1. Field of the Invention
Embodiments disclosed herein generally relate to control systems, and more specifically, to a control system for a flow cell battery.
2. Description of the Relevant Art
There is an increasing demand for novel and innovative electric power storage systems. Redox flow cell batteries have become an attractive means for such energy storage. In particular, redox batteries can be utilized as energy backup supplies in areas where power from the grid is unreliable, for energy load shifting where energy can be stored at low demand times and supplied at peak demand times, and for storage in alternative energy systems to supply power when the alternative energy source (e.g. solar, wind, tidal, or other source) is unavailable or low in production.
In a redox flow cell battery system, for example, a battery cell may include two electrodes, each immersed in an electrolyte. The two electrolytes are separated by a membrane. The battery is discharged when current flows between the terminals and a charged ion is transported across the membrane. The electrolytes are flowed through the battery so that the amount of stored energy is not determined by the size of the cell itself. The battery is charged when a current is supplied between the terminals and the charged ion is transported back across the membrane, charging the two separated electrolytes in the cell. The electrical energy is thereby stored by appropriately charging the two electrolytes.
In order to provide a consistent supply of energy, it is important that many of the components of the flow cell battery system are performing properly. Flow cell performance, for example, can change based on parameters such as the state of charge, temperature, electrolyte level, concentration of electrolyte and fault conditions such as leaks, pump problems, and power supply failure for powering electronics. To be useful as an electric power storage system, it is desirable that the flow cell battery system requires a minimal amount of maintenance and monitoring. Therefore, there is a need for efficient control systems for controlling and monitoring a flow cell battery system.
In accordance with some embodiments, a controller for controlling a flow cell battery system is disclosed. In some embodiments, the controller includes one or more processors executing a state machine, the state machine including a shutdown state; an initialization state that is transitioned to when the flow cell battery system is turned on; a plating state transitioned to from the initialization state; a charging state transitioned to from the plating state; a float state that can be transitioned to from the charging state if charging is complete; a discharge state that can be transitioned to from the charging state or from the float state if a discharge condition is detected; and a hibernate state that can be transitioned to from the discharge state when the flow cell battery is discharged below a threshold level, and wherein the hibernate state can transition to the charge state when a charging condition is detected.
In one embodiment, in the plating state, at least a portion of the electrodes are plated with a plating metal. In the charging state at least a portion of the electrolytes in the flow cell battery are brought to a charged chemical state. In the discharge state power is supplied to a load coupled to the flow cell battery system in the discharge state.
In one embodiment, the controller switches the flow cell battery system to the charging state if the plating of the electrodes is complete. The controller further switches the flow cell battery system from the charging state to the discharge state when power to the flow cell battery system is disconnected and a load is coupled to the flow cell battery system.
The flow cell battery system may also be operated in a float state. In the float state power to electrodes of the flow cell battery system is reduced with respect to the power supplied to the electrodes during the charging state. The controller switches the flow cell battery system from the charging state to the float state when a state of charge of the flow cell battery system is greater than a predetermined charged set point and when power is supplied to the flow cell battery system. In some embodiments, the predetermined charged set point is a state of charge greater than 80%, greater than 85%, greater than 90%, greater than 95%, or greater than 99%. The controller may also switch the flow cell battery system from the float state to the discharge state when power to the flow cell battery system is disconnected and a load is coupled to the flow cell battery system.
The flow cell battery system may also be operated in a hibernation state. The controller switches the flow cell battery system from the discharge state to the hibernation state when a state of charge of the flow cell system is less than a predetermined discharged set point and when no power is being supplied to the flow cell battery system. In some embodiments, the predetermined discharged set point is a state of charge less than 20%, less than 15%, less than 10%, less than 5%, or less than 1%. The controller may also switch the flow cell battery system from a hibernation state to a charging state when power is supplied to the flow cell battery system. In some embodiments, the controller switches switch the flow cell battery system from the discharge state to the charging state when power is supplied to the flow cell battery system during the discharge state and when a state of charge of the flow cell battery system is less than a predetermined charged set point.
The flow cell battery system may also be operated in a shutdown state. The controller may switch the flow cell battery system from any state to the shutdown state when a fault is detected. The flow cell battery system may come out of the shutdown state after a predetermined amount of time, if the shutdown is due to a short circuit at the output of the flow cell battery system, or within the flow cell battery system.
The flow cell battery system may also be operated in initialization state. The controller switches the flow cell battery system to the initialization state when power is supplied to the flow cell battery system operating in the shutdown state. The controller switches the flow cell battery system to a plating state when the initialization state is complete.
Advantages of the present invention will become apparent to those skilled in the art with the benefit of the following detailed description of embodiments and upon reference to the accompanying drawings in which:
While the invention may be susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
It is to be understood the present invention is not limited to particular devices or systems, which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include singular and plural referents unless the content clearly dictates otherwise.
As shown in
Rebalance cell 228 is coupled to redox flow cell 202 to rebalance the electrolytes during operation. Rebalance cell 228 is controlled by a rebalance control board 120. Some embodiments of rebalance cell 228 and rebalance control board 120 are further described in U.S. Patent Application entitled “Flow Cell Rebalancing”, filed concurrently herewith, which claims priority to U.S. Provisional Patent Application No. 61/182,099 entitled “Flow Cell Rebalancing”, filed May 28, 2009, both of which are incorporated herein by reference. As shown in
Electronics 130 monitors and controls operation of flow cell battery system 100. As shown in
As shown in
In some embodiments, during operation of flow cell stack 202 hydrogen gas is produced and electrolytes in each half-cell of redox flow cell 202 become unbalanced. Rebalance cell 228 functions to rebalance electrolytes. As shown in
As shown in
As shown in
Both hydrogen gas and chlorine gas are problematic in concentration, especially in the presence of UV radiation. In order to monitor the process, and ultimately to control the process, sensors 240 and 242 are provided in compartment 238. Sensor 240 may include temperature and pressure sensors. If, for example, the temperature or pressure exceed a set threshold value, certain steps such as shutting down redox flow cell battery 212 may be taken. Sensor 242 measures the relative concentrations of chlorine and hydrogen gas. The ratio of chlorine concentration to hydrogen concentration may be kept at a particular level, for example between one and two, in order to safely control the formation of HCl. Some embodiments of sensor 242 are further described in U.S. Patent Application entitled “Hydrogen Chloride Level Detector”, filed concurrently herewith, which claims priority to U.S. Provisional Patent Application No. 61/182,076 entitled “Hydrogen Chloride Level Detector”, filed May 28, 2009, both of which are incorporated herein by reference.
A redox flow cell battery efficiently operates within a range of temperatures, for example between about 30° C and about 50° C. However, the redox flow cell battery may be in thermal environmental conditions that vary widely over time. For example, the redox flow cell battery may be placed in a sunny location in a hot environment, or in the shade in a cold environment. Nonetheless, the temperature of the electrolyte in holding tanks 206 and 204 and the temperature of the electronics 302, redox flow cell 202, and rebalance cell 228 should be maintained within the efficient operating range of redox flow cell battery 212. Thermal management of redox flow cell battery 212 is disclosed in U.S. patent application Ser. No. 12/577,127, entitled “Thermal Control of a Flow Cell Battery” filed on Oct. 9, 2009, which is incorporated herein by reference.
Enclosure 312 can be part of the thermal management of redox flow cell battery 212. As shown in
Temperature sensors 320 and 322 can be utilized to monitor the temperature of electrolyte in tanks 206 and 204. A temperature sensor 324 can be utilized to monitor the temperature of upper portion 308. Further, a temperature sensor 326 can be utilized to monitor ambient temperature. Control electronics 302, receiving temperature readings from temperature sensors 320, 322, 324, and 326, can then control fans, blowers, or fluid pumps and heaters in order to control the operating temperature of battery 112. For example, in
As shown in
Signals are also received from electrolyte pumps 216 and 218. For example, as shown in
Controller 510 also receives and provides signals to various fans and blowers 560 in order to provide thermal control of flow cell battery system 100. Use of temperature sensors 546 through 556 and fans and blowers 560 in order to thermally manage flow cell battery system 100 is further disclosed in U.S. patent application Ser. No. 12/577,127, entitled “Thermal Control of a Flow Cell Battery” filed on Oct. 9, 2009, which is incorporated herein by reference.
Level sensor 562 provides information regarding the level of electrolyte and the condition of electrolyte stored in tanks 204 and 206. Embodiments of level sensors that can be utilized for level sensors 562 are described in U.S. patent application Ser. No. 12/577,147, entitled “Level Sensor for Conductive Liquids” filed on Oct. 9, 2009, which is incorporated herein by reference.
System voltage monitoring 564 provides controller 510 with signals related to the voltages supplied to control circuitry. These voltages include, for example, the 5V, 10V, 15V, and 3.3V supplies.
In some embodiments, controller 510 can monitor rebalance cell 228. In which case, controller 510 receives signals from the rebalance cell system voltage monitors 566, the rebalance cell thermisters 568 in sensors 240, which monitor temperature at various locations in rebalance cell 228, the rebalance cell LED 570, rebalance cell level switches 572, rebalance cell voltage supplied across electrodes 232 and 236 (574), rebalance cell current between electrodes 232 and 236 (576), and provides controls for rebalance cell valves 226 and 250 (578). Rebalance cell 228, and rebalance control board 120, are further disclosed in U.S. patent application entitled “Flow Cell Rebalancing”, filed concurrently herewith, which claims priority to U.S. Provisional Patent Application No. 61/182,099 entitled “Flow Cell Rebalancing”, filed May 28, 2009, both of which are incorporated herein by reference.
In some embodiments, controller 510 can communicate to devices through a device interface 530, which may be an I2C interface. For example, controller 510 may communicate with rebalance control board 120 and buck-boost 110 through the I2C interface. Further, controller 510 may communicate with a global monitoring system 520 through a communication device 580, which may be wireless or may be directly coupled to a network.
During plating state 603, power is applied across electrodes 256 and 258 of flow stack 202 (shown in
In some embodiments, especially when a new flow cell battery 112 is placed in service, a small amount of plating metal is added to electrolytes 208 and 210 and is plated onto the electrodes of flow cell stack 202 during plating state 603. When flow cell stack 202 has been plated, in some embodiments plating state 603 can be bypassed. In some embodiments, plating state 603 operates on each transition from initialization state 602. Plating is done at low voltage and low current. In order that plating state 603 completes, even with systems that have already been plated, controller 510 is capable of detecting completion in order to transition to charging state 604.
Several states of state machine 600 transition to shutdown state 601 upon detection of a fault. Fault conditions include, for example, detection of a leak, detection of a high temperature situation, detection of a pump problem, detection of a power supply failure for powering electronics, and detection of a low electrolyte level. Other fault conditions may also be detected. Controller 510 transitions from plating state 603 to shutdown state 601 upon detection of a fault or if a buck state in buck-boost 110 is not enabled. In shutdown state 601, all pumps are off and all buck-boosts are off. Sensor monitoring is on and controller 510 may be sampling data. Further, a genset request may be on. Essentially, flow cell battery system 100 is off. Switches 166 as shown in
If shutdown state 601 was transitioned to due to the presence of a short at the load or at the Bbus, controller 510 is configured to transition the system to the initialization state after a predetermined time. This sequence is guided by a short circuit latch release algorithm. The Power good signal from the Buck boost board is tied to the interrupt line INT1 When the interrupt occurs the system should generate a Bbuss fault and should go into shutdown state Initially INT1 should be configured to trigger on the falling edge. When the interrupt occurs this signifies that there is a short on the Bbus. This error is reported. Interrupt routines set a flag to shutdown the system. The interrupt should be reconfigured to get an interrupt on the rising edge. When the interrupt occurs on the rising edge reset the error code. Send a 200 msec wide latch release signal and restart the state machine from the Initial state. Blank the Error checking for the next 1 sec.
As suggested, during charging state 604 flow cell battery 112 is charged. Generally, charging involves supplying a current between terminals 256 and 258 while flowing electrolytes through flow cell stack 202 in order to restore the charged chemical state of electrolytes 208 and 210. Charging electrolytes 208 and 210 is generally discussed in U.S. application Ser. No. 12/074,110, filed on Feb. 28, 2008, which is incorporated herein by reference.
During charge state 604, power is supplied from either generator 154 or power source 152 through rectifier 102. In some embodiments, voltage on the Bbus when rectifier 102 is active can be about 54 V. Buck-boost circuit 110 is on in buck mode and provides power to C-bus, which is utilized to charge flow cell stack 202. Pump controls are active to control pumps 216 and 218, the level sensors are active to monitor electrolyte levels in tanks 206 and 204, state-of-charge monitoring is active, and thermal control is on.
1. Stoichiometric Flow Rate (“SFR”) based control voltage calculation
In DISCHARGING, SFR=3*(I*NumCells)/(C*SOC*1608) a.
In CHARGING, SFR=3*(I*NumCells)/(C*(1−SOC)*1608) b.
where C is concentration of electrolyte.
2. Compensation for Tank level difference
Compute level tolerance=ABS(L1−L2)/2*H a.
L1 and L2 level of electrolyte form the bottom of the tank, where L1 is the right side of the tank, L2 is the left side of the tank, and H is the total height of the tank.
Compute compensation voltage(Vdelta)=PUMP_GAIN*tolerance*tolerance*Vmin. b.
3. Compute pump control voltage
PumpVf=Vmin
PumpVc=Vmin+Vdelta
An algorithm for computing the pump control correction for the rebalance flow cell is set forth below with reference to
Further, the state of charge (“SOC”) of electrolytes 208 and 210 are monitored and reported during the charging process. Descriptions of measurements of the state of charge are provided in U.S. patent application Ser. No. 11/674,101, filed on Feb. 12, 2007, which is herein incorporated by reference. During charging, thermal monitoring and control is accomplished, for example as U.S. patent application Ser. No. 12/577,127, entitled “Thermal Control of a Flow Cell Battery” filed on Oct. 9, 2009, which is incorporated herein by reference.
In some embodiments, a particular voltage and current are applied across electrodes 256 and 258 in order to charge electrolytes 208 and 210. Applying power to electrodes 256 and 258 while electrolytes flow through the flow cell battery brings at least a portion of the electrolytes from a discharged chemical state to a charged chemical state. In some embodiments, charging may stop at a predetermined charged set point. For example, charging may be stopped when the SOC reaches substantially 100%. In other embodiments, the predetermined charged set point is reached when an SOC is greater than 80%, greater than 85%, greater than 90%, greater than 95%, or greater than 99%. If, at that time, power from power source 152 is still available, controller 510 transitions to a float state 605. In some embodiments, for example, charging may occur at a voltage across electrodes 256 and 258 of about 30 volts and a current through flow cell stack 202 of about 100 amps, although more complicated charging algorithms can be employed by controller 510.
An alternate charging algorithm is designed to reach the target charged current quickly. The algorithm includes:
1. Read the Cbus voltage (Vcell).
2. If the ESR Value of the Cell is know use it, otherwise assume a nominal value of 27 mOhms.
3. The Vcharge=Vcell+Icharge*ESR. In the above equation Icharge is the charge current required.
4. From the calibration curves for each of the units use the equation for the DAC voltage VS. Vcharge. (Sample curve and equation is depicted in
5. Apply the DAC voltage and wait for the system to settle.
If a fault is detected during the charge process that occurs in charge state 604, controller 510 transitions to shutdown state 601 to shut system 100 down. Otherwise, once a SOC of about 100% is achieved, controller 510 transitions to float state 605 if buck is still enabled. Controller 510 transitions from charge state 604 to discharge state 606 if buck-boost 110 switches from buck to boost, indicating that power is no longer being received from rectifier 102.
During float state 605, buck is enabled and provides an output voltage at a particular value. In some embodiments, the value is about 25 Volts. During this state, flow cell battery 112 is standing by and ready to provide power to load 164 should power at rectifier 102 be reduced. During the float state, pump control is on and pumps 216 and 218 may be run to provide a small flow of electrolyte through flow cell stack 202. Further, in some embodiments, power utilized for providing voltage on buck-boost 110 and for running pumps and other system may be supplied by charging rectifier 102 instead of drawing on the charged electrolyte of battery 112. Further, monitoring of the SOC can be turned off. Again, if a fault is detected, controller 510 transitions to shut down state 601.
If power to rectifier 102 fails, then controller 510 transitions from float state 605 to discharge state 606. Controller 510 can also transition from charge state 604 to discharge state 606 before SOC is about 100% if the signal En_Buck indicates that power to rectifier 102 has been interrupted. In discharge state 606, power from flow cell battery 112 is supplied to load 164. In that case, pumps 216 and 218 are activated and controlled, buck boost 110 is in boost mode, electrolyte levels in tanks 208 and 210 are monitored, and the SOC is monitored and reported. In some embodiments, the Bbus voltage can be held at about 50 V. Once the SOC drops below a certain value, for example 10%, or available power on the Cbus drops, for example below about 20 V, which indicates that flow cell battery 112 is in a substantially discharged state, then controller 510 can transition from discharge state 606 to a hibernation state 607. If, during discharge, a fault is detected, then controller 510 can transition from discharge state 606 to shutdown state 601. Further, if power, for example from power source 152 or from generator 154, is supplied to rectifier 102 then controller 510 can transition from discharge state 606 back to charge state 604, buck-boost 110 switches from boost mode to buck mode, so that flow cell battery 112 can be recharged.
Controller 510 transitions into hibernate state 607 from discharge state 606 when flow cell battery 112 is reaches a predetermined discharged set point. For example, flow cell battery may be transitioned to a hibernation state when the SOC is less than 10%. In other embodiments, the predetermined discharged set point is reached when an SOC is less than 20%, less than 15%, less than 10%, less than 5%, or less than 2%. In hibernate state 607, pumps 216 and 218 are off and buck boost 110 is turned off. Controller 510 monitors flow cell battery system 100 until the charge on flow cell stack 202 is depleted. Controller 510 can transitioned out of hibernate state 607 if power returns to rectifier 102, in which case controller 510 transitions to charge state 604 to recharge flow cell battery 112. Controller 510 can also transition from hibernate state 607 to shutdown state 701 if a fault condition is detected.
Controller 510 can transition from hibernate state 607 to charge state 604 if power appears on the Bbus. In some embodiments, generator 154 may be activated in discharge state 606 if SOC is reduced below a threshold level. In some embodiments, generator 154 may be activated in hibernate state 607. In some embodiments, controller can transition the system from the hibernation state to the plating state (not shown).
In handling any fault state that occurs throughout state machine 700, the first fault can be latched for later review and state machine 600 transitions to shutdown state 601. In some cases, multiple cascading fault conditions result from the initial fault condition, so capturing the first fault condition can help a servicer to determine what caused the system to go to shutdown mode.
As shown in
Data is received by a server 808 coupled through communication devices 812-1 through 812-N and transceivers 806-1 through 806-N, respectively. Server 808 can receive data from systems 100-1 through 100-N and can transmit data and instructions to systems 100-1 through 100-N. A computer 810 coupled to server 808 can provide a user interface, through which individual ones of systems 100-1 through 100-N can be monitored and controlled.
Server 808 may perform alarm processing, status reports, software updates, phone number updates, and other functions. Alarm processing can include processing, authentication, recordation, transmission of alarm message to critical personal, acknowledging the alarm to system 100, and providing an estimated time for service to system 100.
The time to service is the amount of time estimated for service personnel to arrive and repair the problem that resulted in the alarm. In some embodiments, system 100 may ignore the alarm once the time to service is received, provided the alarm is not the result of a critical functionality. In some embodiments, if the time of service is not received system 100 can continue to provide the alarm at subsequent intervals until a time of service is provided.
In some embodiments, server 808 may submit a status request to a system 100. In response, system 100 may process the status request and provide the requested data, in addition to its reporting functions. In some embodiments, messages to and from system 100 can be encrypted. In some embodiments, server 808 may also maintain service functions such as client billings, client reports, and other functions.
An example of a relay control board that may be used with a controller system 130 as disclosed herein is depicted schematically in
The relay control board 920 includes an electronic control board and an electro-mechanical relay. Relay control board 920 may be mounted on the main control board 930 and the electromechanical relay is mounted on the bus bar which connects the B-Bus to the customer side BTS. A cut may be provided in the bus bar to mount the contacts of the mechanical relay so that if a fault, such as an output short circuit or output under voltage occurs in the output of the Boost converter of the Buck/Boost regulator, the contacts of the mechanical relay will open up and isolate the Buck/Boost from the BTS.
When the Buck/Boost converter turns on, a nominal 48V, in one embodiment, will be available at the output of the Boost converter. The same 48V from the Buck/Boost would also be available in the Control Board. This B-Bus voltage is sensed by the relay control board and will turn on the mechanical relay whose N/O contacts will close and connect the Boost output to the BTS.
If there is any short circuit at the output of the Boost converter or if the output of the Boost converter goes down to 30V+/−2V (in certain embodiments where the nominal is 48V), the fault will be sensed by the Relay Control board and switch off the relay, its contacts will open; thus isolating the Boost converter output from the BTS. On the other hand, when the output voltage of the Boost recovers to 40V+/−2V DC the relay will be energized by the Relay Control board and its contacts will close thus allowing the Boost converter output to be connected back to the BTS.
In this patent, certain U.S. patents, U.S. patent applications, and other materials (e.g., articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/182,079 entitled “Control System for a Flow Cell Battery,” filed on May 28, 2009, U.S. Provisional Application No. 61/182,660 entitled “Control System for a Flow Cell Battery,” filed on May 29, 2009, and U.S. application Ser. No. 12/790,793 entitled “Control System for a Flow Cell Battery,” filed on May 28, 2010, now U.S. Pat. No. 8,587,255, the disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3540934 | Boeke | Nov 1970 | A |
3996064 | Thaller | Dec 1976 | A |
4133941 | Sheibley | Jan 1979 | A |
4159366 | Thaller | Jun 1979 | A |
4309372 | Sheibley | Jan 1982 | A |
4312735 | Grimes et al. | Jan 1982 | A |
4414090 | D'Agostino et al. | Nov 1983 | A |
4454649 | Jalan et al. | Jun 1984 | A |
4468441 | D'Agostino et al. | Aug 1984 | A |
4469760 | Giner et al. | Sep 1984 | A |
4485154 | Remick et al. | Nov 1984 | A |
4496637 | Shimada et al. | Jan 1985 | A |
4543302 | Gahn et al. | Sep 1985 | A |
4576878 | Gahn | Mar 1986 | A |
4732827 | Kaneko et al. | Mar 1988 | A |
4784924 | Savinell et al. | Nov 1988 | A |
4814241 | Nagashima et al. | Mar 1989 | A |
4828666 | Iizuka et al. | May 1989 | A |
4874483 | Wakabayashi et al. | Oct 1989 | A |
4882241 | Heinzel | Nov 1989 | A |
4894294 | Ashizawa et al. | Jan 1990 | A |
4929325 | Bowen et al. | May 1990 | A |
4945019 | Bowen et al. | Jul 1990 | A |
4948681 | Zagrodnik et al. | Aug 1990 | A |
4956244 | Shimizu et al. | Sep 1990 | A |
5061578 | Kozuma et al. | Oct 1991 | A |
5162168 | Downing et al. | Nov 1992 | A |
5188911 | Downing et al. | Feb 1993 | A |
5258241 | Ledjeff et al. | Nov 1993 | A |
5366824 | Nozaki et al. | Nov 1994 | A |
5648184 | Inoue et al. | Jul 1997 | A |
5650239 | Lex | Jul 1997 | A |
5656390 | Kageyama et al. | Aug 1997 | A |
5665212 | Zhong et al. | Sep 1997 | A |
5759711 | Miyabayashi et al. | Jun 1998 | A |
5851694 | Miyabayashi et al. | Dec 1998 | A |
6005183 | Akai et al. | Dec 1999 | A |
6040075 | Adcock et al. | Mar 2000 | A |
6086643 | Clark et al. | Jul 2000 | A |
6461772 | Miyake et al. | Oct 2002 | B1 |
6475661 | Pellegri et al. | Nov 2002 | B1 |
6509119 | Kobayashi et al. | Jan 2003 | B1 |
6524452 | Clark et al. | Feb 2003 | B1 |
6555267 | Broman et al. | Apr 2003 | B1 |
6562514 | Kazacos et al. | May 2003 | B1 |
6692862 | Zocchi | Feb 2004 | B1 |
6759158 | Tomazic | Jul 2004 | B2 |
6761945 | Adachi et al. | Jul 2004 | B1 |
6764789 | Sekiguchi et al. | Jul 2004 | B1 |
6905797 | Broman et al. | Jun 2005 | B2 |
6986966 | Clarke et al. | Jan 2006 | B2 |
7046531 | Zocchi et al. | May 2006 | B2 |
7061205 | Shigematsu et al. | Jun 2006 | B2 |
7078123 | Kazacos et al. | Jul 2006 | B2 |
7181183 | Hennessy | Feb 2007 | B1 |
7184903 | Williams et al. | Feb 2007 | B1 |
7199550 | Tsutsui et al. | Apr 2007 | B2 |
7220515 | Ito et al. | May 2007 | B2 |
7227275 | Hennessy et al. | Jun 2007 | B2 |
7537859 | Samuel et al. | May 2009 | B2 |
7625663 | Clarke et al. | Dec 2009 | B2 |
7927731 | Sahu | Apr 2011 | B2 |
8587255 | Parakulam et al. | Nov 2013 | B2 |
8723489 | Parakulam et al. | May 2014 | B2 |
20030008203 | Winter | Jan 2003 | A1 |
20040070370 | Emura | Apr 2004 | A1 |
20040170893 | Nakaishi et al. | Sep 2004 | A1 |
20040202915 | Nakaishi et al. | Oct 2004 | A1 |
20040241544 | Nakaishi et al. | Dec 2004 | A1 |
20050074653 | Broman et al. | Apr 2005 | A1 |
20050156431 | Hennessy | Jul 2005 | A1 |
20050156432 | Hennessy | Jul 2005 | A1 |
20050158614 | Hennessy | Jul 2005 | A1 |
20050158615 | Samuel et al. | Jul 2005 | A1 |
20050164075 | Kumamoto et al. | Jul 2005 | A1 |
20050181273 | Deguchi et al. | Aug 2005 | A1 |
20050260473 | Wang | Nov 2005 | A1 |
20060014054 | Sugawara | Jan 2006 | A1 |
20060092588 | Realmuto et al. | May 2006 | A1 |
20060251957 | Darcy et al. | Nov 2006 | A1 |
20070072067 | Symons et al. | Mar 2007 | A1 |
20070080666 | Ritter et al. | Apr 2007 | A1 |
20070111089 | Swan | May 2007 | A1 |
20080081247 | Nakaishi et al. | Apr 2008 | A1 |
20080193828 | Sahu | Aug 2008 | A1 |
20090218984 | Parakulam | Sep 2009 | A1 |
20100003586 | Sahu | Jan 2010 | A1 |
20100090651 | Sahu | Apr 2010 | A1 |
20100092757 | Nair | Apr 2010 | A1 |
20100092807 | Sahu | Apr 2010 | A1 |
20100092813 | Sahu | Apr 2010 | A1 |
20100092843 | Conway | Apr 2010 | A1 |
20100094468 | Sahu | Apr 2010 | A1 |
20100136455 | Winter | Jun 2010 | A1 |
20100143781 | Keshavarz | Jun 2010 | A1 |
20110074357 | Parakulam et al. | Mar 2011 | A1 |
20110079074 | Sahu | Apr 2011 | A1 |
20110080143 | Parakulam et al. | Apr 2011 | A1 |
20110081562 | Parakulam et al. | Apr 2011 | A1 |
20110086247 | Keshavarz et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
1832169 | Sep 2006 | CN |
1842718 | Oct 2006 | CN |
102006007206 | Oct 2006 | DE |
60047373 | Mar 1985 | JP |
60070672 | Apr 1985 | JP |
60115174 | Jun 1985 | JP |
1060967 | Mar 1989 | JP |
1320776 | Dec 1989 | JP |
2027667 | Jan 1990 | JP |
2027668 | Jan 1990 | JP |
3017963 | Jan 1991 | JP |
8007913 | Jan 1996 | JP |
10012260 | Jan 1998 | JP |
10208766 | Aug 1998 | JP |
11329474 | Nov 1999 | JP |
2000058099 | Feb 2000 | JP |
2000200619 | Jul 2000 | JP |
2002015762 | Jan 2002 | JP |
2002175822 | Jun 2002 | JP |
2002289233 | Oct 2002 | JP |
2002367661 | Dec 2002 | JP |
2003173812 | Jun 2003 | JP |
2005142056 | Jun 2005 | JP |
2005228622 | Aug 2005 | JP |
2005228633 | Aug 2005 | JP |
2005322447 | Nov 2005 | JP |
2006107988 | Apr 2006 | JP |
2006114360 | Apr 2006 | JP |
2006147306 | Jun 2006 | JP |
2006147376 | Jun 2006 | JP |
2006313691 | Nov 2006 | JP |
2006351346 | Dec 2006 | JP |
2007087829 | Apr 2007 | JP |
WO8905528 | Jun 1989 | WO |
WO9003666 | Apr 1990 | WO |
WO03005476 | Jan 2003 | WO |
WO03017395 | Feb 2003 | WO |
WO2004079849 | Sep 2004 | WO |
WO2005008266 | Jan 2005 | WO |
WO2006135958 | Dec 2006 | WO |
WO2012097340 | Jul 2012 | WO |
Entry |
---|
Office Action dated Aug. 23, 2010 in U.S. Appl. No. 12/217,059. |
Office Action mailed Sep. 7, 2010 for U.S. Appl. No. 12/577,137. |
Office Action dated Sep. 12, 2012 in U.S. Appl. No. 12/790,793, 7 pages. |
Final Office Action dated Apr. 24, 2013 in U.S. Appl. No. 12/790,793, 7 pages. |
International Search Report mailed Aug. 21, 2009 for International Application No. PCT/US2009/049285. |
International Search Report and Written Opinion mailed Feb. 7, 2011, in related International Application No. PCT/US2010/036773. |
First Office Action mailed Oct. 12, 2013 in related Chinese Application No. 201080033069.4, 8 pages. |
Extended European Search Report mailed Jun. 20, 2013, in related European Application No. 10781371.9. |
Number | Date | Country | |
---|---|---|---|
20140139190 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61182660 | May 2009 | US | |
61182079 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12790793 | May 2010 | US |
Child | 14083266 | US |