1. Field of the Invention
The invention relates to a control panel for a measuring device with a housing and at least one control and inspection window, and more particularly, to a control panel for a measuring device having at least one finger-operable optical key and at least one finger-operable mechanical key, wherein the at least one finger-operable optical key is operable through the control and inspection window using a finger.
2. Description of Related Art
Control panels for measuring devices have been known for decades in very different configurations. A window provided in the measuring device housing is usually only an inspection window such that measured values can typically be read on the measuring device through the inspection window. Settings of the measuring device e.g., measurement range, parameterization and calibration data, can also be displayed through the inspection window. Keys are provided in the majority of measuring devices for the purpose of control and the keys can be operated without opening the housing of the measuring device. For example, keys can be provided in the form of membrane keys on the outside of the housing.
Additionally, keys can be provided inside the housing of the measuring device. In particular, keys are generally provided inside the housing in instances in which the measuring device is not operated under laboratory conditions, but rather in an industrial process environment under occasionally harsh environmental conditions or in areas subject to explosion hazards. Consequently, in these instances, the measuring device can usually only be controlled when the housing of the measuring device is opened.
However, if it is intended to be possible to control the measuring device when the housing is closed without the control keys penetrating through the housing, then it is possible to use a control panel with at least one finger-operable optical key having a transmitting element and a receiving element. A finger-operable optical key uses the transmitting element to emit electromagnetic radiation, often in the infrared range, and the receiving element for detecting at least electromagnetic radiation of the type emitted by the transmitting element. The method of operation of such an optical key is known and based on the principal that an operating object which approaches the optical key reflects the electromagnetic radiation emitted by the transmitting element to different extents. The result of the reflected radiation is applied to the transmitting element with different intensities depending on the distance between the operating object and the optical key. The reflected radiation detected by the receiving element is then used to detect the state “operate.” In this instance, the optical keys are arranged with the control panel behind the inspection window of the measuring device housing in such a manner that finger operation of the optical key can be detected in a particularly effective manner if the control finger comes to rest on the control and inspection window above the optical key. In particular, there is sufficient reflection of the electromagnetic radiation emitted by the transmitting element at this distance to activate the state “operated.”
However, the disadvantage of the finger-operable optical key is that it is no longer reliably possible to control a measuring device provided with the previously known control panel when the housing of the measuring device is open and the control panel is exposed. For example, this situation occurs when servicing the measuring device. Specifically, this situation occurs when there is an increased setting need under certain circumstances and a comparatively large number of data items have to be input via the keys. In this instance, the distance between the optical key and the control finger, which is otherwise defined by the control and inspection window, is no longer defined. Thus, intentional operation of the optical key can no longer be reliably distinguished from unintentional influencing of the optical key.
Based on the above-mentioned problems of the known art, it is a primary object of the present invention to provide a control panel for a measuring device of the type described above that allows reliable and fast control even when the control and inspection window are open and the control panel is exposed. Specifically, when a defined control distance for the optical key is no longer ensured.
The above primary object is achieved by providing at least one corresponding finger-operable mechanical key in addition to the finger-operable optical key. In particular, the control panel is provided with at least one corresponding finger-operable mechanical key in addition to the finger-operable optical key.
Providing at least one corresponding finger-operable mechanical key ensures that a control and inspection window, which is important for operating the optical key, is not necessary because it is possible to operate the at least one corresponding finger-operable mechanical key corresponding to the optical key. A mechanical key corresponding to the optical key has a functionality comparable to that of the optical key. For example, a comparable event is triggered by operating a mechanical key corresponding to an optical key. It is advantageous that, after the control and inspection window of the measuring device housing has been opened or removed, the mechanical key can be operated and it is no longer necessary to resort to the optical key. This allows for quick and reliable control of the measuring device having the control panel.
In an aspect of the invention, the optical key and the mechanical key can be arranged at a distance from one another. For example, the mechanical keys are arranged on the control panel in such a manner that they are not visible to an operator through a closed control and inspection window of the measuring device housing. Specifically, the mechanical keys appear only after the housing has been opened.
An alternative aspect of the invention, provides for the mechanical keys to be arranged in an immediate operating area of the optical keys. When it is stated that, the additional mechanical key is provided in the “immediate operating area” of the finger-operable optical key, this means that the optical key and the corresponding mechanical key are practically not controllable independently of one another during use. By way of non-limiting example, the optical key and the corresponding mechanical key lie together in the range of one square centimeter or in the range of a few square centimeters. In particular, the optical key and the mechanical key are arranged with respect to one another in such a manner that during the process of operating the mechanical key using a finger, the optical key is also unavoidably operated using the finger. During the finger operation process, the operating finger approaches the mechanical key and must naturally cross the space immediately above the optical key. If the corresponding optical key has its detection area precisely there, then operation of the optical key when operating the mechanical key cannot be quite deliberately avoided.
According to another aspect of the invention, a keypad is provided with marks on the control panel. The optical key and the corresponding mechanical key are arranged within the marked up common keypad. This arrangement makes it possible for the operator of the control panel to discern where operation is necessary in order to operate the desired key irrespective of whether it is the optical key or the mechanical key corresponding to the optical key.
According to another aspect of the invention, the optical key and the corresponding mechanical key are arranged beside one another in the control panel. This arrangement enables a particularly simple implementation of the control panel using standard components since the optical key and the mechanical key do not have to be implemented in a structural unit.
According to another aspect of the invention, the optical key is provided to be at least partially arranged in the mechanical key. In particular, the transmitting element of the optical key or the receiving element of the optical key is arranged in the mechanical key. This arrangement makes it possible to achieve, in a very reliable manner, a situation in which the finger-operable optical key and the additional finger-operable mechanical key corresponding to the latter are implemented in the form of a structural and also functional unit. Therefore, this arrangement makes it possible for the optical key to be unavoidably operated during the process of operating the mechanical key using the finger.
Accordingly to another aspect of the invention, the transmitting element and the receiving element of the optical key are oriented with respect to one another such that when operating the mechanical key using a finger, particularly when the control finger rests on the mechanical key, virtually no reflection of the radiation emitted by the transmitting element of the optical key into the receiving element of the optical key is possible. The term “virtually no reflection” means that less than 10% of the maximum reflection passes from the transmitting element into the receiving element when the control finger rests on the key.
Considerably smaller reflection portions are also possible if the transmitting element and/or the receiving element of the optical key is/are embedded in an optically dense holder in such a manner that, when the control finger rests on the key, the only optical opening in the holder for the transmitting element or the receiving element is optically closed. This arrangement actually completely precludes reflection.
According to another aspect of the invention, at least one evaluation unit is provided for the purpose of detecting the operation of the optical key and of the mechanical key. The operation of the keys can be detected using a single evaluation unit but may also be detected using a plurality of evaluation units. In an alternative aspect of the control panel, the evaluation unit is set up in such a manner that it deactivates the optical key as soon as the mechanical key has been operated and the housing of the measuring device is open. If a plurality of finger-operable optical keys are implemented with a plurality of corresponding finger-operable mechanical keys, the evaluation unit is preferably configured in such a manner that all optical keys are deactivated when a mechanical key has been operated. This arrangement of the evaluation unit of the control panel makes it possible to prevent incorrect operation of the control panel.
Potential incorrect operation results solely from the fact that, when operating the mechanical key, the corresponding optical key is also always triggered at the same time or shortly beforehand, and undesirable double triggering would be detected. The optical key can be deactivated by different alternative measures or measures which can be carried out together; the transmitting element can be switched off and/or the circuitry of the receiving element can be switched to a defined state, which is independent of the external influencing state or the evaluation of the received signal. An evaluation unit other than that for deactivating/activating the optical keys is preferably provided for detecting the operation of the keys.
In this context, provision is made for the deactivated optical key to be automatically activated again by the evaluation unit after a defined prescribed time and/or for the deactivated optical key to be activated again by an operating pattern of the corresponding mechanical key, e.g., by repeatedly operating a mechanical key within a short period of time. In addition or alternatively, it is also possible, when there are a plurality of optical and corresponding mechanical keys, for the deactivated optical keys to be activated again by the evaluation unit by the combined simultaneous operation of at least two mechanical keys.
According to another aspect of the invention, the evaluation unit can be provided to evaluate the intensity of the radiation received by the receiving element. In particular, the evaluation unit can be provided to evaluate the temporal profile of the intensity, preferably by scanning the receiving element in a fixed time grid. This makes it possible not only to determine the instantaneous absolute influencing state of the receiving element but also to detect an operating movement with the result that intentional operation of the optical key can be distinguished from “wiping past” the optical key, for example.
According to another aspect of the invention, the evaluation unit can be provided to declare the optical key to be “operated” when it detects that the intensity of the radiation received by the receiving element remains the same over a predefined period of time e.g., provides a corresponding operating signal. The evaluation unit preferably detects not only whether the intensity remains the same for a certain period of time but also whether the intensity is in a predefined range. Thus, additionally making it possible to avoid incorrect detection of the operating state, for example, as a result of external radiated interference.
The control panel according to the invention also has the advantage that it provides a “quick” control option using the mechanical keys corresponding to the optical keys because the optical keys react in a relatively slow manner in comparison with the mechanical keys. This is due to the fact that, as discussed above, the evaluation of the received signal provided by the receiving element requires a considerable amount of signal processing in order to reliably generate a detection signal.
The present invention is described in the detailed description which follows, with reference to the accompany drawings which show, by way of non-limiting examples, exemplary embodiments of the present invention.
In
In the embodiment of the control panel 1 illustrated in
The control panels 1 illustrated in
In
In
In the exemplary embodiments illustrated in
In
In contrast, in the exemplary embodiment according to
The exemplary embodiment according to
The evaluation unit 10 is implemented, here, using a programmable microcontroller, solutions with Field-programmable Gate Array (FPGA) are possible as well. The evaluation unit 10 is configured to detect operation of the described one finger-operable optical key 2 and the shown one finger-operable mechanical key 6. The evaluation unit 10 further deactivates the at least one finger-operable optical key 2 as soon as the finger-operable mechanical key 6 is operated.
If a plurality of finger-operable optical keys 2 exists as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 033 470 | Aug 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5814735 | Kurisaki et al. | Sep 1998 | A |
6234651 | Kodama et al. | May 2001 | B1 |
6875977 | Wolter et al. | Apr 2005 | B2 |
7765045 | Yoshida et al. | Jul 2010 | B2 |
8058577 | Tissot | Nov 2011 | B2 |
20060047386 | Kanevsky et al. | Mar 2006 | A1 |
20060066587 | Morohoshi et al. | Mar 2006 | A1 |
20070214937 | Stewart | Sep 2007 | A1 |
20090051671 | Konstas | Feb 2009 | A1 |
20090167723 | Kwong et al. | Jul 2009 | A1 |
20090226179 | Yeh | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
199 46 471 | Mar 2001 | DE |
10 2009 013 440 | Sep 2009 | DE |
11-339585 | Dec 1999 | JP |
2008-146822 | Jun 2008 | JP |
2008-232707 | Oct 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20120032822 A1 | Feb 2012 | US |