This application claims priority under 35 USC §119 to German Patent Application No. 10 2013 019 666.3 filed on Nov. 22, 2013, which application is hereby incorporated by reference in its entirety.
The present invention concerns a control apparatus, a motor regulator and a control method for controlling an electric motor, in particular a ventilator fan for motor vehicles, by means of a pulsed control signal.
The standard “Local Interconnect Network” (LIN) was developed as a specification for a serial communication system as a new de-facto standard in particular for inexpensive communication of intelligent sensors and actuators in motor vehicles. The LIN serves in particular for inexpensive communication and is based on a one-wire bus which can be associated with the field buses. The LIN is composed of a master device and one or more slave devices. The master device has knowledge about the temporal sequence of all data to be transmitted. Those data are transmitted by the corresponding slave devices when they are required to do so by the master device. That is effected by sending out a message header characterised by a given message address. Subsequently the slave device connects its data output to the bus.
The new LIN standard is also intended for communication between control devices and motor regulators for electric motors in motor vehicles. Thus for example voltages or currents in radiator cooling fan regulators and interior fan regulators are regulated by means of corresponding signals or messages by way of various interfaces like for example pulse width modulation (PWM) and LIN. In that case an LIN interface has the advantage of greater flexibility over a PWM interface as various messages can be communicated while the PWM interface can only deliver a signal frequency and a pulse duty cycle. In the case of the PWM interface, it was possible to achieve a certain degree of flexibility by a variation in the pulse duty cycle, for example between 0% and 100%.
As many control systems are based on a PWM-based control there is a need for backward compatibility so that conventional PWM-based devices can communicate with more recent LIN-based devices, that is to say the information which can be transmitted by means of the LIN can also be transmitted by way of a PWM-interface.
Therefore the object of the present invention is to improve a PWM-based control system to the effect that use is possible in conjunction with more recent control components which expect LIN-specific information.
That object is attained by a control apparatus as set forth in claim 1, a motor regulator as set forth in claim 7 and a control method as set forth in claim 11.
Accordingly a parameter set for controlling the electric motor is defined by an operating mode which in turn is linked to the pulse frequency of the pulsed control signal so that the selected value assignment for the parameter set can be signaled to the electric motor by means of the pulsed control signal. The signaled pulse frequency of the control signal is communicated to the motor regulator of the electric motor and detected there, wherein the parameter set for operation of the electric motor is determined in dependence on the detected pulse frequency.
It is also possible to provide different frequencies or frequency ranges (frequency windows) for a plurality of operating modes so that parameter values like for example overcurrent thresholds, overvoltage thresholds, fan switching frequencies, current rise and fall limits and so forth can be signaled.
Switching over to another parameter set is thus possible by simply changing the frequency of the control signal.
In addition the proposed signaling method can also be used for selecting between a normal mode and a test mode. Adjustment of the pulse frequency can be effected directly by way of a frequency-determining element or a frequency-determining circuit or by changes to the period duration by means of suitable time-determining element or a suitable time-determining circuit.
Establishing the parameter set in accordance with the operating mode can also be implemented in dependence on a predetermined motor manufacturer so that the control system can be adapted to different manufacturers of electric motors like for example ventilator fans or the like.
Further advantageous developments are recited in the appendant claims.
The invention is described in greater detail hereinafter by means of embodiments by way of example with reference to the accompanying drawings in which:
Set out hereinafter is a description of a preferred embodiment by way of example with reference to a control system of a ventilator fan motor in a motor vehicle.
In accordance with the embodiment the control device has an additional input for the selection of an operating mode or a parameter set, by way of which a parameter control signal 100 can be input. The parameter control signal 100 can be input manually by a user or can be generated automatically by the control system in dependence on environmental conditions and/or other system-relevant properties. The control device 10 includes a selection unit (A) 12 which receives and evaluates the parameter control signal 100 and, in dependence on the parameter control signal 100, selects an assigned operating mode and/or an assigned parameter set. That can occur in dependence on a storage table, an address memory or other link or logic circuits. The selection of the operating mode or the parameter set is passed to a frequency selection unit (F) 14 which feeds the pulse control unit 16 with a suitable control signal for establishing the frequency of the PWM-control signal. That conversion of the operating mode or the parameter set into a frequency in respect of the control signal can also be implemented on the basis of a storage table, an addressable memory, a selection circuit or a logic circuit. Conversion of the parameter control signal 100 into the frequency selection signal of the frequency selection unit 14 can also be implemented by a one-time conversion in an individual storage table, an individual addressable memory, an individual selection circuit or an individual selection logic means.
As can be seen from
At the fan regulator 20 the PWM-signal is passed to an interface (SS) 22 which feeds the PWM-control signal to the fan control 29. In addition the PWM-signal or at least a signal corresponding to the frequency of the PWM-control signal is passed on to a detection unit (E) 24 which detects the frequency of the PWM-control signal and passes the result of the detection step to an adjusting unit (S) 26. The adjusting unit 26 performs corresponding parameter setting in dependence on the signaled parameter set or the signal operating mode and stores the signaled parameter set in a first parameter memory (P) 28.
The fan control 29 can thus access the parameter memory 28 and acquires the parameter set desired for the currently prevailing operating mode or the currently prevailing parameter choice, for control of the fan motor 30.
The blocks of the control device 10 and the fan regulator 20 shown in
In a first practical example of the embodiment, corresponding to the table shown in
Referring to
Different operating modes or parameters can then also be transmitted by switching over between different frequencies of the PWM-signal. Thus for example after the expiry of a predetermined period of time (for example a second) another frequency (and thus another parameter set and thus another operating mode) could be signaled. It will be appreciated that, instead of establishing the frequency, it is also possible to apply the period duration of the PWM-control signal.
To reduce the tolerance in respect of frequency or period measurement it is also possible to use a reference frequency (or reference period). Thus for example a frequency f=500 Hz can be transmitted as a fixed frequency while all other frequencies can be established proportionally thereto. The time until all parameters are transmitted and the first parameter occurs again can also be predetermined as the reference. As a further practical example, various frequencies of the PWM-signal can also be signaled for signaling respective users or manufacturers and correspondingly predetermined required characteristics of the control system, in which case another frequency of the PWM-signal is associated with various users or manufacturers.
It will be appreciated that any other links between the frequency of the PWM-control signal and predetermined parameters, operating modes or parameter sets can readily be envisaged and are comprehensible to the man skilled in the art. Thus different types of fan motors or ventilating blowers from the same or different manufacturers can also be signaled by different frequencies of the PWM-control signal.
The present invention is not limited to the fan motor control in accordance with the above-described embodiment but can be used for the most widely varying motor control and regulating situations in dependence on pulsed control signals in order thereby in addition to pulse width control also to permit a transmission of operating modes or parameter sets. The fan regulator 20 shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2013 019 666 | Nov 2013 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4333115 | Junio | Jun 1982 | A |
4486692 | Sonoda | Dec 1984 | A |
4599569 | Furuhata | Jul 1986 | A |
4959969 | Okamoto | Oct 1990 | A |
5616979 | Nishikawa | Apr 1997 | A |
5744927 | Hayashida | Apr 1998 | A |
6850536 | May | Feb 2005 | B2 |
7362062 | Schneider | Apr 2008 | B2 |
7626836 | Leggate | Dec 2009 | B2 |
7629764 | Shoemaker | Dec 2009 | B2 |
7821220 | El-Ibiary | Oct 2010 | B2 |
8226374 | Peterson | Jul 2012 | B2 |
8649923 | Sankaran | Feb 2014 | B2 |
8896253 | Wu | Nov 2014 | B2 |
20070126497 | Palaniappan | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
3541277 | May 1987 | DE |
19831931 | Feb 1999 | DE |
69033164 | Feb 2000 | DE |
10031529 | Jan 2002 | DE |
10254080 | Apr 2005 | DE |
102004043506 | Mar 2006 | DE |
102006034998 | Feb 2007 | DE |
102008001782 | Nov 2009 | DE |
102010004545 | Aug 2010 | DE |
102010017549 | Jan 2011 | DE |
102010009662 | Sep 2011 | DE |
Number | Date | Country | |
---|---|---|---|
20150145456 A1 | May 2015 | US |