The present invention relates to power electronics converters used in variable speed machine control, particularly those used in wind turbines. More specifically, the present invention relates to a control system having power electronics converters for doubly fed induction generators to allow a variable speed turbine to continue to operate in the presence of voltage transients that occur on a utility grid.
Large scale (Megawatt class) wind turbines are becoming increasingly used as a source of renewable energy for utilities throughout the world. One approach to achieving efficient conversion of the mechanical power from the blades of a wind turbine into electrical energy supplied to a utility grid is the use of a doubly fed induction generator (DFIG) combined with a power electronics converter. The operation of such systems has been described in a number of publications, of which the following are representative:
Pena et al., “Doubly Fed Induction Generator Using Back-to-Back PWM Converters and Its Application to Variable Speed Wind-Energy Generation,” IEEE Proc.-Electr. Power Appl. 143(3):231-241, May 1996.
Rostoen et al., “Doubly Fed Induction Generator in a Wind Turbine,” Norwegian University of Science and Technology, 2002 (www.elkraft.ntnu.noleno/Papers2002/Rostoen.pdf).
Poitiers et al., “Control of a Doubly-Fed Induction Generator for Wind Energy Conversion Systems,” International Journal of Renewable Energy Engineering Vol. 3, No. 2, August 2001.
U.S. Pat. No. 4,994,684, Lauw et al., “Doubly Fed Generator Variable Speed Generation Control System,” Feb. 19, 1991.
The primary components of a representative DFIG system are a stator connected to the utility grid, an associated rotor connected to the wind turbine, rotor electrical connections through slip rings, a rotor side converter, a line side converter, a DC link connecting the two converters, and a controller for the converters.
The doubly fed induction generator system is generally quite well suited to variable speed wind turbine operation, but grid voltage variations can present a problem. For example, transient conditions on the utility grid may occur for short periods of time, such as a few cycles, or for longer periods of time. A common example is a sag or surge in the grid voltage. Previous systems have contemplated reacting to these instabilities by activating a command to drop the DFIG system off the line, i.e., to disconnect the generator from the utility grid. Thereafter, when the quality of the utility voltage is reinstated, the generator is restarted and output power is conditioned as necessary prior to reconnection to the grid.
The present invention provides a control system that allows a doubly fed induction generator to “ride through” many voltage transients on the utility grid, so that the generator need not be disconnected and subsequently restarted. This is accomplished by sensing the grid transients and, when predetermined significant variations are detected, automatically adjusting the flux-producing rotor current corresponding to the altered line voltage. The adjustment is made dynamically by command signals from the controller to the rotor side converter to regulate rotor current. In an embodiment of the invention, both the flux producing (Ird) and torque producing (Irq) components of the rotor current are adjusted when a significant utility voltage variant is detected. If the adjustment is not sufficient to restore a desired balance, such as if the transient is too great or continues for too long a period, the transistors in the rotor side converter are turned off, having the effect of reducing the rotor current to the minimum level. If turning off the rotor side converter transistors is not sufficient to maintain a desired balance (as detected by monitoring the DC link voltage), an overvoltage crowbar protection circuit is actuated to rapidly reduce the DC link voltage until an acceptable level is obtained and control is returned. In many instances, controlling the current in the rotor by means of the rotor side converter and/or the activation of the crowbar is sufficient to allow the turbine to ride through the transient, and the system is automatically returned to normal operation when the utility voltage returns to normal or close to normal operating conditions.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
General Operation
A simplified diagram of a doubly fed induction generator system is shown in
At the rotor side, the wind-driven blade assembly 14 drives the rotor shaft 16, such as through a gear box 18. This generates the mechanical force to turn the DFIG rotor 20 (represented as the inner circle). The rotor electrical connections are through slip rings. Rotor voltage can be represented as Vr, and rotor current as Ir; with the three phase parameters designated as: Vrab, Vrbc, Vrca; Ira, Irb, Irc.
In addition to exciting the stator windings, the three phase power from the utility grid is connected to an AC/DC grid side converter 22. A circuit breaker 21 can be provided between the grid and the connections to the stator 12 and grid or line side converter 22. At the other side of the drawing, alternating current from the rotor windings is supplied to an AC/DC rotor side converter 24. The two power converters 22 and 24 are connected by a DC bus 26.
To allow for efficient operation of the wind turbine, the rotor shaft rotates at a varying frequency. In conventional systems, the rotor side converter includes switching transistors that, under normal operating conditions, adjust the rotor current, and thereby generator torque, through the variable frequency range. The reactive power at the generator terminals may also be controlled by the rotor current. Serious instabilities in the utility power may be dealt with by activation of the circuit breaker 21 to disconnect the DFIG from the grid. This requires a restart procedure before the DFIG is reconnected.
Utility power is supplied to the power stages 34 (consisting of grid or line side converter 22 and rotor converter 24) through a conventional line contactor 36 and line filter 38. The line and rotor converters 22 and 24 are connected by a common DC bus 26.
The wind-driven blade assembly 14 drives the rotor shaft 16, such as through a gearbox 18 and a coupling 19. The rotor converter is connected with the generator rotor electrical circuit by a slip ring assembly. By using a wound rotor generator, the rotor converter does not have to process the fall power of the system, which reduces the size and thereby cost of the converter and improves the system efficiency. A tachometer encoder, represented by broken line 41, is used to measure the position and frequency of the DFIG rotor.
In the illustrated embodiment each of the converters 22 and 24 uses insulated gate bipolar transistors (IGBT's), but other switching devices can be used in other implementations, such as SCR's or MOSFET's. In the illustrated embodiment, three phase power is provided. In each converter six transistors (two each for phases A, B, C) are controlled by on/off gating signals (A+, A−; B+, B−; and C+, C−). Current through the rotor windings passes through a rotor filter 40. A crowbar 42 utilizes switching devices that connect the three phase rotor power conductors together through an impedance which may be an inductance and/or resistance. The crowbar can be connected at the location shown in
A controller 28 monitors signals of many of the system variables and controls operation of the line and rotor converters 22 and 24, and the crowbar circuit 42. As represented in
Two of the most important aspects of megawatt class wind turbines employing doubly fed induction generators are the ability to accurately control the torque on the rotor and to provide high power quality to the utility grid. Both features are implemented by the command/switching signals to the rotor and line side converters. At rotor speeds below the synchronous speed of the generator, power flows into the DC link and into the rotor. Above synchronous speed, the power flow is out of the rotor and out of the DC link to the utility grid. In known systems, rotor current is set to achieve the desired level of rotor torque (TORQ CMD) and reactive power (VAR CMD) to or from the grid.
The rotor current control signals in the controller algorithms can be designated IRD_CMD (command signal for flux-producing component of rotor current) and IRQ_CMD (command signal for torque-producing component of rotor current). In one aspect of the present invention, it is these command signals that are adjusted to permit ride through during utility voltage transients. A ride through algorithm is performed to step up or ramp down the IRD and IRQ command signals and thereby control the rotor current based on the transient on the grid. For example, in one implementation of the present invention a comparator determines whether or not the actual utility line voltage has fallen below a predetermined value, such as 70% of nominal. If so, a “sag_protect” or “sag_ramp” value is used to adjust the IRD and IRQ command signals. Thus, if the utility line voltage is between 70% and 100% of nominal, no adjustment is made, whereas an adjustment begins as soon as a value of less than 70% of nominal is detected.
The IRD_CMD and IRQ_CMD ride through adjustments result in a corresponding adjustment of the rotor current, and occur only during the transient. If the size of the transient is too great, or the period too long, the adjustment may not be sufficient to bring the system into balance, and the DC link voltage will climb. In accordance with the present invention, if the DC link voltage reaches a predetermined amount above nominal, such as 10%, the transistors in the rotor converter are turned off to minimize rotor current, and if the DC link voltage rises significantly more, such as to 20% above nominal, the crowbar circuit is actuated. When the DC link voltage returns to very close to nominal, the rotor control converter is reenabled and the crowbar circuit is turned off, and the system returns to normal operation.
The line converter current magnitude is adjusted to cause the proper amount of power to flow into or out of the DC link between the line side and rotor side converters, to keep the voltage level of the DC link regulated within predetermined limits.
System Implementation for 1.5 Megawatt Wind Turbine Grid
Referring to box 60 of
As represented by box 61 of
Referring to line 62 of
In accordance with the present invention, for closed torque control, the feedback is calculated from the sensed instantaneous stator real power rather than from the rms current and voltage values. Torque is estimated from measured stator power, assuming line frequency is nominal (i.e., 60 Hz). See Table 3.
With reference to box 63 of
The general flow of
The process for calculating IRQ_CMD (command signal for torque producing component of rotor current—sys.ird_cmd) is represented in
The general operation is to determine whether or not the magnitude of the AC line (grid) voltage (represented by VMAG) has dipped below a reference voltage (“SAG_VOLTAGE”). If so, the adjustment multiplier (SAG−RAMP) is decreased and continues to decrease to a minimum limit as long as the variation exists. If the variation is brought back into balance, the SAG−RAMP value ramps back to unity so that no adjustment is made.
More specifically, as represented at 90, the reference voltage (70% of nominal in a representative embodiment) is compared to the actual AC line voltage (vmag—see Table 2). The difference is limited as indicated at 91. At 92, this value is multiplied by a number between upper and lower limits at a digital cycle frequency represented at 93 which can be 4800 Hz. The values are selected such that if the actual line voltage remains within the selected percentage of nominal, the result at 94 (following the division at 95) is unity (“1”), such that no adjustment is made. The described implementation reduces both the flux producing and torque producing components of rotor current equally. In alternative embodiments, the adjustment for one of the components could be different to meet requirements of the utility grid. For example, during ride through it may be desirable for the flux producing component of rotor current to be increased to provide reactive power to the utility grid.
With reference to box 63 of
Starting at the upper left of
Continuing from 106 of
IROTORB−REF=−[IROTORA−REF]−[IROTORC−REF]
With reference to box 65 and box 66 of
Starting at the left of
Concerning converter current regulators, the line converter is modulated with a 3.06 kHz carrier (LINE−TRI in
The operation of comparator 140 in
The different rotor and crowbar on and off voltages provide a desired amount of hysterisis. In addition, as represented in
Starting at the top of
At that point, the SYS.SAG flag is set at true (box 154) and the system evaluates whether or not the VMAG value has recovered for a predetermined number of cycles, similar to the procedure described above. In the case of recovery, the count starts at 10 and decreases for each cycle that the recovery limit has been met (boxes 155, 156, 157, 158), ultimately resulting in resetting the SYS.SAG flag to false if the recovery voltage has been exceeded for ten 4800 Hz decision cycles.
The logic for an over voltage event (grid surge) is somewhat different. With reference to
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. provisional Application No. 60/467,328, filed on May 2, 2003.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/013561 | 5/3/2004 | WO | 00 | 10/3/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/098261 | 11/18/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4366387 | Carter, Jr. et al. | Dec 1982 | A |
4982147 | Lauw | Jan 1991 | A |
4994684 | Lauw et al. | Feb 1991 | A |
5028804 | Lauw | Jul 1991 | A |
5239251 | Lauw | Aug 1993 | A |
5798631 | Spee et al. | Aug 1998 | A |
6072302 | Underwood et al. | Jun 2000 | A |
6281595 | Sinha et al. | Aug 2001 | B1 |
6566764 | Rebsdorf et al. | May 2003 | B2 |
6700214 | Ulinski et al. | Mar 2004 | B2 |
6741059 | Gokhale et al. | May 2004 | B2 |
6784634 | Sweo | Aug 2004 | B2 |
6847128 | Mikhail et al. | Jan 2005 | B2 |
6856038 | Rebsdorf et al. | Feb 2005 | B2 |
6856039 | Mikhail et al. | Feb 2005 | B2 |
6856040 | Feddersen et al. | Feb 2005 | B2 |
6933625 | Feddersen et al. | Aug 2005 | B2 |
7095131 | Mikhail et al. | Aug 2006 | B2 |
7239036 | D'Atre et al. | Jul 2007 | B2 |
7291937 | Willisch et al. | Nov 2007 | B2 |
7321221 | Bucker et al. | Jan 2008 | B2 |
20020014773 | Stricker | Feb 2002 | A1 |
20070132248 | Weng et al. | Jun 2007 | A1 |
20070182383 | Park et al. | Aug 2007 | A1 |
20070278797 | Flannery et al. | Dec 2007 | A1 |
20080001408 | Liu et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 2004098261 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070052244 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
60467328 | May 2003 | US |