The present invention relates to a control system and method for marine engines. In particular, the invention relates to a control system and method for starting and stopping marine engines.
It may be dangerous to have an engine of a marine vessel start running while in gear. When this occurs, the vessel may suddenly start moving and the occupants of the marine vessel may be jolted around, or worse, thrown out of the vessel. With a mechanically driven engine (as opposed to a drive-by-wire engine), a mechanical push-pull cable maintains a fixed relationship between the control lever (also known as the control handle) and shift actuator arm. The US Coast Guard requires a neutral start protection by monitoring the position of the control lever. Electronic shift and throttle systems eliminated the fixed link between the control handle and shift actuator arm. Electronic shift and throttle systems such as disclosed in U.S. Pat. No. 7,330,782 to Graham et al., only monitor the shift actuator position.
To the extent that existing starting systems are limited in their ability to inhibit an engine from starting while in gear, there exists a need for an improved start-protection system.
The present invention provides a start-protection system disclosed herein that overcomes the above disadvantages. It is an object of the present invention to provide an improved start-protection system. It is also an object of the present invention to provide an improved control system and method for starting and stopping marine engines.
There is accordingly provided a method for starting an engine of a marine vessel. The engine has gears and a shift actuator for operatively shifting the gears. The method includes providing a first position sensor disposed to operatively sense whether the engine is in a forward, neutral or reverse gear position. The first position sensor generates a signal representative of the gear position. The method includes disposing a second position sensor adjacent to a shift control which controls shift functions of the engine. The second position sensor generates a signal representative of the position of the shift control. The method includes providing processing means. The processing means receives the signals of the position sensors, determines the gear position and the position of the shift control and enables the engine to start upon determining that both the shift control and the engine are in neutral positions.
According to yet another aspect, there is provided a start-protection system for an engine of a marine vessel. The engine has gears and a shift actuator for operatively shifting the gears. The system includes a first position sensor disposed to operatively sense whether the engine is in a forward, neutral or a reverse gear position. The first position sensor generates a signal representative of the gear position. The system includes a second position sensor adjacent to a shift control which controls shift functions of the engine. The second position sensor generates a signal representative of the position of the shift control. The system includes processing means. The processing means are configured to receive the signals of the position sensors, determine the gear position and the position of the shift control and enable the engine to start upon determining that both the shift control and the engine are in neutral positions.
According to yet a further aspect, there is provided a multiplexed start system for a first marine engine and a second marine engine. The system includes a first start switch for a first engine and a second start switch for the second engine. The system includes a control head connected to the first start switch and the second start switch. The control head includes a control lever which controls shift functions of the engines. The control head includes a control head processor. The system includes a lever position sensor disposed adjacent to the control lever. The lever position sensor generates a signal representative of the position of the control lever. The control head processor is configured to receive the signal of the lever position sensor and determine the position of the control lever. The system includes a communications link. The control head is connected to the communications link. The system includes a first servo controller having a servo processor. The first servo controller is connected to the control head via the communications link. The system includes a second servo controller having a servo processor. The second servo controller is connected to the control head via the communications link. The system includes a first engine having gears and a shift actuator for shifting said gears. The shift actuator has a neutral position in which said gears are disengaged. The first engine has an engine control unit for operatively starting the first engine. The engine control unit is in paired communication with the first servo controller. The system includes a second engine having gears and a shift actuator for shifting said gears of the second engine. The shift actuator of the second engine has a neutral position in which the gears of the second engine are disengaged. The second engine has an engine control unit for operatively starting the second engine. The engine control unit of the second engine is in paired communication with the second servo controller. The system includes a first shift actuator position sensor disposed adjacent to the shift actuator of the first engine. The first shift actuator position sensor generates a signal representative of the position of the shift actuator of the first engine. The first servo processor is configured to receive the signal of the first shift actuator position sensor and determine the position of the shift actuator of the first engine. The system includes a second shift actuator position sensor disposed adjacent to the shift actuator of the second engine. The second shift actuator position sensor generates a signal representative of the position of the shift actuator of the second engine. The second servo processor is configured to receive the signal of the second shift actuator position sensor and determine the position of the shift actuator of the second engine. When one of the first switch and the second switch is actuated and the control head processor determines that the control lever is in a neutral position, the control head processor transmits an engine start message to the corresponding one of the first servo controller processor and the second servo controller processor. When the one of the first servo controller processor and the second servo controller processor receives its engine start message and determines that its corresponding engine's shift actuator is in neutral, the one of the first servo controller processor and the second servo controller processor transmits a signal to its paired one of the first engine control unit and the second engine control unit to start its associated one of the first engine and the second engine.
According yet an even further aspect, there is provided a multiplexed stop system for a first marine engine and a second marine engine. The system includes a first stop switch for stopping operation of the first engine. The system includes a second stop switch for stopping operation of the second engine. The system includes a control head connected to the first stop switch and the second stop switch. The control head has a control head processor. The system includes a communications link. The control head is connected to the communications link. The system includes a first engine having an engine control unit for operatively stopping the first engine. The engine control unit is connected to the control head via the communications link. The system includes a second engine having an engine control unit for operatively stopping the second engine. The engine control unit of the second engine is connected to the control head via the communications link. When one of the first stop switch and the second stop switch is actuated, the control head processor transmits a stop message via the communications link to the engine control unit of the corresponding one of the first engine and the second engine to stop operation of said one of the first engine and the second engine.
There is also provided an emergency stop system for a marine engine. The system includes a control head and an electronic servo module for the engine. The system includes a lanyard switch for stopping the engine. The system includes a cable comprising a communications link and a pair of emergency stop conductors connected to the engine. The control head and the electronic servo module are connected to the communications link. The pair of emergency stop conductors connected to the lanyard switch. Actuating the lanyard switch causes a lanyard signal to be transmitted to the engine via the emergency stop conductors to stop the engine. The control head and the electronic servo module are configured to read the lanyard switch state via the emergency stop conductors. The control head and the electronic servo module are configured to also transmit the lanyard signal to the engine via the communications link.
The invention will be more readily understood from the following description of preferred embodiments thereof given, by way of example only, with reference to the accompanying drawings, in which:
Referring to the drawings and first to
The marine vessel 20 has propulsion units, in this example, comprising three engines, in this case, outboard engines 36, 36.1, and 36.2.
The marine vessel 20 has an electronic shift and throttle system 25 as shown schematically in
The system 25 includes a shift and throttle controller, shown in
The control head 28 includes a housing 200. The control head 28 has a shift control in this example in the form of a port control lever 202 and a starboard control lever 204. Levers 202 and 204 are each pivotally mounted on the housing 200. Levers 202 and 204 adjust shift actuators and throttle actuators of the engines. Port control lever 202 controls the shift and throttle functions of the one or more engines positioned adjacent to the port side 21 of the marine vessel. Starboard control lever 204 controls the shift and throttle functions of the one or more engines positioned adjacent to the starboard side 23 of the marine vessel. The center engine, if any, is under the control of one of the levers 202 and 204, and in this example lever 202.
The housing 200 also supports a plurality of indicator or gear lamps which, in this example, are LED lamps. A port forward indicator 206, port neutral indicator 208, and port reverse indicator 210 are disposed on a side of housing 200 adjacent the port control lever 202. A starboard forward indicator 216, starboard neutral indicator 218, and a starboard reverse indicator 220 are disposed on a side of housing 200 adjacent the starboard control lever 204. A port trim up/down means 209 and a starboard trim up/down means 211 are disposed on the housing 200. A master trim up/down means 215 for commanding the trim of all the engines at once is located on the port control lever 202, in this example. Port neutral input means 212 and starboard neutral input means 214 are also disposed on the housing 200. An RPM input means 222, synchronization (SYNC) input means 224, and SYNC indicator lamp 226 are also all disposed on the housing 200. In this example, the port neutral input means 212, starboard neutral input means 214, RPM input means 222, and SYNC input means 224 are buttons but any suitable input devices may be used.
Referring now to
It will be understood by a person skilled in the art that the shift and throttle functions of the starboard engines are controlled in a similar manner using the starboard control lever 204 shown in
Referring to
Position sensors for control levers are known per se. The position sensors 203 and 205 may include a potentiometer, for example, or other such device that senses the current position of the corresponding control lever within its operating range. A potentiometer is merely an example of a position sensing device. Other position sensors, such as Hall effect sensors, for example, can also be used to sense the position of the control levers.
U.S. Pat. No. 7,330,782 issued on Feb. 12, 2008 to Graham et al., the full disclosure of which is incorporated herein by reference, discloses an electronic shift and throttle system in which a position sensor is used to sense the position of a control lever. The position sensor is electrically connected to a vessel controller (or electronic control unit (ECU)) and sends an electrical signal to the ECU. The ECU is able to determine the position of the control lever based on the voltage level of the electrical signal received from the position sensor.
Referring back to
The system 25 includes a start/stop switch panel 300. As best shown in
Referring back to
As previously mentioned the system 25 includes a communications link, in this example a standard network connection, namely the CANbus communications network 42. These are well-known in the art. The vessel controller 102 is operatively connected to the CANbus communications network 42 via input/output pin 44. While the CANbus communications network 42 is shown, one skilled in the art will appreciate that dual redundant communication architecture can be used in the system described herein.
The system 25 includes a master key switch panel 46 with a master ignition key switch 47 connected to the CANbus communications network 42 via pin 48. The system 25 includes a power supply, in this example battery 50 operatively connected to the ignition switch 47. Battery 50 supplies CAN power to the entire private CANbus communications network 42. Regardless of the number of engines, the battery power provided to the electronic servo controllers is turned on and off from a single master key switch 47. Turning the key switch 47 to the on position brings the system 25 alive. Turning the key switch 47 to the off position shuts the system 25 down.
The system 25 in this example has a gateway 52 connected to the CANbus communications network 42 via pin 54. The private CANbus communications network 42 of the system 25 interfaces with a public network, in this example a public NMEA2K network 58, via the gateway 52. NMEA2K is a standard for serial data neworking of marine electronic devices on CAN. Information from the system 25 is made available to the public NMEA2K network 58 via the gateway 52. The gateway 52 isolates the system 25 from public messages, but transfers engine data to displays and gauges. The gateway 52 has four analog inputs 56 which can be used to read fuel sender information and broadcast this information on the public network 58. Ignition switch systems, gateways, fuel senders, and interfacing networks per se are known and therefore will not be discussed further.
The system 25 in this example includes five outboard engines 36, 36.1, 36.2, 36.3, and 36.4. Switches 302, 302.1, 302.2, 302.3 and 302.4, shown in
Engine 36 is labelled ENGINE 0 in
Engine 36 has a servo controller, in this example an electronic servo module (ESM) 62. ESMs are shown in
Referring back to
The vessel controller 25, the electronic servo modules, and the engine management modules are thus communicatively coupled to one another via the CANbus communications network 42. The vessel controller 25, the electronic servo modules, and the engine management modules can pass messages to one another via the CANbus communications network 42 using a predefined protocol, such as the well-known NMEA 2000 protocol. Though CANbus communications network 42 and NMEA 2000 are provided by way of example, it should be understood that the communications link can be any suitable communications link and can employ any suitable communications protocol.
Referring to
The vessel controller 102 has inputs and outputs, in this example, collectively in the form of transceiver 110. The transceiver 110 in this example is a CAN transceiver, namely a Philips PCA82C251. The transceiver 110 is coupled to the input/output pin 44 of the CANbus communications network 42. The vessel controller 102 includes a host processor 104, which is preferably an embedded microcontroller. The host processor 104 may be referred to a control head processor. The transceiver 110 is operatively connected to the host processor 104. The transceiver 110 receives and transmits signals, which are in turn sent to the processor 104.
The host processor 104 in this example is an Infineon XC164CS type CPU, though other processors may be used. The host processor 104 hosts control software 105 that controls the vessel controller 102. The host processor 104 may be referred to as part of a command means of the vessel controller 102. According to one aspect, the host process 104 can perform the task of comparing data numbers.
The vessel controller 102 includes memory, in this example external electrically erasable programmable read-only memory (EEPROM) 106. The external EEPROM 106 in this example is in the form of a microchip 25LC160A. Memory 106 is operatively connected to the host processor 104. The vessel controller 102 provides a clock signal 101 to the external EEPROM that is electrically connected to an output pin 131 of the host processor 104. The vessel controller 102 includes a power supply 108. In this example the power supply 108 is a 12V power supply that is electrically connected to an input pin 109 of the host processor 104 in a manner configured to provide 5V to the host processor 104.
Host processors, control software, memory, and clocks per se are well known to those skilled in the art, as for example disclosed in U.S. Pat. No. 7,330,782, the disclosure of which is incorporated herein by reference. Thus their operation and various components will not be described in great detail.
As previously mentioned the control lever position sensors 203 and 205, shown in
Still referring to
Electronic servo module 62 includes a processor 114. The processor 114 may be referred to as a servo controller processor. The vessel controller 102 and the electronic servo module 62 may be referred to collectively as a processing means. The transceiver 120 is operatively connected to the processor 114. The transceiver 120 receives and transmits signals, which are in turn sent to the processor 114. The processor 114 hosts control software 115 that at least in part controls the electronic servo module 62.
Electronic servo module 62 has memory, in this example external electrically erasable programmable read-only memory (EEPROM) 116. The external EEPROM 116 in this example is in the form of a microchip 25LC160A. Memory 116 is operatively connected to the processor 114. A data holder, in this example an instance plug 112, containing an address for electronically identifying the electronic servo module, is shown connected to the processor 114. In this example the address of the instance plug 112 is an instance number. Electronic servo module 62 in this example has an instance number of 0, is shown connected to the processor 114. Memory 116 receives and stores this instance number of the electronic servo module 62. The electronic servo module 62 provides a clock signal 111 to the external EEPROM that is electrically connected to an output pin 113 of the host processor 114. The electronic servo module 62 includes a power supply 118. Preferably the power supply 118 is a 12V power supply that is electrically connected to an input pin 119 of the processor 114 in a manner configured to provide 5V to the processor 114.
Electronic servo module 62.1 is substantially the same as that described above with the exception that it may have a different instance number. In this example it has an instance number of 1, as determined by its corresponding instance plug. Also in this example: electronic servo module 62.2 has an instance number of 2; electronic servo module 62.3 has an instance number of 3; and electronic servo module 62.4 has an instance number of 4. These different instance numbers are each known to the vessel controller 102 for the purposes of distinguishing between the electronic servo modules. The particular instance numbering scheme described are for illustration purpose only. Any other numbering or lettering or even naming scheme, such as defined by NMEA2K, can also be employed with this instancing method.
Engine management module 68 has an input and an output, in this example, collectively in the form of transceiver 130. The transceiver 130 in this example is a CAN transceiver, namely a Philips PCA82C251. Engine management module 68 includes a processor 124, which is preferably an embedded microcontroller. The processor 124 may be referred to as an engine controller processor. The processor 124 in this example is a Freescale HCS12 type CPU, though other processors may be used. The transceiver 130 is operatively connected to the processor 124. The transceiver 130 receives and transmits signals, which are in turn sent to the processor 124. The processor 124 hosts control software 125 that at least in part controls the engine management module 68.
Engine management module 68 includes a power supply 128. Preferably the power supply 128 is a 12V power supply that is electrically connected to an input pin 129 of the processor 124 in a manner configured to provide 5V to the processor 124.
Engine management module 68 has memory, in this example electrically erasable programmable read-only memory (EEPROM) 126, internal to the processor 129. The memory 126 is electrically connected to an input/output pin 127 of the processor 124. Memory 126 is operatively connected to the processor 124. The memory 126 stores an address electronically identifying the engine management module 68, in this example an instance number.
In the example shown the engine management modules have instance numbers that are different from each other. These different instance numbers are each known to the vessel controller 102 for the purposes of distinguishing between the engine management modules. Engine management module 68 in this example has an initial instance number of 0. In this example: engine management module 68.1 has an initial instance number of 1; engine management module 68.2 has an initial instance number of 2; engine management module 68.3 has an initial instance number of 3; and engine management module 68.4 has an initial instance number of 4.
As previously mentioned the electronic servo module 62 is operatively connected to the engine management module 68 via conductor 122. The system 25 includes a printed electrical circuit board that links the processor 114 of the electronic servo module 62 to the power supply 128 of the engine management module 68. The other electronic servo modules are connected to their paired engine management modules in the same manner, respectively.
Referring to
Referring back to
Referring now to
Referring to
Referring to
A distal end 260 of the output shaft 252 is splined. There is a longitudinal, female threaded aperture 262 extending into the output shaft 252 from the distal end 260 thereof. The aperture 262 is designed to receive a bolt to couple the output shaft 252 to the actuator arm 230 shown in
Referring to
Referring back to
As best shown in
The structure of the throttle actuator 66 in this example is substantially the same as that described for the shift actuator 64 in
Referring to
Before starting the engine, particularly after the electronic shift and throttle system 25 is powered on, each electronic servo module 62 checks if its associated shift actuator arm 230 is in the neutral position and its associated throttle actuator arm 310 is in the idle position. If either one of the conditions is not met, electronic servo module 62 drives its associated shift actuator arm 230 to the neutral position and its associated throttle actuator arm to the idle position.
Referring now to
To a start an engine, for example engine 36, the start/stop switch 302 must be actuated to a start position and this enables a switch-on message, which may be a voltage or other signal. The control head 28 receives the switch-on message and determines whether the associated lever, in this case the port control lever 202, is in neutral position 228, as shown in
Upon receiving the start command 274 from the control head 28, the electronic servo module 62 determines whether its associated shift actuator 64, and more specifically shift actuator arm 230, is in a neutral position 234, as shown in
If the electronic servo module 62 has received the start command 274 from the control head 28 and the shift actuator arm 230 is in a neutral position, the electronic servo module 62 activates a start output 276. The start output 276 is a voltage signal, in this example, connected to the engine management module 68. The voltage signal is retrofittable to the engine management module, which used to be signalled by a discrete start switch. Alternatively, the start output can be a drive signal to engage the starter solenoid 67 directly. The start output 276 can also be another CANbus message, or a serial communication means, to communicate with the engine management module 68 to start the engine 36.
Upon the engine management module 68 receiving the start output 276, the engine management module 68 causes the engine 36 to start. The engine management module 68 transmits a start output 278 to activate the starter solenoid 67 of the engine 36. The starting of an engine 36 via an engine management module 68 is known per se and therefore will not be described further. The engine management module 68 continues to activate the start solenoid 67 for as long as the start output 276 of the electronic servo module 62 is being transmitted and the engine 36 is not running. The engine management module 68 determines if the engine 36 is running using a motor speed sensor 79 to monitor motor speed 280. Motor speed sensors per se are known and therefore will not be described further. In one preferred example, the engine 36 is deemed to be running if its speed is above 300 RPM. In the variation as previously mentioned the electronic shift and throttle system 25 can drive the start solenoid 67 directly. This is shown in
The system 25 as herein described thus acts as a redundant neutral start-protection system for the engines. The engine 36 will start only if both the associated control lever and the shift actuator are in neutral. Thus, for example, if faults occur with the detection of the control lever position, the system will nonetheless prevent the starting of the engine unless the shift actuator 64 is also in neutral. The system thereby provides an enhanced layer of safety. The system 25 may also inhibit damage to the engines that otherwise may occur if the engines were started with the shift actuators in a non-neutral position.
In addition to monitoring the control lever position(s) and the shift actuator arm position, the electronic servo modules 62 check for any active critical faults. Critical faults include a shift actuator position sensor fault, a throttle actuator position sensor fault, and a throttle actuator motion fault. The electronic servo modules 62 will not activate their corresponding start output 276 if they detect any active critical faults.
The control lever position must be correspond to a neutral and idle position for the start message to be issued. When the control lever 202 is in neutral and idle, the control head 28 will send a message to the electronic servo modules 62 to bring their corresponding shift actuator arms to neutral and to bring their corresponding throttle actuator arms to idle. If a given throttle actuator arm 310 cannot move to the idle position, because for example a physical obstacle is in the way of the arm movement, the corresponding electronic servo module 62 will declare a throttle motion fault. In other words, the start protection includes a throttle idle check as well.
In addition, if any of sensors, such as control lever position sensors 203 and 205, shift actuator position sensors 268, and throttle position sensors, are not working, the start output 276 will not be issued. The above described features thus add further levels of safety to the system 25.
To stop the engine 36, the start/stop switch 302 is actuated to a stop position. This may enable a switch-off message. This actuation of the switch 302 is detected by the control head 28 via, for example, the switch-off message. The control head 28 as a result sends an engine stop message 282 via the CANbus communications network 42 directly to the engine management module 68. The control head 28 transmits the stop message 282 regardless of the position of the lever 202 and regardless of the position of the shift actuator 64, and more particularly shift actuator arm 230. Put another way, upon the start/stop switch 302 being actuated to the stop position, the control head 28 transmits the stop message 282 for all positions of the control lever 203 and for all positions of the shift actuator. The stop command 282 continues to be broadcast to the engine management module 68 for as long as the start/stop switch 302 is in the stop position.
When the engine management module 68 receives the stop message 282, the engine management module 68 causes the engine 36 to stop. The details of how an engine management module causes an engine to stop are known per se and therefore will not be described.
Thus, the engine 36 can be stopped at any time upon the start/stop switch 302 being actuated to the stop position.
The system 25 as herein described enables a plurality of engines to be selectively started or stopped all along a single communications link, in this example via the CANbus communications network 42. The system thus represents a multiplexed start/stop system.
The system 25 also includes an emergency stop switch, in this example, a lanyard switch 284 connected to the CANbus communications network 42 via the input/output pin 48. The lanyard switch 284 is connected to all engines 36, 36.1, 36.2, 36.3, and 36.4 using two dedicated, emergence stop conductors, in this example, wires 288 and 290. The stop wires 288 and 290 are connected to the lanyard switch 284. The stop wires 288 and 290 are connected to the input/output pin 48. The lanyard switch 284 can be tethered to the driver to emergency shut off all the engines of the marine vessel. The control head 28 and the electronic servo modules 62 read the lanyard switch state through the two stop wires 288 and 290. Either one of them (either control head 28 and/or the electronic servo modules) can transmit the lanyard signal through the CAN bus, or another electrical signal such as serial communication, to the engine management modules 68 as a redundant safety signal to shut down all the engines in case the two dedicated wires failed open circuit or closed circuit. This is non-obvious, because the failure causes of the two dedicated wires and the CAN bus would likely be different. This drastically increases the availability and reliability of the system. The emergency stop wires 288 and 290 and the communication wires together may be bundled into a single cable jacket. Put another way, the two dedicated stop wires 288 and 290 in this example are part of a cable that is shared with the CAN communication. When the lanyard switch 284 is actuated, all engine management modules immediately cause their associated engines to stop running.
Put another way the master key switch panel integrates 46 a safety lanyard that connects to the emergency stop wires 288 and 290 of the engine(s). Pulling the safety lanyard connects the stop wires together which immediately stops the engine. On multiple engine applications, all stop wires are connected together, so pulling the lanyard stops all engines simultaneously. Pulling the master key switch panel 46 safety lanyard also turns the key switch off and hence shuts the system 25 down.
Lanyard and stop functions have traditionally been independent of shift and throttle. This is because it is not easily achievable to stop the engine via a serial communication scheme. Problems may be particularly compounded in the case of multi-engine systems.
The present system 25 with its incorporated emergency stop wires as herein described advantageously achieves a high level of integration compared with traditional systems. It provides careful and improved architectural design in terms of network security, electrical signal compliance, communication protocol, division of functions and overall reliability and availability of the system.
Those skilled in the art will appreciate that many variations are possible within the scope of the invention as herein described. This description of a preferred embodiment focuses on monitoring the position of the shift actuator arm. Alternatively, a position sensor may be disposed adjacent to a shift tower or any linkage, such as a component of the shift linkage 231, connecting the shift actuator motor output shaft 252 to the clutch mechanism that is mechanically linked to the gear position for the monitoring of the gear position thereby.
It will be understood by someone skilled in the art that many of the details provided above are by way of example only and are not intended to limit the scope of the invention which is to be determined with reference to the following claims.