Not applicable.
Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates to a control system for pressure controllers, specifically to provide pressure control during production and transportation of explosive fluids. Such a control system is used with gas in areas classified as “explosion risk areas”.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
As it is known, gas conduits are provided with pressure controllers. A pressure controller generally comprises a control membrane that is compressed or decompressed to guarantee pressure control in the conduit downstream the pressure controller. Such compression and decompression of the pressure controller membrane can be made directly actuating on the pressure controller or through a pilot device connected to the pressure controller.
Such pressure controllers are generally actuated by means of a screw/bolt mechanism. The screw generally actuates on a spring of the pilot device or directly on a spring of the pressure controller.
The actuation of said pressure controllers is exclusively done manually, by means of a mechanical rotation on the screw/nut made by the operator using a specific tool.
In addition to being inaccurate, such a manual adjustment requires some time and does not permit immediate action in case of faults or anomalies. In view of the above, pressure control operations are only made once during the installation or maintenance of the pressure controller.
Moreover, being not equipped with an electronic interface, such a pressure controller cannot be provided with traditional remote control and its automatic actuation is not possible.
DE102008029008 disclose a pressure controller for explosion risk area consisting in a pneumatic valve which is controlled by means of a pressurized fluid flowing in a control duct.
Fairchild “Model MP2400 Low pressure M/P converter” discloses a pressure controller for explosion risk area provided with a motorized pilot. The pilot is integrated into the pressure controller and the pilot can not be applied to an existing pressure controller wherein the adjusting screw is manually actuated. The pilot of the model MP2400 is provided with a steeper motor having a driving shaft (range screw) pressing a spring. Therefore said model MP2400 is not provided with adaptor which is adapted to an adjusting screw. The stepper motor of the pilot is to be supplied with alternate voltage of 114 Vac. Said model of motorized pilot, such as other motorized pilots, has the drawback that it must have a dedicated electrical supply and it is not suitable for other different types of electrical power source.
U.S. Pat. No. 3,216,278 discloses a valve control mechanism comprising a plurality of gears and a clutch for selectively operating the mechanism by a motor drive or an hand-wheel.
The purpose of the present invention is to remedy the drawbacks of the prior art by providing a control system for pressure controllers that is efficient, effective, reliable and suitable to be used for fluids in explosion risk areas.
Another object of the present invention is to provide such a control system for pressure controllers which is versatile and suitable for existing pressure controllers wherein the adjusting screw is manually actuated.
Another object of the present invention is to provide such a control system for pressure controllers which is suitable for automatically driving and remote control.
Another object of the present invention is to provide such a control system for pressure controllers which is suitable for implants having different electrical power sources for the nominal value of the voltage and the type of electrical power (ac/dc).
This purposes are achieved according to the invention, with the features claimed in the attached independent claim 1.
Advantageous embodiments appear from the dependent claims.
The control system of the invention comprises:
The advantages of the control system of the invention are manifest, since it provides for automatic remote control of a manual pressure controller that can be used in the mining industry in the presence of firedamp and in surface industries in the presence of explosive gases and powders.
Additional characteristics of the invention will appear evident from the detailed description below, with reference to the attached drawings, which only have an illustrative, not limitative purpose, wherein:
Referring to the aforementioned figures, the control system of the invention is disclosed, generally indicated with numeral (1).
Referring now to
The pressure controller (2) is of known type and comprises a body (20) adapted to be inserted into a conduit where an explosive gas flows. A flange (21) is connected to the pressure controller body and a shank (22) protrudes from the flange (21) in such manner to be disposed externally to the gas conduit.
The shank (22) of the pressure controller is provided with one end (26) wherein a threaded hole (23) is obtained, axially extending inside the shank (22). An adjusting screw (24) is screwed into the threaded hole (23) of the shank. The adjusting screw (24) has a head (25) with polygonal, preferably hexagonal section.
The adjusting screw (24) pushes a spring or directly a membrane disposed inside the pressure controller that controls the pressure of the gas flowing inside the conduit. To increase the pressure, the adjusting screw (24) is screwed into the shank (22) and makes a screwing travel; on the contrary, to decrease the pressure, the adjusting screw (24) is unscrewed from the shank (22) and makes an unscrewing travel. The pressure increase or decrease operation according to the rotation direction of the screw/bolt has an illustrative, not limiting value.
The screwing and unscrewing travels of the adjusting screw (24) are controlled according to the minimum and maximum pressure values to be obtained, in such manner to define an end-of-screwing travel position and an end-of-unscrewing travel position. When the adjusting screw is at the end of the unscrewing travel, the upper end of the head (25) of the adjusting screw protrudes with respect to the end (26) of the shank by a maximum length (L) according to the pressure controller used.
Although for illustrative purposes the figures show a cylindrical shank (22), said shank (22) can have any shape or can be replaced by a pilot device wherein the adjusting screw is screwed. Being of a known type, the description of the pilot device is omitted.
Referring to
A coupling pin (32) axially protrudes outwards from the second end (36) of the adapter body. The coupling pin (32) has a polygonal, preferably square section. A threaded hole (33) is obtained axially inside the coupling pin (32). The threaded hole (33) can be a blind hole or can be in communication with the hole (31) of the adapter body. In any case, the hole (33) of the coupling pin has lower dimensions than the hole (31) of the adapter, in such manner to generate a shoulder (34) at the end of the hole (31) inside the adapter body.
Going back to
Referring to
A first hole (52) is obtained axially in the first end (51) of the support body, and suitably dimensioned to receive the shank (22) of the pressure controller. If the shank (22) of the pressure controller is cylindrical, also the first hole (52) of the support is cylindrical.
A second hole (53) is obtained axially in the second end (52) of the support body, and suitably dimensioned to receive the body (30) of the adapter. If the body (30) of the adapter is cylindrical, also the second hole (52) of the support is cylindrical.
The two holes (53, 54) of the support are in communication in intermediate position of the support.
If the holes are cylindrical, the diameter of the first cylindrical hole (53) is higher than the diameter of the second cylindrical hole (54). Consequently, a shoulder (55) is generated in intermediate position inside the support.
Referring to
The adapter (3) and the support (5) are made of metal material, such as steel or aluminum. The adapter (3) and the support (5) can also be obtained from molding hard plastic materials, such as for example acrylonitrile-butadiene-styrene (ABS).
The motor (4) is of known type and is designed to be used in explosion risk areas. The motor (4) is an electrical motor, suitable to provide rotation of the driving shaft (40).
Preferably the motor (49) is a rotating electric motor having three positions, certified ATEX according to the recommendations of European directive 94/9/CE, with mixed protection methods of the type anti-explosion and intrinsic safety, to operate in environments having explosive gas or powders, i.e. areas classified with explosion risk.
In order to obtain a universal system for implants having different electric power sources (mains, battery, solar panels, etc.), the motor (4) comprises a power supply suitable to be supplied with a range of direct voltages from 24 to 240 VDC±0% or alternate voltages from 24 to 240 VAC±10% at a frequencies ranging from 50 to 60 Hz+20%. In this case the electronics of the motor (2) is act to recognize the voltage level applied to the motor and auto-adjusting the motor accordingly.
The motor (4), as it is supplied, can rotate in clockwise or anticlockwise according to the control signals sent by a remote control system. In order to rotate the motor (4) in clockwise or anticlockwise, the remote control system drives a switch electronic circuit of the motor connecting two electrical contacts of the motor (position 1) intended for the clockwise rotation or other two electrical contacts of the motor (position 2) intended for the anticlockwise rotation. When the motor is still, the motor is set in a rest position (position 3) wherein the electric contacts of the positions 1 and position 2 are disconnected.
Following is a description of the assembly and operation of the control system according to the present invention.
The support (5) is mounted on the pressure controller (2) in such manner that the shank (22) of the pressure controller is inserted into the first hole (53) of the support, until the end (26) of the shank of the pressure controller is stopped against the shoulder (55) of the support and the flange (21) of the pressure controller is stopped against the first end (51) of the support. In view the above, the adjusting screw (25) extends axially inside the second hole (54) of the support.
The adapter (3) is inserted into the second hole (54) of the support, in such manner that the head (25) of the adjusting screw is engaged inside the hole (31) of the adapter.
The coupling pin (32) of the adapter is coupled with the driving shaft (40). The motor (4) can be connected to the wiring box (6). The wiring box (6) is electrically connected to an electrical power supply source to power the electrical motor (4) and to a telecommunication/control network to remotely control the electrical motor (4).
In this way the motor (4) can be actuated from a remote station. The rotation of the driving shaft (40) in either direction causes the rotation of the adapter (3) and consequently the screwing or unscrewing of the adjusting screw (24), thus controlling the gas pressure automatically.
Numerous variations and modifications can be made to the present embodiment of the invention by an expert of the art, while still falling within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
13425092.7 | Jun 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/060415 | 5/21/2014 | WO | 00 |