The present invention relates to decorative lighting and in particular to a liquid motion lamp.
Liquid motion lamps, commonly called “lava lamps” have been known since the 1960s. Such lamp is described in U.S. Pat. No. 3,387,396 for “Display Devices.” The '396 patent describes a lamp having globules of a first liquid suspended in a second liquid, wherein the first liquid has a thermal expansion coefficient providing sufficient expansion, and therefore reduction in density, such that the first liquid is heavier than the second liquid at a lower temperature, and lighter than the second liquid at a higher temperature. The temperatures may be, for example, 45 degrees Centigrade and 50 degrees Centigrade. The first and second liquids are contained in a clear container having a heat source at the bottom, and as a result, the first liquid is heated, rises within the second liquid, cools, and drops back to the bottom of the container. At least one of the liquids is preferably colored, and provides an entertaining motion for an observer. Lamps such as described by the '396 patent are typically small and are sold as a sealed unit.
Unfortunately, known lamps often exhibit erratic behavior because of temperature fluctuations. The internal lamp temperature fluctuates with ambient temperature and the liquids fail to behave as intended. Further, high temperatures can cause the liquids to break down.
Recently, liquid motion lamps have gained popularity, and there is a desire to use such lamps in various commercial settings, for example hotel lobbies, clubs, lounges, etc. There is a desire that such lamps used in a commercial setting be substantially larger than known liquid motion lamps, but shipping such large lamps filled with liquid results in a high probability of damage and high shipping costs. U.S. patent application Ser. No. 10/856,457 filed Jun. 1, 2004 by the present applicant discloses a liquid motion lamp which may be shipped dry, and filled with a liquid at it's final destination. The dry shipment thus makes large liquid motion lamps much more practical. However, such large lamps are being used in luxurious settings where the appearance of the motion in the lamps is very important, and the large lamps may not behave consistently due to temperature fluctuations, particularly with tall lamps, for example, over five feet high. If the temperature is not carefully controlled, the desired visual affects may not be achieved. For example, too high of temperatures may cause the first liquid to remain near the top of the container, and cause clouding. Too low of temperatures will result in the first liquid failing to rise a desired amount. The '457 application is herein incorporated by reference.
The present invention addresses the above and other needs by providing a control system for a liquid motion lamp. The control system maintains the proper temperature of liquids in the lamp to provide desired motion within the lamp, and reduces sensitivity to ambient temperature. The lamp preferably includes two heating elements, a first element generally providing lighting and heat, and a second heating element such as a heat blanket, resistive glass coating, or a submerged ring, for initial heating or for when additional heat is required for proper operation of the lamp. A sensor measures the temperature of the liquid inside the lamp, and the control system controls the heat sources to maintain the temperature within operating limits.
In accordance with one aspect of the invention, there is provided a liquid motion lamp including a container, a base portion, a first liquid suitable for residing in the container, a second liquid suitable for residing in the container, a first heat and light source, a second heat source, a temperature sensor, and a control system. The first liquid is a solid at room temperature, a liquid at a lower operating temperature, and a liquid at a higher operating temperature. The second liquid is a liquid at room temperature, wherein the first liquid has a lower density than the second liquid at the higher operating temperature and a greater density than the second liquid at the lower operating temperature. The base portion resides substantially below the container and the first heat and light source resides within the base portion. The second heat source is configured to be in thermal cooperation with the second liquid when the lamp is in use. The sensor measures the temperature of the second liquid and the control system receives measurements from the sensor and controls the first heat source and the second heat source.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing one or more preferred embodiments of the invention. The scope of the invention should be determined with reference to the claims.
Liquid motion lamps, or lava lamps, are well known as small home decorative lighting. U.S. Pat. No. 3,387,396 for “Display Devices,” U.S. Pat. No. 3,570,156 for “Display Devices,” and U.S. Pat. No. 5,778,576 for “Novelty Lamp,” describe such lamps. A detailed description of liquids used in such lamps is provided in U.S. Pat. No. 4,419,283 for “Liquid compositions for display devices.” Construction of a large liquid motion lamp is disclosed in U.S. patent application Ser. No. 10/856,457 filed Jun. 1, 2004 by the present applicant. The '396, '156, '576, and '283 patents are herein incorporated by reference. The '457 application was incorporated by reference above.
Although basic home lava lamps have become commonplace, large versions for commercial use have not been entirely practical for various reasons. The liquid motion lamp 10 shown in
The container 14 diameter D1 is preferably between six inches and 36 inches, the base cover diameter D2 is preferably between approximately one inch and approximately two inches greater than the container diameter D1, and the base flange diameter D3 is preferably between approximately two inches and approximately twelve inches greater than the container diameter D1. The overall height H1 of the lamp 10 is preferably between approximately three feet and approximately nine feet, and the height H2 of the visible portion of the container 14 is preferably between approximately two feet and approximately six feet While the primary advantages of the present invention are directed to a lamp 10 having the preferred dimensions, any lamp including the present invention described herein is intended to come within the scope of the present invention. A perspective view of the lamp 10 is shown in
A lamp 10 intended for use in a commercial setting, for example, hotel lobbies, clubs, lounges, etc., may be much larger and heavier than known lava lamps. As a result, it is not practical to lift or move the lamp 10 to replace a heat source which has failed or to adjust controls 40. To address replacement of the heat source, the base cover 16 is vertically moveable along an arrow 20 as shown in
A cross-sectional view of the lamp 10 taken along line 4-4 of
The sensor 42 is preferably a Resistive Thermal Device (RTD) sensor, but may be any electronic, electro mechanical or non-contact infared temperature or thermal optical device. An example of a suitable sensor 42 is an LM34 manufactured by National Semiconductor in Santa Clara, Calif. Another suitable sensor 42 is a series 5100 Hermetically Sealed Immersion-Type Thermostat made by Airpax in Frederick, Md.
The sensor arm 44 is preferably made from a thermally conductive material, and attaching the sensor arm 44 to the heating coil 28a provides a thermally conductive path between the heating coil 28a and the thermal sensor 42. If the lamp is turned on without liquid in the lamp, the heating sensor 42 will be rapidly heated by heat conducted by the sensor arm 44, and an overheated condition may be detected and the lamp turned off before damage to the lamp occurs.
Although liquid motion lamps may function properly with a fixed amount of heat provided to the liquids, in general, the best visual effects are not obtained if the temperature of the liquids falls outside an intended temperature range. The temperature of the second liquid at the base of the lamp must be sufficient to heat the first liquid to a temperature where the density of the first liquid is less than the density of the second liquid so that the first liquid rises to near the top of the container, and the temperature of the second liquid at the top of the container must be low enough to cool the first liquid to a temperature where the density of the first liquid is greater than the density of the second liquid so that the first liquid falls proximal to the bottom of the container. If the temperature of the second liquid in the base is low, the first liquid will not be heated sufficiently to rise proximal to the top of the container, and if the temperature of the second liquid in the top of the container is too high, the first liquid will remain proximal to the top of the container. In particularly, large and/or tall lamps the temperature of the second liquid must be carefully controlled to maintain proper behavior of the second liquid.
To provide the desired behavior of the first liquid, the lamp 10 according to the present invention includes a control circuit 40. The control circuit 40 may reside in the base of the lamp (see
Sensor wires 46 electrically connect the sensor 42 to the control circuit 40 providing temperature measurements, first heater wires 30a connect the heater 22 to the control circuit 40 providing power to the heater 22, and second heater wires 30b connect the heater 28a to the control circuit 40 providing power to the heater 28a. Wires 32 provide electrical power to the control circuit 40.
A detailed view of a bottom portion of the cross-sectional view of the liquid motion lamp 10 taken along line 4-4 of
A detailed view of a bottom portion of the cross-sectional view of a liquid motion lamp 10a taken along line 4-4 of
A detailed view of a bottom portion of the cross-sectional view of a liquid motion lamp 10b taken along line 4-4 of
A detailed cross-sectional view of a liquid motion lamp 10c taken along line 4-4 of
When the lamp 10 is in use, the container 14 is substantially filled with two immiscible liquids. The lamp 10 is shown in cut-away in
A lamp 10d including a surface mounted temperature sensor 42a is shown in
A lamp 10e with the temperature sensor 42 residing proximal to the top of the container 14 is shown in
The first liquid 34 has greater density than the second liquid at room temperature. When heated to operating temperature, the first liquid 34 becomes less dense than the second liquid and rises in the container 14, thereby creating liquid motion. As the first liquid 34 rises in the container 14, the first liquid 34 cools sufficiently to become more dense than the second liquid, and thus drops back to the bottom of the container 14 where the first liquid 34 is again heated. The lamp preferably operates at between approximately 110 degrees Fahrenheit and approximately 120 degrees Fahrenheit.
An exemplar first liquid 34 is a paraffin based thermally expansive material, and preferably a combination of chlorinated paraffin and paraffin. The paraffin is preferably a low melting temperature paraffin, and more preferably a low oil content paraffin, and most preferably a less than three percent oil content paraffin, also known as a scale wax. The paraffin is preferably a low melting temperature paraffin to allow a low operating temperature for the lamp. A surfactant is preferably added to the container to reduce surface tension of the liquids, and a binder is preferably added to prevent the paraffin and chlorinated paraffin from separating. The surfactant is preferably a high cloud point surfactant, and the binder is preferably Polyboost binder made by Hase Petroleum Wax Co. in Arlington Heights, Ill.
While the lamp described in
A method for controlling the liquid motion lamp 10 is described in
If Ts is not less than T1 at step 210, the power to the second heater is turned off at step 213 and Ts is compared to a second temperature T2 at step 214. If Ts is less than T2, temperature Ts is again measured at step 209. If Ts is greater than T2 at step 214, and Ts is less than Tmax at step 218, power is reduced to the first heater at step 216 and the temperature Ts is again measured at step 209. If Ts is greater than T2, at step 214 and Ts is greater than Tmax at step 218, an over temperature condition has been detected and all power is removed from the lamp at step 220. The first heating element is preferably the lamp 22 and the second heating element is preferably the heater 28.
The temperature control methods regulate the liquids in the container to reach and maintain a temperature within a range preferred for the general operating temperature of the lamp. In general, the lower the temperature, the less chemical reactions that occur and at higher temperatures, for example, above 120 degrees Fahrenheit, a slow but continual break down of both the first liquid (generally a wax and its constituent components) and the surfactant and additives which reside in the water phase of said display takes place. The basic function of the lamp operates on the expansion and contraction of heated first liquid. The hotter the first liquid (and second liquid), the greater tendency of the said first liquid to rise, and in some cases, stay at top of said lamp. Too low of temperature creates a stall condition and the first liquid will remain at bottom of the lamp, and in some cases, re-solidify into a non-flowing solid. Preferably, the lamp is operated below 120 degree Fahrenheit, and more preferably T1 is approximately 110 degrees Fahrenheit and T2 is approximately 120 degree Fahrenheit. To maintain a preferred temperature, the second heater may be turned on to half power if Ts is below approximately 114 degrees Fahrenheit, and the second heater may be turned on to full power if Ts drops below 110 degrees Fahrenheit. More preferably, the heaters are provided power to maintain a three degrees Fahrenheit operating range (i.e., hysteresis). Tmax is preferably approximately 160 degrees Fahrenheit.
Heating the second liquid initially as described in steps 202-206 is preferred because melting the first liquid (e.g., the wax) first may result in undesired cooperation of the first liquid and the second liquid.
The method described in
A high level view of a custom control circuit 50 for the liquid motion lamp is shown in
The sensor data processor 54 provides 5 volt DC power to the temperature sensor 42 and a ground connection, and receives a first temperature signal T1 from the sensor 42 through a second connector J2. A second temperature signal T2 may optionally be received through the connector J2. The sensor data processor 54 provides a temperature measurement signal 64 to the micro controller circuit 56.
The power controller 58 receives the AC power from the AC plug 60 and also receives a heater control signal 66 and a lighting control signal 68 from the micro controller circuit 56. A current feedback signal 70 representing the current provided to the heater 28 or the light 22 is provided to the micro controller circuit 56 from the power controller 58. The power controller 58 provides power to the light 22 through wires 30a and to the heater 28 through wires 30b.
A detailed diagram of the micro controller circuit 56 of the control circuit 50 is shown in
Pins on the micro controller 57 are connected as follows. Pins 1, 3, 10, 12, 13, 15, 16, 17, 18, 19, 22, 24, 26, 33, 35, 36, 40, 41, and 42 are not connected to elements of the micro controller circuit 56. The remaining pins are connected to:
Pin 2 is connected to ground through a 1 μf capacitor C10.
Pin 4 is connected to the 5 volt DC power signal 62.
Pin 5 is connected to a second pin of a connector J3 of a clock 59.
Pin 6 is connected to the clock 59.
Pin 7 is connected to ground.
Pin 8 is connected to the zero cross signal 63.
Pin 9 is connected to through a diode D1 (current toward pin 9) to the 5 volt DC power signal 62.
Pin 11 is connected through a 100K resister R15 to the 5 volt DC power signal 62.
Pin 14 is connected through a 10K resister R19 to ground.
Pin 20 is connected to the lamp out signal 66 (see (
Pin 21 is connected to the heater out signal 68 (see (
Pin 23 is connected to the sensor data signal 64 from the sensor data processor 54.
Pin 25 is connected to the current input signal 70 (see
Pin 27 is connected through a 1K resister R40 and a 10K resister R38 to the 5 volt DC power signal 62.
Pin 28 is connected through a 10K resister R13 to ground.
Pin 29 is connected through a 22K resister R16 to the 5 volt DC power signal 62.
Pin 30 is connected through a 22K resister R11 to the 5 volt DC power signal 62.
Pin 31 is connected to ground.
Pin 32 is connected to ground through in-parallel 1 μf capacitor C13 and 0.1 μf capacitor C12.
Pin 34 is connected to the 5 volt DC power signal 62 through in-series 560 ohm resister R17 and red LED D10 (current toward pin 34).
Pin 37 is connected to the 5 volt DC power signal 62 through in-series 560 ohm resister R12 and yellow LED D7 (current toward pin 37).
Pin 38 is connected to ground.
Pin 39 is connected to the 5 volt DC power signal 62.
Pin 43 is connected to the 5 volt DC power signal 62 through in-series 560 ohm resister R5 and red LED D9 (current toward pin 43).
Pin 44 is connected to an RC circuit.
A detailed diagram of the power controller 58 of the control circuit 50 is shown in
The triacs TR1 and TR2 are controlled through isolators U5 and U4 respectively which isolate the high power switched by the triacs from the low voltage control circuit. Preferably, the isolators U5 and U4 are optoisolators, for example, model MOC3022 optoisolators made by Fairchild Semiconductor in South Portland, Me.
The optoisolators U4 and U5 receive the heater and lamp control signals 66 and 68 through bias resistor transistors Q3 and Q4. An example of suitable bias resistor transistors Q3 and Q4 is a model MUN5211 made by On Semiconductor in Phoenix, Ariz.
A second transformer T2 is connected in series with the AC power output to the heater 28 and the lamp 22 and the resulting signal is processed by the power controller 58 to provide current sensing. The sensed current signal is provided from the transformer T2 to an operational amplifier U2 and a rectifier comprising a switching diode D12 (for example a model RLS4148 switching diode made by ROHM Co. in Piano, Tex.), a 4.7K resister R20, and a 10K resister R18. The operational amplifier U2 is preferably a general purpose operational amplifier, for example, a model LMV321 made by National Semiconductor in Santa Clara, Calif. Output of the rectifier (the diode D12) is filtered using the resister R20 and a 1 μf capacitor C14 to provide a filtered output 70. The filtered output 70 is connected to channel 5 (pin 25) of the Analog to Digital converter on the micro controller 57. Software uses the filtered signal 70 to determine the health of the heater and the Lamp circuit.
A detailed diagram of the power supply 52 of the control circuit 50 is shown in
A 5V linear voltage regulator U6 with a 1000 μf capacitor C17 used as an output filter capacitor and a 0.33 μf capacitor C3 as high frequency rejection capacitor to provide the 5 volt DC power signal 62. Diodes D4 and D5 produce a full waveform on the base of a first NPN general purpose transistor Q1, the collector of Q1 goes low at every 180 of the 60 Hz input cycle. A 10K resistor R4, 0.01 μf capacitor C6, 100K resister R6 and second NPN general purpose transistor Q2 form a narrow pulse generator which is synchronized with the 60 Hz AC line frequency. The narrow pulses are used by the microprocessor 57 to generate the appropriate phase delay pulses to fire the triac devices TR1 and TR2 (see
A diode D8 is connected to the 5 volt DC power signal 62 providing a Green LED used as power available indicator.
A detailed diagram of the sensor data processor 54 of the control circuit 50 is shown. The lamp 10 preferably includes a very accurate solid-state temperature sensor 42 embedded with the heater element in the Lava lamp, which sensor 42 is preferably a Resistive Thermal Device (RTD) sensor. Output of the sensor 42 is filtered through a first low pass filter F1 formed by a 4.7 K ohm resister R31 and a 0.33 μf capacitor C16. The low pass filter provides a very steep roll off to reduce noise in the system. An operational amplifier U1A is used as a multiply by two amplifier and very high impedance load for the filter. Output from the amplifier UA1 passes through a second filter F2 formed by a 10K ohm resister R30 and a 0.33 μf capacitor C11 to reduce or eliminate high frequency noise passed to the analog to digital converter inside the microprocessor 57.
Large lamps including the control circuit 40 also pose problems in blending the first liquid and in shipping. These issues are addressed in U.S. patent application Ser. No. 10/856,457, filed Jun. 1, 2004, for “LIQUID MOTION LAMP” filed by the applicant of the present invention and incorporated above by reference.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
The present application is a Divisional of U.S. patent application Ser. No. 11/605,779 filed on Nov. 28, 2006 which claimed the benefit of U.S. Provisional Application Ser. No. 60/814,267, filed Jun. 16, 2006, which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60814267 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11605779 | Nov 2006 | US |
Child | 12342000 | US |