Currently, refrigerators and freezers are designed to comply with energy consumption targets that are enforced by regulatory agencies for both domestic and international markets. These energy consumption targets are consistently updated to ever more stringent values leading appliance manufactures to constantly improve their design through proper component selection, system optimization, and use of efficient controls. Ice dispensers are typically included in a freezer door, a refrigerator door, or a refrigerator compartment to conveniently provide ice to a consumer without opening of the freezer door. The chute that connects directly or indirectly to an ice receptacle in the freezer compartment has an opening through which the ice is dispensed to a consumer. A chute door typically covers the chute opening and should be designed to maintain as much of the cold air within and to prevent warm (relatively), moist air from entering the freezer or refrigerator compartment as possible while having the capability of dispensing ice through the chute on demand with minimum energy expenditure.
In an example embodiment, a computer-readable medium is provided having stored thereon computer-readable instructions that when executed by a processor, cause the processor to control opening of an ice chute door by energizing a motor at a first voltage for a first time period after receipt of an ice dispense request; after energizing the motor at the first voltage for the first time period, control energizing of the motor at a second voltage at least as long as the ice dispense request is received to maintain the ice chute door in the open position; and after energizing the motor at the second voltage, control de-energizing of the motor to allow the ice chute door to return to a closed position. The second voltage is less than the first voltage.
In another example embodiment, an ice dispensing system is provided. The ice dispensing system includes, but is not limited to, a door casing, an ice chute door mounted to the door casing, a motor, a processor, and a computer-readable medium. The motor is mounted to the ice chute door to move the ice chute door to an open position relative to the door casing when energized. The computer-readable medium has stored thereon computer-readable instructions that when executed by the processor, cause the processor to control opening of the ice chute door by energizing the motor at a first voltage for a first time period after receipt of an ice dispense request; after energizing the motor at the first voltage for the first time period, control energizing of the motor at a second voltage at least as long as the ice dispense request is received to maintain the ice chute door in the open position; and after energizing the motor at the second voltage, control de-energizing of the motor to allow the ice chute door to return to a closed position. The second voltage is less than the first voltage.
In yet another example embodiment, a refrigerator is provided. The refrigerator includes, but is not limited to, a plurality of walls defining a freezer compartment, a door, a hinge pivotally mounting the door to a wall of the plurality of walls, an ice chute door casing mounted to one of the plurality of walls or the door, an ice chute door mounted to the ice chute door casing, a motor, a processor, and a computer-readable medium. The motor is mounted to the ice chute door to move the ice chute door to an open position relative to the door casing when energized. The computer-readable medium has stored thereon computer-readable instructions that when executed by the processor, cause the processor to control opening of the ice chute door by energizing the motor at a first voltage for a first time period after receipt of an ice dispense request; after energizing the motor at the first voltage for the first time period, control energizing of the motor at a second voltage at least as long as the ice dispense request is received to maintain the ice chute door in the open position; and after energizing the motor at the second voltage, control de-energizing of the motor to allow the ice chute door to return to a closed position. The second voltage is less than the first voltage.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
a depicts an exploded left, front perspective view of the ice chute door mechanism of
b depicts an exploded right, front perspective view of the ice chute door mechanism of
c depicts a perspective view of an ice chute door of the ice chute door mechanism of
d depicts a perspective view of a motor of the ice chute door mechanism of
e depicts a perspective view of a biasing mechanism of the ice chute door mechanism of
f depicts a perspective view of a link arm of the ice chute door mechanism of
a depicts a left perspective view of an ice chute door system of the ice chute door mechanism of
b depicts a left perspective view of the ice chute door system of the ice chute door mechanism of
c depicts a zoomed left perspective view of an ice chute door closing mechanism of the ice chute door system of
With reference to
Use of directional terms, such as top, bottom, right, left, front, back, etc. are merely intended to facilitate reference to the various surfaces of the described structures relative to the orientations shown in the drawings and are not intended to be limiting in any manner. In the illustrative embodiment of
Divider wall separates the freezer compartment from the refrigerator compartment. In the illustrative embodiment, divider wall 118 extends vertically between top wall 108 and bottom wall 114. Of course, in alternative embodiments, divider wall 118 may extend horizontally to separate the two compartments with the freezer compartment either above or below the refrigerated compartment. Additionally, in alternative embodiments, the locations of the freezer compartment and the refrigerated compartment may be reversed. Further, refrigerator 100 may include more than two compartments. Additionally, refrigerator 100 may not include a refrigerated compartment. In general, a temperature of one or more refrigerated compartments is maintained at an adequate temperature for fresh foods by appropriate cooling components as understood by a person of skill in the art, and a temperature of one or more freezer compartments is maintained at an adequate temperature for frozen foods by appropriate cooling components as understood by a person of skill in the art.
Though shown in the illustrative embodiment as forming a generally rectangular shaped enclosure, refrigerator 100 may form any shaped enclosure including other polygons as well as circular or elliptical enclosures. As a result, freezer compartment door 102, refrigerator compartment door 104, and the walls forming refrigerator 100 may have any shape including other polygons as well as circular or elliptical shapes.
One or more shelves 120, drawers 122, or other receptacles 124 may be mounted within the freezer compartment and the refrigerator compartment. An ice maker/dispenser 126 may be mounted within the freezer space to make and store ice. In an alternative embodiment, ice maker/dispenser 126 may be mounted to the inside surface of freezer compartment door 102 as understood by a person of skill in the art. For example, ice maker/dispenser 126 may be positioned on a door shelf 123 of the receptacles 124 to dispense ice when freezer compartment door 102 is either in the opened or the closed positions. Ice maker/dispenser 126 further may be mounted directly to a wall of refrigerator 100. As understood by a person of skill in the art, the dispensing of ice by the ice dispenser may be controlled using a switch activated by a consumer. For illustration, the switch may be similar to that described in U.S. Pat. No. 7,814,762 titled INTEGRATED ICE DISPENSER SWITCH and issued Oct. 19, 2010.
As understood by a person of skill in the art, the walls that form refrigerator 100 include insulation to assist in maintenance of the desired temperature in the freezer and refrigerator compartments. Electrical wiring and various conduits may further be located in the walls. The one or more shelves 120, drawers 122, or other receptacles 124 may be formed of one or more materials, such as metals, glass, and/or plastics having a sufficient strength and rigidity to support food items or other items stored in refrigerator 100.
As used in this disclosure, the term “mount” includes join, unite, connect, couple, associate, insert, hang, hold, affix, attach, fasten, bind, paste, secure, bolt, screw, rivet, solder, weld, glue, form over, layer, and other like terms. The phrases “mounted on” and “mounted to” include any interior or exterior portion of the element referenced. These phrases also encompass direct mounting (in which the referenced elements are in direct contact) and indirect mounting (in which the referenced elements are not in direct contact). Elements referenced as mounted to each other herein may further be integrally formed together, for example, using a molding process as understood by a person of skill in the art. As a result, elements described herein as being mounted to each other need not be discrete structural elements.
In the illustrative embodiment of
With reference to
With reference to
In the illustrative embodiment of
With reference to
In the illustrative embodiment of
Though not shown, ice maker/dispenser 126 further may include an auger having a shaft that includes one or more flights. The one or more flights may be spiral or helical in shape and define at least one complete 360 degree flight. The auger may be mounted to an auger cap mounted in an auger cap aperture 712 formed in back wall 704 though other mounting methods may be used in alternative embodiments. The shaft of the auger may further extend through a shaft aperture 714 in front wall 702 of ice receptacle 700. The shaft of the auger may be rotated by an auger actuator 1316 (shown with reference to
After being pushed through ice dispensing aperture 716, the ice drops onto a chute 718 mounted on a front surface 800 of front wall 702. Chute 718 is mounted to extend from front wall 702 exterior to ice receptacle 700. In the illustrative embodiment, chute 718 slopes downward toward a lower right corner of front wall 702 to allow gravity to assist in the delivery of the ice cubes towards a dispensing end 802 of chute 718. Of course, chute 718 may slope downwards toward a lower left corner of front wall 702 in an alternative embodiment. From chute 718, the ice cubes may be dispensed through an ice chute door.
With reference to
With reference to
With reference to
Cavity wall 1106 extends generally perpendicularly from a first cut-out 1116 formed in mounting face 1104. Cavity wall 1106 is sized and shaped to accommodate gasket 904, door casing 906 and motor 914 and movement of link arm 912 and biasing mechanism 1102. Door mounting face 1108 extends generally perpendicularly from cavity wall 1106. Door mounting face 1108 is sized and shaped similar to gasket 904 and includes the second plurality of mounting apertures 1114.
Chute wall 1110 extends generally perpendicularly from a second cut-out 1118 formed in door mounting face 1108. Chute wall 1110 is sized and shaped to accommodate a plurality of ice cubes from chute 718 of ice receptacle 700. Chute wall 1110 also is sized and shaped to maximize a wall insulation in that area. Dispensing end 802 of chute 718 is positioned adjacent to a bottom edge surface 1120 of chute wall 1110 so that ice flows from chute 718 to the bottom surface of chute wall 1110 to flow out of ice chute door 908 when ice chute door 908 is in the open position.
Gasket 904 has a generally flat shape and mounts to and provides an air seal between mounting plate 902 and door casing 906. Gasket 904 includes a third cut-out 1122 and a third plurality of apertures 1124 formed there through. Third cut-out 1122 is sized and shaped similar to second cut-out 1118 and generally aligns with second cut-out 1118 when gasket 904 is mounted to mounting plate 902. Gasket 904 may be mounted to door mounting face 1108 or a back face of door casing 906 using adhesive and/or one or more fasteners that may be inserted in the third plurality of apertures 1124 and the second plurality of mounting apertures 1112 or the third plurality of mounting apertures 1130 or both set of mounting apertures 1112, 1130.
Door casing 906 includes a casing plate 1126 that has a generally flat shape. Door casing 906 includes a fourth cut-out 1128 and a fourth plurality of apertures 1130 formed through a casing plate 1126. Fourth cut-out 1128 is sized and shaped similar to second cut-out 1118 and generally aligns with second cut-out 1118 and third cut-out 1122 when door casing 906 is mounted to mounting plate 902. Door casing 906 may be mounted to door mounting face 1108 using one or more fasteners that may be inserted in the fourth plurality of apertures 1124 and the second plurality of mounting apertures 1112 through the third plurality of apertures 1124.
Door casing 906 further includes a first mounting arm 1132 and a second mounting arm 1134. First mounting arm 1132 and second mounting arm 1134 extend generally perpendicularly from casing plate 1126 above fourth cut-out 1128 when door casing 906 is mounted to refrigerator 100. A first door mounting aperture 1136 and a first motor mounting aperture 1138 are formed through first mounting arm 1132. A second door mounting aperture 1140 and a second motor mounting aperture 1142 are formed through second mounting arm 1134.
A heater strip 1144 is mounted to casing plate 1126 near an edge of fourth cut-out 1128. Thus, heater strip 1144 generally encircles fourth cut-out 1128. Heater strip 1144 is positioned to abut door gasket 1100 when ice chute door 908 is in the closed position. Ice chute door mechanism 900 is prone to condensation and frost formation. As a result, heater strip 1144 is configured to raise the temperature of casing plate 1126 and door gasket 1100 above the dew-point to insure that ice chute door 908 does not become stuck in the closed position. Heater strip 1144 may be co-molded with casing plate 1126. Placement of heater strip 1144 between casing plate 1126 and door gasket 1100 maximizes the likelihood that sufficient heat is communicated to door gasket 1100 to prevent freezing of ice chute door 908 to door casing 906 thereby rendering ice chute door 908 inoperable. Door gasket 1100 and gasket 904 on either side of heater strip 1144 limit the amount of heat flowing into the freezer compartment or the refrigerator compartment.
Door gasket 1100 may be a compression gasket that seals fourth cut-out 1128 closed when ice chute door 908 is in the closed position to provide an air tight seal and thereby keep prevent moisture and relatively warm air from migrating to the freezer compartment. Door gasket 1100 includes a gasket body 1145, a sealing edge 1146, and an attachment lip 1147. Gasket body 1145 may be generally flat with a circular shape that corresponds with the shape of fourth cut-out 1128, which in turn is shaped similarly to a periphery of chute wall 1110. Sealing edge 1146 extends around the periphery of gasket body 1145. Sealing edge 1146 further extends in a direction opposite door casing 906 to provide a sealing engagement with fourth cut-out 1128 when ice chute door 908 is in the closed position. Attachment lip 1147 extends away from gasket body 1145 in a direction similar to that of sealing edge 1146. Attachment lip 1147 surrounds a door peripheral edge 1148 of ice chute door 908 to maintain contact between ice chute door 908 and door gasket 1100 so that door gasket 1100 moves with ice chute door 908. Door gasket 1100 may be formed at least partially of an elastomeric material to provide the compression sealing between sealing edge 1146 and fourth cut-out 1128 as well as the attachment mechanism between attachment lip 1147 and door peripheral edge 1148.
With reference to
First door mounting arm 1154 and second door mounting arm 1156 extend upward and away from the external surface of door peripheral wall 1152 and toward first mounting arm 1132 and second mounting arm 1134, respectively. A first door mounting peg 1158 extends generally perpendicularly from a top of first door mounting arm 1154. A second door mounting peg 1160 extends generally perpendicularly from a top of second door mounting arm 1156. To mount ice chute door 908 to door casing 906, first door mounting peg 1158 is inserted into first door mounting aperture 1136, and second door mounting peg 1160 is inserted into second door mounting aperture 1140. Ice chute door 908 opens under control of motor 914 relative to door casing 906. As a result, first door mounting peg 1158 and second door mounting peg 1160 are sized to allow rotation within first door mounting aperture 1136 and second door mounting aperture 1140, respectively, while maintaining the connection between ice chute door 908 and door casing 906.
A first door linking peg 1162 extends generally perpendicularly from a top of first door mounting arm 1154 on a side of first door mounting arm 1154 generally opposite first door mounting peg 1158. First door linking peg 1162 is generally circular in shape and includes a first arm aperture 1164 that extends at least partially through a center of first door linking peg 1162. First door mounting arm 1154 further includes a second arm aperture 1200 (shown with reference to
Door insulator 910 is mounted to ice chute door 908 adjacent door plate 1150 and on a side of ice chute door 908 opposite door gasket 1100. Door insulator 910 is sized and shaped to fit within an interior of door peripheral wall 1152. Door insulator 910 provides additional insulation to prevent condensation and/or frost formation on ice chute door 908.
With reference to
With reference to
To mount biasing mechanism 1102 to ice chute door 908, first arm 1176 of biasing mechanism 1102 is inserted into first arm aperture 1164 of first door linking peg 1162, and second arm 1184 of biasing mechanism 1102 is inserted into second arm aperture 1163 of first door mounting arm 1154.
With reference to
With reference to
Biasing mechanism 1102 is sized and shaped such that a center of coil 1180 also translates along an arc-shaped path as ice chute door is opened. Biasing mechanism 1102 is configured to exert a maximum torque when ice chute door 908 is in the closed position and to exert a minimum torque when ice chute door 908 is in a fully open position. Thus, motor 914 opens ice chute door 908 through rotation of motor shaft 1168 by overcoming the torque exerted by biasing mechanism 1102. Ice chute door 908 closes when motor 914 is de-energized as a result of the torque exerted by biasing mechanism 1102 when ice chute door 908 is in a fully open position. Thus, as understood by a person of skill in the art, the characteristics of biasing mechanism 1102 and of motor 914 are determined based on the amount of torque needed to separate door gasket 1100 from door casing 906 and the amount of torque needed to hold ice chute door 908 in the open position.
With reference to
Input interface 1302 provides an interface for receiving information from components of ice dispensing control system 1300 for processing by processor 1310. For example, input interface 1302 may include electrical connectors that connect ice dispense request sensor 1312 and clock 1314 with processor 1310. The same interface may support both input interface 1302 and output interface 1304.
Output interface 1304 provides an interface for outputting information from processor 1310 to components of ice dispensing control system 1300 to control their operation. For example, output interface 1304 may include electrical connectors that connect heater strip 1144, motor 914, and auger actuator 1316 with processor 1310.
Communication interface 1306 provides an interface for receiving and transmitting data between devices using various protocols, transmission technologies, and media as known to those skilled in the art. Communication interface 1306 may support communication using various transmission media that may be wired or wireless. Ice dispensing control system 1300 may have one or more communication interfaces that use the same or a different communication interface technology. Data and messages may be transferred between processor 1310 and other components of refrigerator 100 using communication interface 1306. Thus, communication interface 1306 provides an alternative interface to input interface 1302 and output interface 1304.
Computer-readable medium 1308 is an electronic holding place or storage for information so that the information can be accessed by processor 1310 as known to those skilled in the art. Computer-readable medium 1308 can include, but is not limited to, any type of random access memory (RAM), any type of read only memory (ROM), any type of flash memory, etc. such as magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, . . . ), optical disks (e.g., CD, DVD, . . . ), smart cards, flash memory devices, etc. Ice dispensing control system 1300 may have one or more computer-readable media that use the same or a different memory media technology. Ice dispensing control system 1300 also may have one or more drives that support the loading of a memory media such as a CD or DVD.
Processor 1310 executes instructions as known to those skilled in the art. The instructions may be carried out by a special purpose computer, logic circuits, or hardware circuits. Thus, processor 1310 may be implemented in hardware, firmware, or any combination of these methods and/or in combination with software. The term “execution” is the process of running an application or the carrying out of the operation called for by an instruction. The instructions may be written using one or more programming language, scripting language, assembly language, etc. Processor 1310 executes an instruction, meaning that it performs/controls the operations called for by that instruction. Processor 1310 operably couples with output interface 1304, with input interface 1302, with computer-readable medium 1308, and with communication interface 1306 to receive, to send, and to process information. Processor 1310 may retrieve a set of instructions from a permanent memory device and copy the instructions in an executable form to a temporary memory device that is generally some form of RAM. Ice dispensing control system 1300 may include a plurality of processors that use the same or a different processing technology.
Control application 1318 performs operations associated with controlling the operation of ice maker/dispenser 126 including ice chute door mechanism 900. Some or all of the operations described herein may be embodied in control application 1318. The operations may be implemented using hardware, firmware, software, or any combination of these methods. With reference to the example embodiment of
With reference to
In an operation 1400, ice chute door mechanism 900 is an idle state. For example, refrigerator 100 and ice maker/dispenser 126 are powered on. Motor 914 is de-energized or in the “off” state. Ice chute door 908 is in the closed position with a maximum torque exerted by biasing mechanism 1102 to seal chute 718 including chute wall 1110 from the refrigerator compartment or the exterior of refrigerator 100 if ice chute door mechanism 900 is mounted to freezer door 102 or refrigerator door 104. Heater strip 1144 may be on when ice chute door mechanism 900 is in the idle state.
In an operation 1402, a determination is made concerning whether or not an ice dispense request is received from ice dispense request sensor 1312. The determination may be triggered automatically when a signal is received from ice dispense request sensor 1312 by processor 1310 as understood by a person of skill in the art. As discussed previously, various electrical, optical, electro-mechanical devices may be used to detect that a consumer is requesting the dispensation of ice into a container and to send a signal to processor 1310. When an ice dispense request is received, processing continues in operation 1406.
During time periods when the ice dispense request is not received, processing continues in an operation 1404. In operation 1404, a determination is made concerning how long it has been since ice chute door 908 was opened. If the time since ice chute door 908 was last opened, TSOD, exceeds a threshold, TPI, processing continues in operation 1406. Thus, if TSOD≧TPI, processing continues in operation 1406 to open ice chute door 908 to release any ice not previously released from chute 718 and chute wall 1110. Periodic opening of ice chute door 908 prevents ice from being trapped in mounting plate 902 for a long period of time causing potential blockage of chute 718 and/or chute wall 1110. In an illustrative embodiment, threshold, TPI is set to 24 hours. Of course, shorter or longer time periods may be used in alternative embodiments.
In operation 1406, motor 914 is energized at a first voltage V1 as shown with reference to
In operation 1410, motor 914 is energized at a second voltage V2. As shown with reference to
In an operation 1402, a determination is made concerning whether or not an ice dispense request is no longer received from ice dispense request sensor 1312. The determination may be triggered automatically when a signal is no longer received from ice dispense request sensor 1312 by processor 1310 as understood by a person of skill in the art. If the ice dispense request is no longer received, auger actuator 1316 is no longer activated to rotate auger in ice receptacle 700 and a determination is made concerning whether or not a time period since the request was no longer received has expired. If the time since the ice dispense request was received, TSDF, exceeds a threshold, TOD, processing continues in an operation 1414. If the time since the ice dispense request was no longer received has not expired, i.e., TSDF, does not exceed the threshold, TOD, processing continues in operation 1410 to continue to energize motor 914 at second voltage V2 to hold ice chute door 908 open to allow any remaining ice dispensed onto chute 718 and chute wall 1110 to fall through fourth cut-out 1128. In an illustrative embodiment, threshold, TOD is set to 6 seconds. Of course, shorter or longer time periods may be used in alternative embodiments. As shown with reference to
In operation 1414, motor 914 is de-energized, which closes ice chute door 908 through operation of the torque generated by biasing mechanism 1102 which overcomes the internal resistance of de-energized motor 914. Processing continues at operation 1400 to return ice chute door mechanism 900 to the idle state and await another ice dispense request or expiration of the time period defined by threshold, TPI.
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”. Still further, the use of “and” or “or” is intended to include “and/or” unless specifically indicated otherwise. The illustrative embodiments may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed embodiments.
The foregoing description of illustrative embodiments of the invention has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.