The invention will now be described further, by way of example, with reference to the accompanying drawings, in which:
In the case of the force based handle 18, the controller 16 computes a command signal by integrating the displacements of the handle over time. In the case of automated speed control systems such as those represented by the blocks 22 and 24, the command signal is received from the automated control device.
The engine speed in agricultural vehicles is normally maintained constant and when moving slowly this is both noisy and wasteful of fuel. When driving on metalled roads, the controller 16 of the illustrated preferred embodiment of the invention therefore sets both the engine speed and the transmission ratio, running the engine at its full speed only when the vehicle speed is high. Only after the engine has reached its optimum operating speed is the vehicle speed controlled solely by varying the transmission ratio.
It is possible for one of the automated control devices or the manual force based handle to generate a command signal that is beyond the capacity of the pump of the hydrostatic transmission. Because of this, when the handle is released, or when the magnitude of the command signal from an automated system returns to a steady state, instead of the set vehicle speed being maintained, the vehicle continues to accelerate. Conversely, if the handle is shifted to its maximum position in the opposite direction to reduce the vehicle speed, the pressure in the transmission 12 would drop significantly, and the reduced pressure would result in the vehicle continuing to decelerate even after the handle 18 has been released.
To mitigate this problem, the present invention sets a limit on the extent to which the pressure in the hydrostatic transmission is allowed to change. To achieve this, the control system 16 receives an additional signal from a transmission ratio sensor 20 connected to the transmission 12. The transmission ratio sensor may for example sense the position of the swash plates of the pump and motor of the hydrostatic transmission or it may compare the speeds of the input and output shafts of the transmission 12. A limit is then placed on the demand signal applied by the controller 16 to the transmission 12 so that desired value of transmission ratio, corresponding to the no-load transmission ratio, never differs from the actual value of the transmission ratio by more than a fixed offset or a fixed percentage.
The effect of this limitation of the maximum value of the demand signal is readily understood from reference to
An analogous operation takes place during deceleration, only on this occasion the desired value of transmission ratio is not allowed to drop below the prevailing transmission ratio by more than a predetermined amount.
Number | Date | Country | Kind |
---|---|---|---|
GB 0613965.3 | Jul 2006 | GB | national |