This disclosure relates generally to the field of seismic surveying, e.g., marine geophysical surveying, and more specifically to systems and methods for improved performance of marine vibrators, and/or to enable seismic operations in areas where use of conventional air guns and vibrators with high-frequency noise may not be environmentally acceptable.
Seismic sources, including vibrators, are used in geophysical exploration on land and in water-covered areas of the earth. Signals generated by these sources travel downwardly into the subsurface and are reflected from reflecting interfaces in the subsurface. The reflected energy is detected by signal detectors, typically hydrophones or geophones, on or near the earth's surface or near the water surface in water-covered exploration areas.
Most of the acoustic sources presently used in marine seismic acquisition operations are of the impulsive type, in which as much energy as possible is generated during as short a time span as possible. Examples of such impulse sources include air guns and water guns. The frequency content of such sources is typically controllable only to a small degree, and different individual sources are selected and operated together in an array for the generation of different frequency ranges of seismic energy for different seismic surveying needs.
Vibratory acoustic sources, including hydraulically powered sources and sources employing piezoelectric or magnetostrictive material, have been used in marine operations. However, such sources have found only limited use. Although such sources can generate signals over various frequency bands, commonly referred to as “frequency sweeps,” the limited power that such sources known in the art have been able to generate has limited their use in marine operations.
It is well known that as sound waves travel through water and through subsurface geological structures, higher frequency sound waves are typically attenuated more rapidly than lower frequency sound waves, and consequently, lower frequency sound waves can be transmitted over longer distances through water and geological structures than higher frequency sound waves. There has for a long time been a need in the seismic sector of the oil and gas industry for powerful low frequency vibrator type marine seismic energy sources.
It is also important that the spectral content of the seismic energy generated by a vibrator be well known or characterized in order to be able to properly interpret the reflected seismic energy from the subsurface. Control methods used for operating high-powered land-based vibrators are not necessarily adaptable to use in controlling marine vibrators. There also exists a need for a control method for a marine vibrator to assure well characterized energy spectral content.
This specification includes references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
Various devices, units, circuits, or other components may be described or claimed as “configured to,” “usable to,” or “operable to” perform a task or tasks. In such contexts, “configured to,” “usable to,” and “operable to” are each used to connote structure by indicating that the devices/units/circuits/components include structure that performs the task or tasks during operation. As such, the device/unit/circuit/component can be said to be configured to, usable to, or usable to perform the task even when the specified device/unit/circuit/component is not currently operational (e.g., is not on or in operation). The devices/units/circuits/components used with the “configured to,” “usable to,” or “operable to” language may include electronic hardware—for example, circuits, memory storing program instructions executable to implement the operation, etc.—mechanical devices, or other types of structure. Reciting that a device/unit/circuit/component is “configured to,” “usable to,” or “operable to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112(f), for that device/unit/circuit/component.
In some embodiments, various items of information relating to seismic surveying may be embodied in a geophysical data product. A “geophysical data product” may be stored on a computer-readable, non-transitory medium and may embody geophysical data (such as raw streamer data, processed streamer data, two- or three-dimensional maps based on streamer data, etc.). Some non-limiting examples of computer-readable media may include hard drives, CDs, DVDs, print-outs, etc. In some embodiments, raw analog data from streamers may be stored as a geophysical data product. In other instances, the data may first be digitized and/or conditioned prior to being stored as the geophysical data product. In yet other instances, the data may be fully processed into a two- or three-dimensional map of the various geophysical structures before being stored in the geophysical data product. The geophysical data product may be produced offshore (e.g., by equipment on a vessel) or onshore (e.g., at a facility on land) either within the United States or in another country. If the geophysical data product is produced offshore or in another country, it may be imported onshore to a facility in the United States. Once onshore in the United States, geophysical analysis may be performed on the geophysical data product.
Marine Vibrator—A marine vibrator may be generally described as an electromechanical transducer usable to generate acoustic energy, e.g., seismic energy, into water. Some embodiments of marine vibrators may contain one or more of (among other things) a vibrator shell, actuators, a mechanical system connecting the actuators with the vibrator shell, and one or more local sensors associated with the vibrator. Some embodiments may utilize a piston plate to transmit vibrations into the water.
Actuator—An actuator may be generally described as a device usable to convert an electric input signal into a mechanical force and/or displacement, change in velocity, etc. The actuators may in some embodiments be implemented as voice-coils, piezoelectrics, magnetostrictive, impulsive (e.g., explosives, etc.), and/or hydraulic, among others. For example, in some embodiments, a so-called “flexural-disc projector” or a “bender” may be used as a vibratory source, where a bender may include a disc of elastic material, e.g., aluminum, and a piezoelectric ceramic (e.g., PZT) attached thereto.
Acoustic sensor—An acoustic sensor may be generally described as a sensor operable to measure pressure, particle velocity, acceleration, and/or displacement. For example, shell displacement may be measured with low-cost capacitive methods, and/or strain/stress which may be correlated with the far field pressure generated by the vibrator.
Local sensor at the vibrator or simply local sensor—These terms generally refer to acoustic sensors mounted inside, on, or near, i.e., proximate to, the vibrator. For example, a local sensor may be located at a distance that is small relative to the size of the vibrator.
Remote acoustic sensor—A remote acoustic sensor may be generally described as a sensor operable to measure the acoustic signal emitted from the vibrator at a distance that is large compared with the size of the transducer (or marine vibrator), also known as a far-field signal. A remote acoustic sensor may in some embodiments be placed in the acoustic far-field of the vibrator.
Note that the terms “remote” and “local” may have specific meanings (or thresholds) for different applications. For example, in some embodiments, local may refer to positions on, in, or within one diameter of the transducer (or marine vibrator). However, in some other embodiments, local may refer to positions on, in, or within several (e.g., 3, 4, or 5) diameters of the transducer (or marine vibrator). Conversely, remote may refer to positions that are not local, e.g., positions outside this range, e.g., more than one diameter of the transducer, or in some other embodiments, more than 3, 4, or 5 diameters, and so forth, as desired. Note that in various other embodiments, the threshold between local remote and remote positions may have other values, e.g., 2, 6, 10 diameters, and so forth, as desired. In other words, a particular application may establish a threshold value for the local/remote demarcation as appropriate. For purposes of this disclosure, it should be understood that the term “on” is defined such that a sensor that is “on” an apparatus may in some embodiments be inside that apparatus.
Iterative Learning Control (“ILC”) algorithm—An ILC algorithm may be generally described as a learning control algorithm usable to control repeated transmissions of acoustic signals by making adjustments following each iteration or series of iterations. Signals are measured during transmission and compared with reference signals. The error observed may be used to calculate correction signals to be used for the next transmission. The correction may be based on a model of the transducer.
Audio hand—Audio band may be generally described as the seismic frequency band for which a marine vibrator is designed to transmit most of its energy. The upper limit of the audio band may depend on the seismic application and may be below 300 Hz in some embodiments.
Control band—The control band may be generally described as the frequency range over which the ILC algorithm is operating. The control band may typically be an order of magnitude wider than the audio band.
Seismic signal—A seismic signal may be generally described as a signal with a certain duration transmitted by a marine vibrator at repeated occasions. The signal may be a pulse or part of a continuous signal. One or more seismic signals may be used during transmission.
Iteration—An iteration refers to a single pass through a repetitive process. In some embodiments, a typical iteration may include the processes of transmission of an acoustic, e.g., seismic, signal; recording of the transmitted signal; computation of a correction signal to be used for the next iteration; and updating a model.
According to the following description, embodiments of the present disclosure are presented.
During operation, certain equipment (not shown separately) in recording system 16 causes seismic energy sources 18 to actuate at selected times. When actuated, seismic energy sources 18 produce seismic energy 19 that emanates generally outwardly from seismic energy sources 18. Seismic energy 19 travels downwardly, through water 12, and passes, at least in part, through water bottom 20 into formations 21 and 23 below. Seismic energy 19 is at least partially reflected from one or more acoustic impedance boundaries 22 below water bottom 20 and travels upwardly, whereupon it may be detected by the sensors in each sensor array 24. The structure of formations 21 and 23, among other properties of the Earth's subsurface, can be inferred by the travel time of seismic energy 19 and by characteristics of the detected energy such as its amplitude and phase.
Analysis of Marine Vibrator Operation
The total impedance that will be experienced by a marine vibrator in some embodiments may be expressed as follows:
Zr=Rr+iXr (Eq. 1)
where Zr is total impedance, Rr is radiation impedance, and Xr is reactive impedance.
In an analysis of the energy transfer of a marine vibrator, the system may be approximated as a baffled piston. In the expression of the total impedance that will be experienced, the radiation impedance Rr of a baffled piston is:
Rr=πa2ρ0cR1(x), (Eq. 2)
and the reactive impedance is:
Xr=πa2ρ0cX1(x), (Eq. 3)
where
and where
where ρ0=density of water, ω=radial frequency, k=wave number, a=radius of piston, c=sound velocity, λ=wave length, and J1=Bessel function of the first order.
Using the Taylor series expansion on the above equations yields:
Note that for low frequencies, when x=2ka is much smaller than 1, the real and imaginary part of the total impedance expression may be approximated with the first term of the Taylor expansion. The expressions for low frequencies when the wave length is much larger than the radius of the piston becomes:
It follows that for low frequencies R will typically be a small number compared to X, which suggests a very low-efficiency signal generation. However, by introducing a resonance in the lower end of the frequency spectrum, low-frequency acoustic energy may be generated more efficiently. At resonance, the imaginary (reactive) part of the impedance is canceled, and the acoustic source is able to efficiently transmit acoustic energy into the water.
Use of Multiple Actuators in a Marine Vibrator
In one embodiment, a marine vibrator may be configured to generate or otherwise use at least two resonant frequencies within the seismic frequency range of interest, typically a range between 1 Hz and 200 Hz.
In
In constructing some specific implementations according to this disclosure, finite element analysis may be utilized as known to those of ordinary skill in the art. In any such analysis, the following principles of operation may be relevant. If a flextensional shell is approximated as a piston, then for low frequencies, the mass load, or the equivalent fluid mass acting on the shell is:
where M is mass load, ρ0 is density of water, and a is the equivalent radius for a piston which corresponds to the size of flextensional shell.
The flextensional shell has a spring constant Kshell in the direction of the moving electrical coils. The first resonance, fresonance, for the vibrator will be substantially determined by the following mass spring relationship
To achieve efficient energy transmission with the seismic frequency range of interest, it is important to achieve a second resonance frequency within the seismic frequency range of interest. In the absence of the inner mass spring, the second resonance frequency would occur when the flextensional shell has its second Eigen-mode. This resonance frequency, however, is normally much higher than the first resonance frequency, and accordingly, may be outside the seismic frequency range of interest. As is evident from the foregoing equation, the resonant frequency will be reduced if the mass load on the flextensional shell is increased. This mass load could be increased by adding mass to the flextensional shell, however, in order to add sufficient mass to achieve a second resonance frequency within the seismic frequency range of interest, the amount of mass that would need to be added to the shell may make such a system impractical for use in marine seismic operations.
In accordance with the present disclosure, a second spring, the inner spring (e.g., inner spring 135 of
The effect of such an added mass is equivalent to adding mass in the end of the driver where it is attached to the shell.
Use of the inner spring, with the added mass, may allow the second resonance of the system to be tuned so that the second resonance is within the seismic frequency range of interest, thereby improving the efficiency of the vibrator in the seismic band.
Where Kinner=spring constant of inner spring.
It is thus possible to tune the second resonance, but it is also possible to determine how big an influence this second resonance should have on the system. For example, if the inner spring is very weak compared to the flextensional shell, and a matching mass is added to the inner spring, the inner spring with its mass will function rather independently from the shell. The second resonance becomes
In the same way, the second resonance may be made very dominant by selecting a stiff inner spring with a matching mass, thus making the second resonance more dominant than the first.
Having explained a suitable example of a marine seismic vibrator, a control system according to this disclosure will now be explained. “Control system” as used in the present disclosure is intended to mean a system which uses measurements from sensors coupled to the vibrator structure or are otherwise associated with the vibrator structure, the output of which are used to adjust a filter or convolution operator such that the true output of the vibrator has a spectral content as close as practical to the desired spectral content, and that harmonic frequencies in the vibrator output are suitably suppressed.
Turning now to
Sensors measuring motion perpendicular to the shell surface, shown in
Additionally, at least one remote sensor (e.g., remote sensor 27 in
Under normal operation of the vibrator is may be difficult to measure signals in the far-field, since amplitudes may typically be low, and ambient noise may have a negative effect on the measurements and ILC. Accordingly, in some embodiments, it may be advantageous to use one or more local sensors for ILC control during normal operation to attempt to produce a desired output waveform in the far-field (e.g., a waveform as close as possible to a desired theoretical or reference signal). Based on knowledge of how the signal is affected as it travels from the vibrator to far-field, a desired near-field signal may be determined that corresponds to the desired far-field signal. This may allow the ILC to proceed without actually measuring the signal in the far-field repeatedly (e.g., it may be measured once or a few times initially).
Accordingly, it may be advantageous to determine the signal transfer function from near-field to far-field and vice versa. This can be done using, for example, a chirp or stepped sine wave, and measuring signals in both the near-field and the far-field at the same time. This step typically need not involve ILC. The aim of this step is to be able to calculate a desired reference signal for the acoustic output locally, in order to get the desired signal in the far-field. This may avoid further far-field measurements during the actual ILC process. The transfer function and inverse transfer function that have been determined may then be used in combination with ILC, using only sensor information from local sensors. According to one embodiment, the aim of the ILC is to control the output so that it matches a modified reference signal that takes into account the signal propagation into the far field, such that the desired output is obtained in the far-field.
The output of the sensors shown in
Turning now to
Operation of the ILC may be explained as follows: Iterative learning control (ILC) is a method of tracking control for systems that work in a repetitive manner. Some examples of systems that operate in a repetitive manner include robot arm manipulators, chemical batch processes, reliability testing rigs, and in this case marine vibrators. In each of these tasks, the system typically performs the same action over and over again with high precision.
By using information from previous repetitions, a suitable control action can found iteratively. The internal model principle yields conditions under which essentially perfect tracking can be achieved.
An inverted model L of the system's transfer function can be made of the vibrator system. The same initial driver signal, referred to as u, may be repeated a selected number of times. After each iteration of the ILC system, the input driver signal u to the ILC system may be updated. The ILC system uses a reference signal, designated r, to compare with the output y from the vibrator system. The difference between the vibrator system output y and the reference signal r, denoted by e, can then be filtered by the inverted model (using, for example, a causal and a non-causal filter) and added to the input of the ILC system (e.g., at summing amplifier 302). The ILC system is iterated, and if the ILC system's transfer function does not change faster than the update to the input driver signal the error e will decrease with respect to time.
The desired result of operating the ILC system is that the error tends toward zero over time, that is, ek(t)→0 when k→∞. For each iteration of the ILC system (k=k+1), uk+1(t)=uk(t)+L*ek(t). The vibrator output may be described by the expression yk(t)=G*uk(t). The iterative process of the ILC may be described by the following expressions:
Where * denotes the convolution operator, i represents the square root of (−1), and ω represents angular frequency. G and L represent, respectively, the system transfer function and the inverse system transfer function. G(iω) and L(iω) may typically not be known for all frequencies, because they are not measured at all frequencies. Therefore, a bandpass filter Q may be applied to filter out the unknown frequencies (i.e., those frequencies not measured by the sensors shown in
Set uk+1=Q1*(uk+Q2L*ek).
Then it is possible to obtain stable ILC operation if
Q1(iω)(1−Q2G(iω)L(iω))<1 is satisfied for all ω
For a converged ILC, uk+1=uk which gives u=Q1*(u+Q2L*e) from which may be obtained (1−Q1)*u=Q1Q2L*e. To calculate the stationary error e, the following may be used:
e=r−G*u=r−GQ1Q2L/(1−Q1)*e
which gives
e=(1−Q1)/(1−Q1+Q1Q2GL)*r
The state space error e is zero for any ω when Q1(iω)=1. The foregoing uses the assumption that the driver signal becomes time invariant after a selected number of iterations, that is, uk+1=uk To obtain a slowly varying adaptation and ultimate cessation of change of uk+1, the gain factor Q2 may be used. If the vibrator system is non-linear and if the change for each iteration is large, it could change the transfer function too quickly and the control system may not converge as suggested above. Non-convergence may also occur if the vibrator system changes the transfer function faster than the time for each iteration. During the testing of the foregoing ILC system, gain factors of Q1=1, Q2=0.3 were found to provide a good result. To handle the harmonics, the control system typically will have a bandwidth of 1,000 Hz even if the seismic signal generated by the vibrator system is typically 100 Hz or lower. It may be advantageous to measure the system transfer function to 1,000 Hz to be able to attenuate harmonics up to 1,000 Hz. If it is desired to attenuate harmonics up to 2,000 Hz, the control system bandwidth may be adjusted accordingly. Bandwidth may include, among other parameters, the frequency range of the sensors shown in
The foregoing procedure may in some cases be implemented in the frequency domain. It has been observed that certain frequencies can be absent in the output of one or more of the sensors shown in
An example implementation of the foregoing procedure in the frequency domain is shown schematically in
Expressed mathematically (where capital letters represent the frequency domain):
Uk+1(iω)=Q1(iω)(Uk(iω)+Q2L(iω)*(R(iω)−Y(iω)))
where L(iω) is an approximate matrix inverse to the matrix G(iω).
The stability criteria may be evaluated similarly as explained above with reference to the time-domain ILC system:
∥Q1(iω)(1−Q2G(iω)L(iω))∥<1
A particular advantage to using more than one sensor as input to the ILC is the low probability of having zero amplitude at any single frequency in the seismic frequency range of interest plus harmonics thereof. By substantially eliminating zero amplitude frequencies, implementation of the ILC in the frequency domain is improved by reducing instances of division by zero.
Using more than one sensor in combination with individually controllable actuators may provide the ability to control transducer output deflection at more than one location on the shell.
The two control signals may be collected in the vector
and the two sensor signals in the vector
The matrix L is a two-by-two matrix approximating an inverse of the matrix G. For Q1=I and a frequency-dependent gain Q2(iω), the update equation becomes Uk+1(iω)=Uk(iω)+Q2(iω) L(iω)*(R(iω)−Y(iω)).
The mechanical coupling between the two sides may be significant in some embodiments. An adjustment of the input signal to one actuator may change the output signal on both sides, particularly at higher frequencies. It is in most cases possible to determine two input signals that will generate the desired output signal on both sides. In general, in the frequency domain the system transfer function from the m sensor inputs to the n actuator outputs will be given by an m×n matrix at each frequency. For example, for two inputs and two outputs, the matrix will be a 2×2 matrix
for each frequency. Although it may be possible to have a system with m<n, it may be advantageous to have m≥n in order to allow sufficient control.
This transfer function matrix consists of complex numbers representing the phase and amplitude response for each combination of input and output. In this example, the diagonal elements L11, L22 in this matrix will respectively represent the transfer function from the left side actuator to the left side sensor, and the transfer function from the right side actuator input to the right side sensor. The other two elements L12 and L21 give the cross coupling between the left side actuator input, and the right side sensor and vice versa. For each frequency component, the two input signals can be determined if the transfer function matrix G(iω) is invertible. The 2×2 matrix G in this example can be inverted if the determinant is not equal to 0. This will for example typically be the case when the direct coupling is much stronger than the cross coupling or vice versa. The same approach can be extended to all frequencies controlled, and to other configurations with more than two sensors and two actuators. The number of available actuator inputs will determine the maximum number of output sensor locations that can be controlled independently. If mechanical cross coupling is low, two independent ILC controllers can be used as shown in
In both cases, the Q2(iω) is a scalar gain function in the range 0 to 1 increasing the robustness of the algorithm. A good choice has been found in some embodiments to be Q2=0.3.
A marine vibrator system operated using two or more sensors as input for an ILC system may provide more stable control over the spectral content and better rejection of harmonics than systems using only a single sensor to control the ILC.
In
As discussed above, ILC control in some embodiments uses a model of the transducer in order to compute the corrections to be applied iteratively to the input actuator signals. In one embodiment, initial values for this model may be generated by performing an initial transfer function measurement of the transducer prior to ILC control start. The transfer function typically depends on drive amplitude and the type of signals used for this measurement. Low-frequency, high-amplitude signals may be used to keep transducer parts moving while measuring low amplitude response at higher frequencies. The approach may reduce the effect of sticking and assure that the measured data represents an average transfer function suitable for all deflections expected during normal operation. The low-frequency, high-amplitude signal may have a lower frequency and a higher amplitude than the excitation signal that is being measured for the purpose of generating the initial model. According to one embodiment, the low-frequency, high-amplitude signal may be in the lower-frequency portion of the audio band (or below the audio band) and that have an amplitude in the same range as typical operational amplitudes.
The corrections signal required during normal operation are, at higher frequencies above the audio band, typically of low amplitude relative to the high power signals used to create the desired seismic signal in the audio band. The phase error in the transducer model used for ILC may be less than ±90 degrees for all frequencies used in the control band. In some embodiments, not all frequencies need be used e.g., certain frequencies may be skipped, and ILC may be performed on other frequencies. For all frequencies used for ILC, however, the phase error in the transducer model may be less than ±90 degrees. It has been found that the phase and amplitude measurements at higher frequencies (e.g., above the seismic audio band) are dependent on the signal transmitted in the seismic band.
Static friction is defined as the friction between two or more solid objects that are not moving relative to each other. Dynamic friction occurs when two objects are moving relative to each other and rub together. The static friction is often larger than the dynamic friction. The actuators according to this disclosure may perform a reciprocating motion when a single frequency is applied to the actuator. This means that the actuator velocity may be equal to zero two times during a period of the applied frequency. Each time this occurs, some sticking may occur, which can affect the transfer function measurement. Applying a low-frequency, high-amplitude signal simultaneously with the high frequency may reduce the number of stand-stills.
One embodiment of adding such a low-frequency, high-amplitude signal may be seen in
To illustrate the effects of phase offset,
Friction is typically not uniform over the deflection cycle of the transducer. It may be advantageous for the model to reflect the behavior of the transducer as its parts move in all used positions during a deflection. A high-amplitude, low-frequency signal can be used to assure that the high frequency transfer function measurements are recorded using all deflections used by the actuators during normal operation.
Mechanical play in hinges may have a non-linear influence and affect the transfer function. At high frequencies, typically small signal amplitudes will be required for the correction applied during ILC operation. Applying signals of similar amplitude during the initial transfer function measurements can lead to significant errors. If the mechanical play is equal to or greater than the excitation amplitude used during transfer function measurement, the sensor output signals will be close to zero, making the transfer function measurement unreliable.
A non-linearity in the marine vibrator may generate harmonics and/or intermodulation frequencies. The frequency contents of the signals used for the transfer function measurement may be chosen, however, no that harmonics and intermodulations do not coincide with the frequency to be measured.
One or more low-frequency, high-amplitude signals (e.g., with amplitudes as close as practically possible to the amplitude used during normal transmission) may be used to keep transducer parts moving through the full deflection cycle while measuring the low-amplitude response at higher frequencies. This approach may reduce the effect of sticking and assure that the measured data represents an average transfer function suitable for all deflections expected during normal operation.
The input signal u_tot(t) used for transfer function measurement can be chosen as
u_tot(t)=p(t)+u_0(t)
where p(t)=A_p sin(2πf_p t) is a high-amplitude, low-frequency signal, and
where u_0 (t)=a sin(2πf t+phi) is an excitation signal used to find the transfer function at frequency f. To make sure there is no interaction between the harmonics of signal p(t) and the signal u_0, it may be advantageous to ensure that there is no integer N such that N*f_p=f. This can be done by changing frequency f_p slightly, for instance finding an N such that
(N+0.5)f_p=f,
minimizing the deviation between the resulting f_p and some target frequency f_p,target.
The low-frequency signals may be applied to all actuators simultaneously, whereas the high-frequency signal may be applied only to one actuator at a time when the transfer functions are measured.
According to some embodiments, the accurate control of the far-field output from a marine vibrator is important for its usefulness in acquiring seismic data. For lower frequencies, the vibrator will generally be small compared with the wavelength. It has been shown above in Eqs. 1-10 that the marine vibrator will operate with reactive loading from the water. The impedance caused by the water surrounding the marine vibrator is generally frequency-dependent.
Within the near-field of a vibrator (e.g., where the effects of surfaces generally working partly out of phase may be important), a measurement at one (close) radial distance may not relate directly to measurements at greater distances in the same direction by the law of spherical spreading.
The pressure spectrum recorded with a near-field hydrophone may therefore not be the same as a spectrum recorded with a far-field hydrophone.
Turning now to
The acoustic amplitude and phase spectrum may therefore depend on where it is measured. The acoustic output from the vibrator may therefore be measured at a distance large compared with the size of the marine vibrator at remote sensor(s) 703. At the same time, the output is recorded with local sensor(s) 708 on, in, or near the vibrator. The transfer function G_ld(f) from local sensor(s) 708 to remote sensor(s) 703 is computed. The inverse transfer function L_dl(f) may be computed as 1/G_ld(f).
A predetermined output signal Y_far to be generated in the far-field in the direction “a” is multiplied with inverse transfer function L_dl(f) in order to obtain the desired output signal(s) Y_d_loc for local sensor(s) 708. The ILC algorithm may then iteratively adjust the marine vibrator actuator input signals until the output Y_loc of the local sensor(s) is equal to Y_d_loc.
Another advantage of some embodiments of this disclosure is the ability for the ILC to handle impulsive sources (e.g., air guns) in close proximity to the marine vibrator sources and sensors.
In areas where the marine vibrator is operating close to air guns and/or other impulsive sources, the ILC system may advantageously handle these other pulses. The marine vibrator will typically repeatedly transmit relatively long pulses with (for example) 30-100 seconds duration. Several types of waveforms may be used, for example a frequency sweep over the frequency band of the marine vibrator (a chirp). The same low-frequency vibrator waveform may typically be repeated more or less continuously.
Air guns, in contrast, typically transmit discrete pulses or shots, for example, every 10 seconds. The exact triggering of air gun shots may typically be determined based on the ship position (typically determined via GPS). For example, air gun shots are typically made at spatially evenly distributed positions. The marine vibrator transmission may therefore advantageously be de-synchronized from the air gun shooting, so that air gun pulses typically do not appear in the same location in time, with respect to the transmitted signal from the marine vibrator.
The marine vibrator ILC system in the presence of impulsive sources such as air guns may use the fact that the same signal (or set of signals) is generally repeated over and over again.
As described above, the control system may measure the actual output into the water and then calculate an adjustment to the next input signal for the actuator drivers, so that the next output signal will be closer to the desired output, as compared with the current output measured. In order for the iterative control system to work well, the vibrator output thus should be measured accurately.
Certain parts (in the time domain) of the measured output signal of the marine vibrator may contain interfering energy from air-gun pulses. These parts can be identified in several ways. Air gun trigging signals and known propagation delays can be used in some embodiments. It is also possible to detect these signals by looking at the error signal in the control system. The error signal will typically be large for time segments when the output sensors pick up unwanted signals from air gun pulses. This means that when a sudden increase is observed in the error signal at a specific time interval, it may be a likely indication of interfering signals from example air guns or some other impulsive source, rather than a sudden problem within the control of the vibrator.
The iterative control system can in some embodiments be set to apply corrections more slowly, and ignore parts of the signal where interference is present. For example, it does not need to correct all parts of the waveform in one iteration. It is thus possible to let the ILC system work on only the time segments where no interfering energy is present in the sensor signals.
The ILC may thus be able to control all parts of the output signal, given that it can accurately measure all parts of the signal, but it does not need to do this in each iteration, i.e. for every single transmission of the waveform. Accordingly, it may be advantageous to assure that interfering air gun pulses do not occur repeatedly at the same location (position in time), referenced to the beginning of the marine vibrator transmission. That is, the air gun pulses and the marine vibrator transmissions may be de-synchronized.
The marine vibrator system may therefore be de-synchronized from the air gun transmission system. This can be done in several ways. One embodiment starts sending the vibrator signal after a random delay (e.g., 0-10 seconds), after air guns are transmitting.
Another embodiment sets the vibrator pulse lengths so that they are not an even multiple of the time between air gun pulses. If, for example, air gun pulses are transmitted every 10 seconds, and the vibrator sends a 33 second pulse repeatedly, the air gun pulses may not occur at the same position in time in each recording of the output of the marine vibrator output signal. This may be sufficient to assure that the ILC algorithm can measure all parts of the output signal some of the time.
To detect the presence of air gun pulses (or other large intermittent disturbances) and to minimize the detrimental effect on the ILC algorithm, the following method can be used in one embodiment.
First, calculate the error signal e(t)=r(t)−y(t) as the difference between the wanted signal r(t) and measured signal y(t) over the measurement interval [0; T]. If several sensors are used e, r and y may be vector valued. The outlier detection signal d(t) is calculated as a convolution between a suitable window function w(t) and the absolute value of the error signal e(t), and normalized with the total error energy. For example, it may be expressed as follows:
If e is a vector-valued quantity, the momentaneous error energy may be used:
|e|=(Σek2)1/2
One possible choice of window function is a rectangular boxcar function, giving:
where a suitable value of Δ is related to the expected length of the disturbance (for example 100 milliseconds), and T is the total duration of the transmitted signal (for example 10 seconds). This “robustification” will change the error signal e(t) to a robustifed version er(t) as follows:
Here, dthreshold is a parameter determining what level of disturbance will be considered abnormal. The robustifed error signal er(t) is then replacing the error signal e(t) in the ILC algorithm.
If the update of control signal is done in the frequency domain it may thus take the form:
Uk+1(iω)=Q1(iω)(Uk(iω)+Q2L(iω)Er(iω)),
where Er(iω) is the FFT of the robustified time domain signal er(t).
Turning now to
At step 900, acoustic output is measured by at least two sensors of a marine vibrator. For example, the sensors may be at respective positions in or on the marine vibrator. The acoustic output measured by the sensors may be generated by the marine vibrator. Flow proceeds to step 902.
At step 902, actuating signals for the marine vibrator are iteratively changed based on the measured acoustic output and a specified reference signal. For example, the specified reference signal may be a desired output for the marine vibrator. Flow ends (or in some embodiments repeats) at step 902.
At step 910, first input signals are provided to a marine vibrator. The first input signals may include an excitation signal and a high-amplitude, low-frequency signal operable to decrease friction effects in the marine vibrator. Flow proceeds to step 912.
At step 912, the acoustic output of the marine vibrator is measured. For example, this measurement may be carried out via one or more sensors in or on the marine vibrator, and/or one or more sensors in a far-field region of the marine vibrator. Flow proceeds to step 914.
At step 914, initial values for a transfer function of the marine vibrator are generated based on the measured acoustic output from step 912. Flow ends at step 914.
At step 920, the acoustic output of a marine vibrator is measured. The measurement may be carried out via at least one sensor local to the marine vibrator and at least one sensor remote from the marine vibrator. For example, the local sensor may be located in, on, or near the marine vibrator. The remote sensor may be located in a far-field region of the marine vibrator. Flow proceeds to step 922.
At step 922, an actuating signal of the marine vibrator is adjusted based on the measurements of step 920 as well as a reference signal. The reference signal may be, for example, a desired output of the marine vibrator. Flow proceeds to step 924.
At step 924, the steps of measuring and adjusting (e.g., steps 920 and 922) are repeated until a threshold condition is met. For example, the repeating may adjust the actuating signal to produce a desired far-field output signal to within a specified tolerance. Flow ends at step 924.
At step 930, at least one sensor measures the acoustic output of a marine vibrator and signal pulses from at least one large intermittent disturbance. Flow proceeds to step 932.
At step 932, for a first one or more iterations, the actuating signal is left unchanged in response to an indication that the measured signal strength of the signal pulses from the at least one large intermittent disturbance exceeds a specified threshold. For example, the indication that the measured signal strength of the signal pulses from the at least one large intermittent disturbance may indicate that an air gun is currently firing. Flow proceeds to step 934.
At step 934, for a second one or more iterations, the actuating signal is changed based on a difference between a desired far-field output signal and the measurements. The actuating signal may be changed in response to the indication not exceeding the specified threshold. As shown, the changing may adjust the actuating signal to produce the desired far-field output signal to within a specified tolerance. Flow ends at step 934.
While this disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the claims as disclosed herein.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of this disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Various advantages of the present disclosure have been described herein, but embodiments may provide some, all, or none of such advantages, or may provide other advantages.
This application claims priority to U.S. Prov. App. No. 61/921,962, filed on Dec. 30, 2013, which is incorporated by reference herein in its entirety. This application is also related to U.S. Pat. No. 7,974,152, which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/079485 | 12/30/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/104210 | 7/16/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3258738 | Merchant | Jun 1966 | A |
3886493 | Farr | May 1975 | A |
4049077 | Mifsud | Sep 1977 | A |
4159463 | Silverman | Jun 1979 | A |
4420826 | Marshall, Jr. | Dec 1983 | A |
4633970 | Mifsud | Jan 1987 | A |
4706230 | Inoue | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4926392 | Handley | May 1990 | A |
4941202 | Upton | Jul 1990 | A |
4969129 | Currie | Nov 1990 | A |
5126979 | Rowe, Jr. | Jun 1992 | A |
5247486 | Regnault | Sep 1993 | A |
5329499 | Molund | Jul 1994 | A |
5375101 | Wolfe | Dec 1994 | A |
5457752 | Engdahl | Oct 1995 | A |
5546361 | Boucher | Aug 1996 | A |
5757726 | Tenghamn | May 1998 | A |
5757728 | Tenghamn | May 1998 | A |
5959939 | Tengham | Sep 1999 | A |
6035257 | Epperson | Mar 2000 | A |
6041888 | Tengham | Mar 2000 | A |
6076629 | Tengham | Jun 2000 | A |
6085862 | Tenghamn | Jul 2000 | A |
6418079 | Fleure | Jul 2002 | B1 |
6488117 | Owen | Dec 2002 | B1 |
6645944 | Re | Nov 2003 | B2 |
6704245 | Becquey | Mar 2004 | B2 |
6711097 | Engdahl | Mar 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6851511 | Tenghamn | Feb 2005 | B2 |
7167412 | Tenghamn | Jan 2007 | B2 |
7257049 | Laws | Aug 2007 | B1 |
7327633 | Bagaini | Feb 2008 | B2 |
7376045 | Falkenberg | May 2008 | B2 |
7515505 | Krohn | Apr 2009 | B2 |
7551518 | Tenghamn | Jun 2009 | B1 |
7620193 | Metheringham | Nov 2009 | B2 |
7974152 | Tenghamn | Jul 2011 | B2 |
8565041 | Ruet | Oct 2013 | B2 |
8619497 | Sallas | Dec 2013 | B1 |
8670292 | Engdahl | Mar 2014 | B2 |
8724428 | Sallas | May 2014 | B1 |
8830794 | Ruet | Sep 2014 | B2 |
9188691 | Sudow | Nov 2015 | B2 |
9244184 | Voldsbekk | Jan 2016 | B2 |
9250343 | Voldsbekk | Feb 2016 | B2 |
9321630 | Xu | Apr 2016 | B2 |
9322945 | Tenghamn | Apr 2016 | B2 |
9341725 | Tenghamn | May 2016 | B2 |
9360574 | Tenghamn | Jun 2016 | B2 |
9389327 | Kroling | Jul 2016 | B2 |
9423520 | Voldsbekk | Aug 2016 | B2 |
9494699 | Wei, III | Nov 2016 | B2 |
9506946 | Ocak | Nov 2016 | B2 |
9507037 | Tenghamn | Nov 2016 | B2 |
9508915 | Oscarsson | Nov 2016 | B2 |
9612347 | Kroling | Apr 2017 | B2 |
9618637 | Tenghamn | Apr 2017 | B2 |
9618641 | Teyssandier | Apr 2017 | B2 |
9645264 | Zrostlik | May 2017 | B2 |
9684088 | Voldsbekk | Jun 2017 | B2 |
9753168 | Voldsbekk | Sep 2017 | B2 |
9775336 | Boericke, II | Oct 2017 | B2 |
9864080 | Tenghamn | Jan 2018 | B2 |
9945968 | Ocak | Apr 2018 | B2 |
9995834 | Tenghamn | Jun 2018 | B2 |
20030221901 | Tenghamn | Dec 2003 | A1 |
20050259513 | Parkes | Nov 2005 | A1 |
20060018192 | Jeffryes et al. | Jan 2006 | A1 |
20090010103 | Sallas | Jan 2009 | A1 |
20090245019 | Falkenberg | Oct 2009 | A1 |
20090321175 | Tenghamn | Dec 2009 | A1 |
20100118646 | Tenghamn | May 2010 | A1 |
20100118647 | Tenghamn | May 2010 | A1 |
20100322028 | Tenghamn | Dec 2010 | A1 |
20110038225 | Tenghamn | Feb 2011 | A1 |
20110149683 | Lunde et al. | Jun 2011 | A1 |
20110317515 | Tenghamn | Dec 2011 | A1 |
20120087207 | Kostov et al. | Apr 2012 | A1 |
20130100778 | Ruet et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2267486 | Dec 2010 | EP |
2014028293 | Feb 2014 | WO |
Entry |
---|
Office Action in EP Appl. No. 14824857.8 dated Mar. 27, 2018, 8 pages. |
International Search Report and Written Opinion in Application No. PCT/EP2014/079487 dated Apr. 29, 2015, 15 pages. |
International Search Report and Written Opinion in Application No. PCT/EP2014/079486 dated Apr. 13, 2015, 12 pages. |
International Search Report and Written Opinion in Application No. PCT/EP2014/079485 dated Apr. 29, 2015, 17 pages. |
International Search Report and Written Opinion in Application No. PCT/EP2014/079484 dated Apr. 13, 2015, 11 pages. |
TechLink Article, PGS Electrical Marine Vibrator, a Publication of PGS Geophysical, vol. 5 No. 11, Nov. 2005, 4 pages. |
Bill Pramik, “New marine vibrator offers improved performance,” OE Digital, Oct. 1, 2013, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160327662 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
61921962 | Dec 2013 | US |