pumps, the jet pump maintains a pressure differential from said lower pressure cold pool to said hot pool and upon failure of said main sodium reactor coolant pump, the jet pump permits immediate sodium backflow from the hot pool to the lower pressure cold pool across the reactor vessel liner flow gap to establish immediate cooling of residual reactor heat through the reactor vessel wall.
- 2. The invention of claim 1 and wherein said jet pump outlet is parallel to and well below the surface of liquid sodium in said reactor.
- 3. The invention of claim 1 and wherein said sodium cooled reactor includes a plurality of said jet pumps.
- 4. The invention of claim 3 and wherein said sodium cooled reactor has a plurality of main sodium reactor coolant pumps and each of said pumps has a plurality of said jet pumps.
- 5. A sodium cooled reactor comprising in combination: a reactor hot pool; a lower pressure reactor cold pool; a reactor vessel liner separating said hot pool and said cold pool interior of a reactor vessel and immediate said reactor vessel side walls; a main sodium reactor coolant pump having a suction on said low pressure cold pool and an outlet;
- a reactor core for heating sodium discharged from said pumps, said reactor core having an inlet communicated to the outlet of said pump and an outlet to said reactor hot pools; a heat exchanger for receiving sodium from said hot pool, removing heat from the sodium and discharging the sodium to said cold pool; a jet pump having a venturi installed across said reactor vessel liner, said jet pump having a lower inlet from said reactor vessel cold pool and an upper outlet to said reactor vessel hot pool; a pumping jet having an inlet from the high pressure discharge of said main sodium reactor coolant pump and having an outflow to the jet pump venturi whereby upon operation of said main sodium reactor coolant pumps, the jet pump maintains a pressure differential from said lower pressure cold pool to said hot pool, and upon -oss of normal heat removal paths and associated shutdown of said main sodium reactor coolant pumps, the jet pump permits immediate backflow from the hot pool to the lower pressure cold pool across the reactor vessel flow gap to establish an immediate sodium cooling flow path for residual reactor heat removal through the reactor vessel.
- 6. The invention of claim 5 and wherein said jet pump discharge to said reactor vessel hot pools is parallel to the surface of said reactor vessel hot pool.
- 7. The invention of claim 5 and including a plurality of jet pumps connected to said sodium cooled reactor.
Government Interests
Reference to government related application United States has rights in this invention under Contract No. DE-AC06-85NE37937 in 24-BR-04901.
US Referenced Citations (12)