Control system and method for a solid fuel combustion appliance

Information

  • Patent Grant
  • 9803862
  • Patent Number
    9,803,862
  • Date Filed
    Monday, May 23, 2011
    13 years ago
  • Date Issued
    Tuesday, October 31, 2017
    7 years ago
  • Inventors
    • Masen; Mark (Leonard, MI, US)
    • Manoulian; Alex (New Boston, MI, US)
  • Original Assignees
  • Examiners
    • Savani; Avinash
    • Blum; George R
    Agents
    • Howard & Howard Attorneys PLLC
Abstract
A control system for a solid fuel combustion appliance, e.g., a wood burning stove, includes a temperature sensor for sensing an output temperature of the appliance. A controller receives the output temperature and controls a damper associated with air flow through the stove to maintain a predetermined temperature. The system also includes a detector that senses certain conditions of the solid fuel, e.g., wood, that is burned by the stove. When additional fuel is added to the appliance, the system temporarily encourages initial combustion of the new fuel, before returning to maintaining the predetermined temperature.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to computerized control systems and methods for solid fuel combustion appliances, e.g., wood stoves.


2. Description of the Related Art


Wood burning stoves have a long and distinguished history for providing heating for houses and enclosures of every sort. The efficiency of such stoves has been steadily increasing in recent years, especially with the addition of catalysts to lower the burning temperature of the solid fuel. However, there still remains the possibility of higher efficiency and greater temperature control over such stoves.


BRIEF SUMMARY

The application describes a control system for a solid fuel combustion appliance. The appliance includes a housing defining a combustion chamber and an inlet, an outlet, and an opening, each in fluidic communication with the combustion chamber. The appliance also includes an inlet damper movable between a plurality of positions for controlling airflow into the inlet. The system includes a drive mechanism operatively connected to the inlet damper for controlling the position of the inlet damper. An exhaust temperature sensor measures the temperature of air exhausted through the outlet. The system also includes a detector for signaling a certain condition of the solid fuel in the combustion chamber. A controller is in communication with the drive mechanism, the exhaust temperature sensor, and the detector. The controller controls the drive mechanism to position the inlet damper to maintain a predetermined temperature of airflow through the outlet. The controller also controls the drive mechanism to position the inlet damper at a predetermined position for a predetermined period of time in response to the detector signaling the certain condition of the solid fuel in the combustion chamber regardless of the predetermined temperature.


As such, the control system regulates the temperature output of the stove utilizing precise control over the inlet damper. Furthermore, when the user adds new fuel, e.g., wood, to the combustion chamber, the control system automatically controls the inlet damper to ensure that the new fuel is quickly ignited so that its rate of burn can also be precisely controlled.





BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the disclosed subject matter will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a perspective view of an exemplary solid fuel combustion appliance for use with the control system and method;



FIG. 2 is an cross-sectional view of an exemplary solid fuel combustion appliance; and



FIG. 3 is an electrical block diagram of the control system.





DETAILED DESCRIPTION

Referring to the Figures, wherein like numerals indicate like parts throughout the several views, a control system 10 is shown herein.


The control system 10 is preferably used in conjunction with a solid fuel combustion appliance 12, as shown in FIG. 1. The appliance 12 may be alternatively referred to as a stove, a fireplace, a burner, or other name as appreciated by those skilled in the art. The solid fuel (not shown) burned with the appliance 12 may be wood, biomass, coal, charcoal, or other solid known to those skilled in the art. The solid fuel may be in log, pellet, chip, powder, briquette, or other suitable form known to those skilled in the art and typically dependent on the specific design and configuration of the appliance 12.


Referring now to FIG. 2, the appliance 12 includes a housing 14 defining a combustion chamber 16. The combustion chamber 16 may also be referred to by those skilled in the art as a “firebox”. The housing 14 defines an inlet 18 and an outlet 20, each in fluidic communication with the combustion chamber 16. The inlet 18 supplies air to the combustion chamber 16 while the outlet 20 serves to exhaust combustion gases. In the illustrated embodiment, a chimney 21 is fluidically connected to the outlet 20 to exhaust the combustion gases to atmosphere, outside of a structure (not shown) where the appliance 12 is located, as is well known to those skilled in the art.


The housing 14 may further define an opening 22 in fluidic communication with the combustion chamber 16. The opening 22 may be utilized to add the solid fuel to the combustion chamber 16. In the illustrated embodiment, as shown in FIG. 1, a door 24 is operatively connected to the housing 14. For instance, the door 24 may be connected to the housing 14 with hinges (not shown). The door 24 is preferably positionable in a plurality of positions including a closed position to block the opening 22. The opening 22 may be completely or at least partially blocked by the door 24 depending on the design and configuration of the appliance 12.


In one embodiment, the door 24 is manually opened by a user for adding solid fuel to the combustion chamber 16. In other embodiments, the solid fuel may be added automatically. For instance, an auger (not shown) may feed the solid fuel, especially in pellet form, through the opening 22 and to the combustion chamber 16.


Referring again to FIG. 2, the appliance 12 further includes an inlet damper 26. The inlet damper 26 is in fluidic communication with the inlet 18 and movable between a plurality of positions for controlling the flow of air into the inlet 18 and, as such, controlling the flow of air into the combustion chamber 16. The appliance 12 may also include an outlet damper (not shown) for closing off the outlet 20, e.g., when the appliance 12 is not in use.


The appliance 12 may also include a catalyst 28 fluidically disposed between the combustion chamber 16 and the outlet 20. As such, combustion gases pass through the catalyst 28 prior to being exhausted through the outlet. Those skilled in the art realized that the catalyst 28, often referred to as a catalytic converter, changes the rate of the chemical reaction, which, in this case, is the combustion or burning of the solid fuel. In particular, the catalyst 28 of the combustion appliance 12 lowers the temperature at which smoke can catch fire. The appliance 12 may further include a catalyst damper 30 to allow the combustion gases to pass through the catalyst 28 or to bypass the catalyst 28.


The appliance 12 may also include a fan 32 for blowing air from the combustion chamber to a space outside the housing 14. That is, the fan 32 may blow heated air from inside the housing 14 to outside the housing 14. Control of the fan 32 will be described in further detail hereafter.


Referring now to FIG. 3, the control system 10 includes a controller 40. The controller 40 controls various aspects of the combustion performed by the solid fuel combustion appliance 12 as described herein. In the illustrated embodiment, the controller 40 is programmable and executes a software program. The controller 40 may be implemented as a microcontroller, microprocessor, application specific integrated circuit, or other suitable device or combination of devices capable of performing the functions described herein. The control system 10 may also include an analog-to-digital converter (“ADC”) and a digital-to-analog converter (“DAC”) for converting signals as is well known to those skilled in the art. The ADC and DAC may be integrated with the controller 40 or separate therefrom.


The control system 10 includes at least one temperature sensor 42. The at least one temperature sensor 42 may be implemented as a thermocouple, a resistive temperature detector (“RTD”), infrared thermometer, or other suitable device as appreciated by those skilled in the art. The at least one temperature sensor 42 is in communication with the controller 40. Typically, the at least one temperature sensor 42 is electrically connected to the ADC which produces a digital value corresponding to the measured temperature to the controller 40. Of course, other techniques for transferring temperature data from the temperature sensor 42 to the controller 40 are realized by those skilled in the art.


In one embodiment, the at least one temperature sensor 42 is implemented as an exhaust temperature sensor 42a. The exhaust temperature sensor 42a measures the temperature of air exhausted through the outlet 20. In the illustrated embodiment, the exhaust temperature sensor 42a is disposed in the chimney 21 adjacent the outlet 20. However, other suitable locations for positioning the exhaust temperature sensor 42a will be realized by those skilled in the art.


In another embodiment, the at least one temperature sensor 42 is implemented as the exhaust temperature sensor 42a and a catalyst temperature sensor 42b. The catalyst temperature sensor 42b measures the temperature of air passing through the catalyst 28. Accordingly, the catalyst temperature sensors 42b is disposed adjacent to the catalyst 28 or integrated within the catalyst 28.


The control system 10 also includes a drive mechanism 44 operatively connected to the inlet damper 26. The drive mechanism 44 controls the position of the inlet damper 26. As just one example, the drive mechanism 44 may control the position of the inlet damper 26 at five degree increments (e.g., 0% open, 5% open, 10% open, . . . 95% open, 100% open). The drive mechanism 44 is preferably a motor (not separately numbered) having a mechanical linkage (not shown) to the damper 26. However, other devices may be implemented as the drive mechanism 44. The drive mechanism 44 is in communication with the controller 40 such that the controller 40 issues commands and/or signals to the drive mechanism 44 for controlling the position of the inlet damper 26.


The control system 10 may further include a detector 46 for signaling a certain condition of the solid fuel in the combustion chamber 16. The detector 46 is in communication with the controller 40 such that the controller 40 receives a signal when the certain condition of the solid fuel is ascertained. In the illustrated embodiment, the certain condition is the addition of solid fuel.


The detector 46 of the illustrated embodiment is implemented as a switch 48 electrically connected to the controller 40. In one technique, the switch 48 is coupled to the housing 14 to operatively engage the door 24 to signal when the door 24 has been opened and reclosed. The opening and reclosing of the door 24 thus signals the addition of solid fuel to the combustion chamber 16. In another technique, the switch 48 is disposed in a position allowing the user to manually depress the switch 48, thus signaling the addition of solid fuel to the combustion chamber 16. In yet another technique, the switch 48 is operatively connected to the auger to sense when the auger is adding solid fuel to the combustion chamber 16.


The detector 46 may be implemented with devices other than the switch 48 in other embodiments. In one example, an optical device (not shown) may be utilized to sense when the door 24 is opened and reclose or when additional solid fuel is added to the combustion chamber 16. In another example, a capacitive sensor (not shown) may be implemented to sense the amount of solid fuel in the combustion chamber 16 and thus determine whether additional sold fuel has been added.


The controller 40 may also be in communication with the fan 32 for controlling operation of the fan 32. For example, the controller 40 may operate a relay (not shown) for turning the fan 32 on and off. Alternatively, the controller 40 may be electrically connected to a motor (not shown) of the fan 32 to more precisely control the speed of the fan 32, and thus the airflow produced by the fan 32.


The control system 10 of the illustrated embodiment further includes an annunciator 50 in communication with the controller 40. The annunciator 50 may be implemented as any device capable of providing information to the user. For instance, the annunciator 50 may be implemented as a light, a display, and/or a speaker. Those skilled in the art will realize other techniques to implement the annunciator 50.


The control system 10 may further include a remote control device 52 in communication with the controller 40 such that commands and/or data may be sent back-and-forth between the remote control device 52 and the controller 40. The communications between the controller 40 and the remote control device 52 may be implemented via radio frequency (RF) signals, optical signals (e.g., infrared or ultraviolet), or a combination of RF and optical signals. Those skilled in the art realize other techniques for facilitating communications between the remote control device 52 and the controller 40.


The remote control device 52 allows the user to control operation of the controller 40 and to receive information from the controller 40. The remote control device 52 of the illustrated embodiment includes a plurality of pushbuttons 54 for receiving input from the user and a display 56 for providing information to the user. Of course, other techniques for receiving input from the user and providing information to the user may alternatively be implemented.


In addition to or as a substitute to the remote control device 52, the control system 10 may also include pushbuttons, switches, keypads, or other controls (none of which are shown) electrically connected to the controller 40. For instance, DIP switches (not shown) may be mounted on a printed circuit board (not shown) which also supports the controller 40.


In the illustrated embodiment, the controller 40 operates an automatic mode or a manual mode. In the automatic mode, the controller 40 generally attempts to control for output temperature of the combustion. In the illustrated embodiment, the mode of the controller 40 is controlled utilizing the remote control device 52.


In one aspect of automatic mode, the controller 40 controls the drive mechanism 44 to position the inlet damper 26 to maintain a predetermined temperature of airflow through the outlet 20. The predetermined temperature may actually be a range of temperatures. For instance, in one implementation, the predetermined temperature may range from 260° C. to 280° C. As such, the controller 40 may incrementally close the inlet damper 26 as the temperature rises and approaches or exceeds 280° C. to reduce the amount of air, and consequently oxygen, that is available to the fire. Likewise, the controller 40 may incrementally open the inlet damper 26 as the temperature falls and approaches or passes 260° C. The control of the temperature of airflow through the outlet 20 may be implemented with a proportional-integral (PI) or proportional-integral-derivative (PID) techniques, or other suitable techniques.


When additional solid fuel is added to the combustion chamber 16, it is advantageous to provide for maximum airflow to the combustion chamber 16 in order to fully ignite and envelop the additional solid fuel. As such, in automatic mode, the controller 40 preferably reacts to the certain condition of the solid fuel sensed by the detector 46. Specifically, the controller 40 does not strictly control for temperature when new solid fuel is added to the combustion chamber 16. Instead, in response to the certain condition of the solid fuel, the controller 40 controls the drive mechanism 44 to position the inlet damper 26 at a predetermined position for a predetermined period of time regardless of the predetermined temperature. In the illustrated embodiment, the controller 40 controls the drive mechanism 44 to position the inlet damper 26 at a fully open position for about one minute. After the predetermined period of time has expired, the controller 40 returns to controlling for the predetermined temperature of airflow through the outlet 20.


The controller 40 may also provide for other control techniques in automatic mode. In another aspect of the automatic mode, the controller 40 controls the drive mechanism 44 based on temperature of the room, i.e., the area outside of the appliance 12 itself. This is accomplished with a thermostat (not shown) or other device in communication with the controller 40. Furthermore, the controller 40 may also provide for different conditions of the solid fuel. For instance, the controller 40 may include a “wet wood” automatic mode. In this mode, the controller 40 will control for a higher temperature output due to the wet nature of the solid fuel.


The predetermined temperature of airflow may be controlled by the user. For instance, in a “long-burn” automatic mode, the predetermined temperature is set very low, but still high enough to support combustion. In another instance, in a “high output” automatic mode, the predetermined temperature is at or near a maximum safe operating temperature.


In the manual mode, the user may control some or all of the control elements of the system 10 manually. In the illustrated embodiment, the user may utilize the remote control device 52 to manually open and close the inlet damper to maintain control over the temperature output from the appliance 12.


In the illustrated embodiment, the controller 40 receives both the temperature of the air passing through the outlet 20 and the temperature of the air passing through the catalyst 28. By analyzing these two temperatures, the controller 40 determines when the solid fuel is expiring. Specifically, when both temperatures fall by a predetermined amount for a predetermined period of time, the controller 40 ascertains that the solid fuel is near the end of its combustible life. In response to the solid fuel expiring, the controller 40 communicates the expiration via the annunciator 50. For instance, in one embodiment, the controller 40 may activate an LED (not shown) affixed to the housing


The present invention has been described herein in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the invention are possible in light of the above teachings. The invention may be practiced otherwise than as specifically described within the scope of the appended claims.

Claims
  • 1. A control system for a solid fuel combustion appliance, the appliance including a housing defining a combustion chamber, the housing defining an inlet, an outlet, and an opening, each in fluidic communication with the combustion chamber, and an inlet damper movable between a plurality of positions for controlling airflow into the inlet, and a door operatively connected to the housing and positionable in a closed position to block the opening, said control system comprising: a drive mechanism operatively connected to the inlet damper for controlling the position of the inlet damper;an exhaust temperature sensor for measuring the temperature of air exhausted through the outlet;a switch coupled to the housing for providing a signal when the door opens or closes; anda controller in communication with said drive mechanism and said exhaust temperature sensor, and with said controller configured to receive the signal from said switch;said controller is configured to determine whether the door has been opened and reclosed based on the signals from the switch;said controller is configured to control said drive mechanism in an automatic mode to automatically position the inlet damper at a predetermined open position for a predetermined and limited period of time regardless of a predetermined temperature and as programmed in accordance with the automatic mode in response to said controller determining that the door has been opened and reclosed, and wherein said period of time is programmed to be within a range defined between 30 seconds and 2 minutes; andwherein after expiration of the period of time said controller is configured to control said drive mechanism in the automatic mode to automatically position the inlet damper to maintain the predetermined temperature of air exhausted through the outlet.
  • 2. A control system as set forth in claim 1 wherein the solid fuel combustion appliance further includes a catalyst and said control system further includes a catalyst temperature sensor in communication with said controller for measuring the temperature of air passing through said catalyst.
  • 3. A control system as set forth in claim 2 wherein said controller analyzes the temperature of the air passing through the outlet and the temperature of the air passing through the catalyst to determine if both temperatures fall by a predetermined amount.
  • 4. A control system as set forth in claim 3 further comprising an annunciator in communication with said controller and wherein said controller activates said annunciator in response to determining that both temperatures have fallen by the predetermined amount.
  • 5. A control system as set forth in claim 1 wherein the appliance includes a fan for blowing air from the combustion chamber to a space outside the housing and wherein said controller is in communication with the fan for controlling operation of the fan.
  • 6. A control system as set forth in claim 1 further comprising a remote control device in communication with said controller for controlling operation of said controller.
  • 7. A solid fuel combustion appliance comprising: a housing defining a combustion chamber;said housing defining an inlet, and outlet, and an opening, each in fluidic communication with said combustion chamber;a door operatively connected to said housing and positionable in a closed position to block said opening;an inlet damper movable between a plurality of positions for controlling airflow into said inlet;a drive mechanism operatively connected to said inlet damper for controlling the position of said inlet damper;an exhaust temperature sensor for measuring the temperature of air exhausted through said outlet;a switch coupled to said housing for providing a signal when said door opens or closes; anda controller in communication with said drive mechanism and said exhaust temperature sensor, and with said controller configured to receive the signal from said switch;said controller is configured to determine whether the door has been opened and reclosed based on the signals from the switch;said controller is configured to control said drive mechanism in an automatic mode to automatically position the inlet damper at a predetermined open position for a predetermined and limited period of time regardless of a predetermined temperature and as programmed in accordance with the automatic mode in response to said controller determining that the door has been opened and reclosed, and wherein said period of time is programmed to be within a range defined between 30 seconds and 2 minutes; andwherein after expiration of the period of time said controller is configured to control said drive mechanism in the automatic mode to automatically position the inlet damper to maintain the predetermined temperature of air exhausted through the outlet.
  • 8. A solid fuel combustion appliance as set forth in claim 7 further including a catalyst and a catalyst temperature sensor in communication with said controller for measuring the temperature of air passing through said catalyst.
  • 9. A solid fuel combustion appliance as set forth in claim 8 wherein said controller analyzes the temperature of the air passing through said outlet and the temperature of the air passing through said catalyst to determine if both temperatures fall by a predetermined amount.
  • 10. A solid fuel combustion appliance as set forth in claim 9 further comprising an annunciator in communication with said controller and wherein said controller activates said annunciator in response to determining that both temperatures have fallen by the predetermined amount.
  • 11. A control system as set forth in claim 1 wherein the predetermined open position is different than the position for maintaining the predetermined temperature.
  • 12. A control system as set forth in claim 1 wherein the predetermined open position is fully open.
  • 13. A solid fuel combustion appliance as set forth in claim 7 wherein the predetermined open position is different than the position for maintaining the predetermined temperature.
  • 14. A solid fuel combustion appliance as set forth in claim 7 wherein the predetermined open position is fully open.
  • 15. A control system as set forth in claim 1 wherein said controller is further configured to operate in a manual mode and wherein said controller is configured to receive a selection between the manual mode and the automatic mode via a remote control device in wireless communication with said controller.
  • 16. A solid fuel combustion appliance as set forth in claim 7 wherein said controller is further configured to operate in a manual mode and wherein said controller is configured to receive a selection between the manual mode and the automatic mode via a remote control device in wireless communication with said controller.
  • 17. A solid fuel combustion appliance as set forth in claim 7 wherein said controller is further configured with one of a proportional-integral (PI) control loop and a proportional-integral-derivative (RID) control loop to automatically position the inlet damper.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional patent application No. 61/351,477, filed Jun. 4, 2010, which is hereby incorporated by reference.

US Referenced Citations (60)
Number Name Date Kind
741474 Ferry Oct 1903 A
2032252 Burrow Feb 1936 A
3168088 Martin Feb 1965 A
3669039 Leman Jun 1972 A
3669041 Schworer Jun 1972 A
3723047 Baudelet de Livois Mar 1973 A
3982525 Herman Sep 1976 A
4030479 Webb Jun 1977 A
4136662 Willson Jan 1979 A
4200086 Kolb Apr 1980 A
4235171 Leonard Nov 1980 A
4252104 Morris Feb 1981 A
4253404 Leonard Mar 1981 A
4263887 Dowdall Apr 1981 A
4267818 Taylor May 1981 A
4279237 dePencier Jul 1981 A
4304217 McGinn Dec 1981 A
4309965 Hill Jan 1982 A
4312278 Smith et al. Jan 1982 A
4321879 Toivo Mar 1982 A
4342306 Thulman et al. Aug 1982 A
4350141 Miller Sep 1982 A
4355587 Lemon Oct 1982 A
4362146 Schuller Dec 1982 A
4374569 Hayes Feb 1983 A
4387699 Murch, Jr. Jun 1983 A
4442825 Waldau Apr 1984 A
4457294 Cumpston Jul 1984 A
4461275 Lucas Jul 1984 A
4469083 Helle et al. Sep 1984 A
4474549 Capone Oct 1984 A
4492560 Sundberg Jan 1985 A
4556044 Barsness et al. Dec 1985 A
4675029 Norman et al. Jun 1987 A
4681087 Meeker Jul 1987 A
4712095 Georgis, II Dec 1987 A
4766876 Henry Aug 1988 A
4862869 Hazard Sep 1989 A
5007404 Hall et al. Apr 1991 A
5014680 Siemer May 1991 A
5033363 King Jul 1991 A
5179933 McCrillis et al. Jan 1993 A
5391074 Meeker Feb 1995 A
5873356 Vossler et al. Feb 1999 A
6096100 Guldi Aug 2000 A
7457689 Nelson et al. Nov 2008 B2
8627775 Wilson Jan 2014 B1
20010042610 Lyons Nov 2001 A1
20030098358 Lyons May 2003 A1
20040244791 Henry et al. Dec 2004 A1
20070068506 Lundberg Mar 2007 A1
20070289589 McFarland Dec 2007 A1
20080041357 Brown Feb 2008 A1
20080097649 Nelson et al. Apr 2008 A1
20080223266 Brazier et al. Sep 2008 A1
20090183693 Furman Jul 2009 A1
20100186645 Tiegs Jul 2010 A1
20100326421 Atemboski et al. Dec 2010 A1
20110008214 Haas Jan 2011 A1
20110094496 McCown Apr 2011 A1
Foreign Referenced Citations (6)
Number Date Country
0624756 Feb 1997 EP
1356734 Jan 2007 EP
8701432 Mar 1987 WO
9635912 Nov 1996 WO
WO2009144393 Dec 2009 WO
2010101171 Oct 2010 WO
Related Publications (1)
Number Date Country
20110300494 A1 Dec 2011 US
Provisional Applications (1)
Number Date Country
61351477 Jun 2010 US