This disclosure is directed toward power machines. More particularly, this disclosure is directed to excavators and lift arm structures for excavators.
Power machines, for the purposes of this disclosure, include any type of machine that generates power to accomplish a particular task or a variety of tasks. One type of power machine is a work vehicle. Work vehicles are generally self-propelled vehicles that have a work device, such as a lift arm (although some work vehicles can have other work devices) that can be manipulated to perform a work function. Work vehicles include excavators, loaders, utility vehicles, tractors, and trenchers, to name a few examples.
Excavators are a known type of power machine that have an undercarriage and a house that selectively rotates on the undercarriage. A lift arm to which an implement can be attached is operably coupled to, and moveable under power with respect to, the house. Excavators are also typically self-propelled vehicles. Many power machines have variable displacement (often known as “two-speed”) drive motors with two different displacement settings: a first setting known as a low range and a second setting known as a high range. In the so-called low range, the drive motor has a relatively higher displacement (as compared to the high range). This higher displacement provides a relatively higher torque output from the drive motor, but a lower travel speed (hence the name, “low range”). Conversely, in the so-called high range, the drive motor has a lower displacement, thereby reducing the torque output, but allowing for a higher travel speed (hence the name, “high range”). Many of these types of two-speed drive motors are shifted between low and high range by introducing a hydraulic signal to a shifting element in the motor. Tracked excavators have endless tracks that rotate about track frames to propel the machine. These track frames are attached to an undercarriage of the excavator, with the hydraulic system included in the upper machine portion or house of the excavator. The upper machine portion of the excavator pivots with respect to the undercarriage about a vertical axis on a swivel joint or swivel, which allows for unlimited rotational movement of the upper machine portion in either direction relative to the undercarriage.
The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
Disclosed are power machines such as excavators with control inputs that are configurable to control various functions on the excavator. In some modes, selected control inputs are manipulable to control the position of a lift arm, bucket, and house position. In other modes, the same control inputs are used to control travel and an implement on an undercarriage.
In an exemplary embodiment, a power machine is provided comprising a frame (110; 210), an operator compartment (250) supported by the frame, a plurality of actuators (470; 472; 474; 476), a first operator input device (466) positioned in the operator compartment and configured to be manipulated by an operator and to responsively provide first input device control signals indicative of the operator's intention to control a first machine function, a second operator input device (468) positioned in the operator compartment and configured to be manipulated by the operator and to responsively provide second input device control signals indicative of the operator's intention to control a second machine function, a mode selection input (464) configured to be manipulated by the operator to select a mode of operation for controlling at least some of the plurality of actuators responsive to actuation of the first and second operator input devices, and a controller (462) coupled to the first and second operator input devices and the mode selection input. The controller is configured to determine a selected mode of operation based upon the mode selection input. The controller is also configured such that when the selected mode of operation is a first mode of operation a first sub-set of the plurality of actuators is controlled by the operator's manipulation of the first and second operator input devices, and such that when the selected mode of operation is a second mode of operation a second sub-set of the plurality of actuators, different than the first sub-set of the plurality of actuators, is controlled by the operator's manipulation of the first and second operator input devices.
In some exemplary embodiments, the first operator input device (466) is a first two-axis joystick and the second operator input device (468) is a second two-axis joystick. Further, in some exemplary embodiments, the power machine is an excavator which further includes tractive elements (140; 240) coupled to a lower frame portion (210) of the frame, an upper frame portion (211) configured to rotate with respect to the lower frame portion (210), a first lift arm structure (230) configured to be moved relative to the upper frame portion, the first lift arm structure including a boom portion (232) and an arm portion (234), the arm portion configured to have a first implement mounted thereto by an implement interface (170), and a second lift arm structure (330) configured to be moved relative to the lower frame portion, the second lift arm structure having a second implement (334) secured thereto.
In some exemplary embodiments, the plurality of actuators includes drive actuators (470) configured to control the tractive elements to control tractive effort of the power machine, a slew actuator (472) configured to control rotation of the upper frame portion relative to the lower frame portion, first lift arm and implement actuators (474, 233B, 233C, 233D) configured to control positioning of the first lift arm structure and the first implement, and a second lift arm actuator (476, 332) configured to control positioning of the second lift arm structure and the second implement.
In some exemplary embodiments, in the first mode of operation, the controller controls a first lift arm and implement actuator (474, 233C) responsive to movement of the first two-axis joystick (466) along a first axis to control positioning of the arm portion (234) of the first lift arm structure relative to the boom portion (232) of the first lift arm structure, and in the second mode of operation the controller controls the drive actuators (470) responsive to movement of the first two-axis joystick (466) along the first axis to control forward and backward travel of the power machine.
In some exemplary embodiments, in the first mode of operation, the controller controls the slew actuator (472) responsive to movement of the first two-axis joystick (466) along a second axis to control rotation of the upper frame portion relative to the lower frame portion, and in the second mode of operation the controller controls the drive actuators (470) responsive to movement of the first two-axis joystick (466) along the second axis to control left and right turning direction of the power machine.
In some exemplary embodiments, in the first mode of operation, the controller controls a second lift arm and implement actuator (474, 233B) responsive to movement of the second two-axis joystick (468) along a first axis to control positioning of the boom portion (232) of the first lift arm structure relative to the upper frame portion (211), and in the second mode of operation the controller controls the second lift arm actuator (476, 332) responsive to movement of the second two-axis joystick (468) along the first axis to control positioning of the second lift arm structure (330) and the second implement (334) relative to the lower frame portion (210).
In some exemplary embodiments, in the first mode of operation, the controller controls a third lift arm and implement actuator (474, 233D) responsive to movement of the second two-axis joystick (468) along a second axis to control positioning of the implement interface and the first implement relative to the arm portion (234) of the first lift arm structure, and in the second mode of operation the controller controls the slew actuator (472) responsive to movement of the second two-axis joystick (468) along the second axis to control rotation of the upper frame portion relative to the lower frame portion.
In another exemplary embodiment, a method is provided for selecting a mode of operation for user input devices on a power machine and controlling the power machine. The method includes receiving (502) a mode selection input from a mode selection input device (464), determining (504) a selected mode of operation, from at least two modes of operation, based upon the mode selection input, and configuring (506, 508) a controller to analyze inputs from first and second user input devices (466, 468) based upon the determined selected mode of operation and controlling machine functions, responsive to an operator's manipulation of the first and second user input devices, using the configured controller.
In some exemplary embodiments of the method, receiving (502) the mode selection input from the mode selection input device (464) comprises determining an absence of a signal from the mode selection input device, and wherein determining (504) the selected mode of operation comprises selecting a default mode of operation from the at least two modes of operation.
In some exemplary embodiments of the method, determining (504) the selected mode of operation further comprises determining whether a first mode of operation is selected, and if it is determined that the first mode of operation is selected then configuring the controller comprises configuring (506) the controller to analyze inputs based upon the first mode of operation.
In some exemplary embodiments of the method, if it is determined that the first mode of operation is not selected, then determining that a second mode of operation is selected and then configuring the controller comprises configuring (508) the controller to analyze inputs based upon the second mode of operation.
In some exemplary embodiments of the method, the at least two modes of operation include a trench mode of operation and a backfill mode of operation.
In some exemplary embodiments of the method, the first and second user input devices are first and second two-axis joysticks (466 and 468).
In some exemplary embodiments of the method, configuring a controller to analyze inputs from first and second user input devices based upon the determined selected mode of operation and controlling machine functions, responsive to an operator's manipulation of the first and second user input devices, using the configured controller further comprises configuring the controller such that when the selected mode of operation is a first mode of operation a first sub-set of a plurality of actuators is controlled by the operator's manipulation of the first and second operator input devices, and such that when the selected mode of operation is a second mode of operation a second sub-set of the plurality of actuators, different than the first sub-set of the plurality of actuators, is controlled by the operator's manipulation of the first and second operator input devices.
In another exemplary embodiment, a power machine is provided comprising a first operator input device (466) configured to be manipulated by an operator and to responsively provide first input device control signals indicative of the operator's intention to control a first machine function, a second operator input device (468) configured to be manipulated by the operator and to responsively provide second input device control signals indicative of the operator's intention to control a second machine function, a mode selection input (464) configured to be manipulated by the operator to select a mode of operation from at least two modes of operation, and a controller (462) coupled to the first and second operator input devices and the mode selection input. The controller is configured to determine a selected mode of operation based upon the mode selection input, and to analyze inputs from the first and second user input devices (466, 468) based upon the determined selected mode of operation to control machine functions, responsive to the operator's manipulation of the first and second user input devices.
In some exemplary embodiments, the power machine further comprises a plurality of actuators (470; 472; 474; 476). The controller's configuration to analyze inputs from the first and second user input devices (466, 468) based upon the determined selected mode of operation to control machine functions further comprises the controller being configured such that, when the selected mode of operation is a first mode of operation, a first sub-set of the plurality of actuators is controlled by the operator's manipulation of the first and second operator input devices, and such that when the selected mode of operation is a second mode of operation a second sub-set of the plurality of actuators, different than the first sub-set of the plurality of actuators, is controlled by the operator's manipulation of the first and second operator input devices.
In some exemplary embodiments, the first operator input device (466) is a first two-axis joystick and the second operator input device (468) is a second two-axis joystick. Further, in some embodiments, the power machine is an excavator further comprising a frame (110; 210), an operator compartment (250) supported by the frame, tractive elements (140; 240) coupled to a lower frame portion (210) of the frame, an upper frame portion (211) configured to rotate with respect to the lower frame portion (210), a first lift arm structure (230) configured to be moved relative to the upper frame portion, the first lift arm structure including a boom portion (232) and an arm portion (234), the arm portion configured to have a first implement mounted thereto by an implement interface (170), and a second lift arm structure (330) configured to be moved relative to the lower frame portion, the second lift arm structure having a second implement (334) secured thereto. Also in some exemplary embodiments, the plurality of actuators includes drive actuators (470) configured to control the tractive elements to control tractive effort of the power machine, a slew actuator (472) configured to control rotation of the upper frame portion relative to the lower frame portion, first lift arm and implement actuators (474, 233B, 233C, 233D) configured to control positioning of the first lift arm structure and the first implement, and a second lift arm actuator (476, 332) configured to control positioning of the second lift arm structure and the second implement.
This Summary and the Abstract are provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter.
The concepts disclosed in this discussion are described and illustrated with reference to exemplary embodiments. These concepts, however, are not limited in their application to the details of construction and the arrangement of components in the illustrative embodiments and are capable of being practiced or being carried out in various other ways. The terminology in this document is used for description and should not be regarded as limiting. Words such as “including,” “comprising,” and “having” and variations thereof as used herein are meant to encompass the items listed thereafter, equivalents thereof, as well as additional items.
Disclosed embodiments illustrate an excavator and a control system for an excavator that provide for a plurality of modes of operation. The control system includes a pair of two-axis operator inputs and a mode select input. In a first mode of operation, the pair of two-axis operator inputs are mapped to control one set of functions on the implement. In a second mode of operation, the pair of two-axis operator inputs are mapped to control a second set of functions on the implement.
These concepts can be practiced on various power machines, as will be described below. A representative power machine on which the embodiments can be practiced is illustrated in diagram form in
Referring now to
Certain work vehicles have work elements that can perform a dedicated task. For example, some work vehicles have a lift arm to which an implement such as a bucket is attached such as by a pinning arrangement. The work element, i.e., the lift arm can be manipulated to position the implement for performing the task. The implement, in some instances can be positioned relative to the work element, such as by rotating a bucket relative to a lift arm, to further position the implement. Under normal operation of such a work vehicle, the bucket is intended to be attached and under use. Such work vehicles may be able to accept other implements by disassembling the implement/work element combination and reassembling another implement in place of the original bucket. Other work vehicles, however, are intended to be used with a wide variety of implements and have an implement interface such as implement interface 170 shown in
On some power machines, implement interface 170 can include an implement carrier, which is a physical structure movably attached to a work element. The implement carrier has engagement features and locking features to accept and secure any of several implements to the work element. One characteristic of such an implement carrier is that once an implement is attached to it, it is fixed to the implement (i.e. not movable with respect to the implement) and when the implement carrier is moved with respect to the work element, the implement moves with the implement carrier. The term implement carrier is not merely a pivotal connection point, but rather a dedicated device specifically intended to accept and be secured to various different implements. The implement carrier itself is mountable to a work element 130 such as a lift arm or the frame 110. Implement interface 170 can also include one or more power sources for providing power to one or more work elements on an implement. Some power machines can have a plurality of work element with implement interfaces, each of which may, but need not, have an implement carrier for receiving implements. Some other power machines can have a work element with a plurality of implement interfaces so that a single work element can accept a plurality of implements simultaneously. Each of these implement interfaces can, but need not, have an implement carrier.
Frame 110 includes a physical structure that can support various other components that are attached thereto or positioned thereon. The frame 110 can include any number of individual components. Some power machines have frames that are rigid. That is, no part of the frame is movable with respect to another part of the frame. Other power machines have at least one portion that can move with respect to another portion of the frame. For example, excavators can have an upper frame portion that rotates about a swivel with respect to a lower frame portion. Other work vehicles have articulated frames such that one portion of the frame pivots with respect to another portion for accomplishing steering functions. In exemplary embodiments, at least a portion of the power source is located in the upper frame or machine portion that rotates relative to the lower frame portion or undercarriage. The power source provides power to components of the undercarriage portion through the swivel.
Frame 110 supports the power source 120, which can provide power to one or more work elements 130 including the one or more tractive elements 140, as well as, in some instances, providing power for use by an attached implement via implement interface 170. Power from the power source 120 can be provided directly to any of the work elements 130, tractive elements 140, and implement interfaces 170. Alternatively, power from the power source 120 can be provided to a control system 160, which in turn selectively provides power to the elements that capable of using it to perform a work function. Power sources for power machines typically include an engine such as an internal combustion engine and a power conversion system such as a mechanical transmission or a hydraulic system that can convert the output from an engine into a form of power that is usable by a work element. Other types of power sources can be incorporated into power machines, including electrical sources or a combination of power sources, known generally as hybrid power sources.
Power machine 100 includes an operator station 150, which provides a position from which an operator can control operation of the power machine. In some power machines, the operator station 150 is defined by an enclosed or partially enclosed cab. Some power machines on which the disclosed embodiments may be practiced may not have a cab or an operator compartment of the type described above. For example, a walk behind loader may not have a cab or an operator compartment, but rather an operating position that serves as an operator station from which the power machine is properly operated. More broadly, power machines other than work vehicles may have operator stations that are not necessarily similar to the operating positions and operator compartments referenced above. Further, some power machines such as power machine 100 and others, whether they have operator compartments or operator positions, may be capable of being operated remotely (i.e. from a remotely located operator station) instead of or in addition to an operator station adjacent or on the power machine. This can include applications where at least some of the operator-controlled functions of the power machine can be operated from an operating position associated with an implement that is coupled to the power machine. Alternatively, with some power machines, a remote-control device can be provided (i.e. remote from both of the power machine and any implement to which is it coupled) that can control at least some of the operator-controlled functions on the power machine.
An operator compartment 250 is defined in part by a cab 252, which is mounted on the frame 210. The cab 252 shown on excavator 200 is an enclosed structure, but other operator compartments need not be enclosed. For example, some excavators have a canopy that provides a roof but is not enclosed A control system, shown as block 260 is provided for controlling the various work elements. Control system 260 includes operator input devices, which interact with the power system 220 to selectively provide power signals to actuators to control work functions on the excavator 200. In some embodiments, the operator input devices include at least two two-axis operator input devices to which operator functions can be mapped.
Frame 210 includes an upper frame portion or house 211 that is pivotally mounted on a lower frame portion or undercarriage 212 via a swivel joint. The swivel joint includes a bearing, a ring gear, and a slew motor with a pinion gear (not pictured) that engages the ring gear to swivel the machine. The slew motor receives a power signal from the control system 260 to rotate the house 211 with respect to the undercarriage 212. House 211 is capable of unlimited rotation about a swivel axis 214 under power with respect to the undercarriage 212 in response to manipulation of an input device by an operator. Hydraulic conduits are fed through the swivel joint via a hydraulic swivel to provide pressurized hydraulic fluid to the tractive elements and one or more work elements such as lift arm 330 that are operably coupled to the undercarriage 212.
The first lift arm structure 230 is mounted to the house 211 via a swing mount 215. (Some excavators do not have a swing mount of the type described here.) The first lift arm structure 230 is a boom-arm lift arm of the type that is generally employed on excavators although certain features of this lift arm structure may be unique to the lift arm illustrated in
The first lift arm structure 230 includes a first portion 232, known generally as a boom, and a second portion 234, known as an arm or a dipper. The boom 232 is pivotally attached on a first end 232A to mount 215 at boom pivot mount 231B. A boom actuator 233B is attached to the mount 215 and the boom 232. Actuation of the boom actuator 233B causes the boom 232 to pivot about the boom pivot mount 231B, which effectively causes a second end 232B of the boom to be raised and lowered with respect to the house 211. A first end 234A of the arm 234 is pivotally attached to the second end 232B of the boom 232 at an arm mount pivot 231C. An arm actuator 233C is attached to the boom 232 and the arm 234. Actuation of the arm actuator 233C causes the arm to pivot about the arm mount pivot 231C. Each of the swing actuator 233A, the boom actuator 233B, and the arm actuator 233C can be independently controlled in response to control signals from operator input devices.
An exemplary implement interface 270 is provided at a second end 234B of the arm 234. The implement interface 270 includes an implement carrier 272 that can accept and securing a variety of different implements to the lift arm 230. Such implements have a machine interface that is configured to be engaged with the implement carrier 272. The implement carrier 272 is pivotally mounted to the second end 234B of the arm 234. An implement carrier actuator 233D is operably coupled to the arm 234 and a linkage assembly 276. The linkage assembly includes a first link 276A and a second link 276B. The first link 276A is pivotally mounted to the arm 234 and the implement carrier actuator 233D. The second link 276B is pivotally mounted to the implement carrier 272 and the first link 276A. The linkage assembly 276 is provided to allow the implement carrier 272 to pivot about the arm 234 when the implement carrier actuator 233D is actuated.
The implement interface 270 also includes an implement power source (not shown in
The lower frame 212 supports and has attached to it a pair of tractive elements 240, identified in
A second, or lower, lift arm 330 is pivotally attached to the lower frame 212. A lower lift arm actuator 332 is pivotally coupled to the lower frame 212 at a first end 332A and to the lower lift arm 330 at a second end 332B. The lower lift arm 330 is configured to carry a lower implement 334, which in one embodiment is a blade as is shown in
Upper frame portion 211 supports cab 252, which defines, at least in part, operator compartment or station 250. A seat 254 is provided within cab 252 in which an operator can be seated while operating the excavator. While sitting in the seat 254, an operator will have access to a plurality of operator input devices 256 that the operator can manipulate to control various work functions, such as manipulating the lift arm 230, the lower lift arm 330, the traction system 240, pivoting the house 211, the tractive elements 240, and so forth.
Excavator 200 provides a variety of different operator input devices 256 to control various functions. For example, hydraulic joysticks are provided to control the lift arm 230 and swiveling of the house 211 of the excavator. Foot pedals with attached levers are provided for controlling travel and lift arm swing. Electrical switches are located on the joysticks for controlling the providing of power to an implement attached to the implement carrier 272. Other types of operator inputs that can be used in excavator 200 and other excavators and power machines include, but are not limited to, switches, buttons, knobs, levers, variable sliders and the like. The specific control examples provided above are exemplary in nature and not intended to describe the input devices for all excavators and what they control.
Display devices are provided in the cab to give indications of information relatable to the operation of the power machines in a form that can be sensed by an operator, such as, for example audible and/or visual indications. Audible indications can be made in the form of buzzers, bells, and the like or via verbal communication. Visual indications can be made in the form of graphs, lights, icons, gauges, alphanumeric characters, and the like. Displays can provide dedicated indications, such as warning lights or gauges, or dynamic to provide programmable information, including programmable display devices such as monitors of various sizes and capabilities. Display devices can provide diagnostic information, troubleshooting information, instructional information, and various other types of information that assists an operator with operation of the power machine or an implement coupled to the power machine. Other information that may be useful for an operator can also be provided.
The description of power machine 100 and excavator 200 above is provided for illustrative purposes, to provide illustrative environments on which the embodiments discussed below can be practiced. While the embodiments discussed can be practiced on a power machine such as is generally described by the power machine 100 shown in the block diagram of
Control system 460 includes a controller 462, which can be any suitable electronic controller capable of receiving a plurality of input signals from various input devices and providing output signals for controlling actuation devices. The control system 460 also includes a mode input 464, which is manipulable by an operator to select a mode of operation for controlling functions on the machine via actuation devices. In one embodiment, the control system 460 is configured to operate in a first mode and in a second mode.
Controller 462 is also operably coupled to a plurality of actuators that are configured to control machine functions on the power machine 400. These actuators illustratively include one or more drive actuators 470 for controlling the tractive effort of the power machine. These drive actuators can be, for example, one or more drive pumps in a hydrostatic drive system or a plurality of valves in a hydraulic drive system. One or more house slew actuators 472 are coupled to the controller. The house slew actuators 472 can rotate a house with respect to an undercarriage. Lift arm and bucket actuators 474 control the positioning of the lift arm and implement. Blade control actuator 476 control the position of a lower implement on a house such as blade 334 shown in
In a backfilling cycle, an operator is primarily concerned with controlling travel and the lower implement. In the example shown in
Although not shown in the above, in some embodiments, either of the first and second modes may be a default mode such that at startup, the control system 460 defaults to that mode in the absence of any signal from the mode input 464. In other embodiments, the control system 460 may require an input from a mode input 464 before operating in any mode. In yet other embodiments, the mode input 464 may be a detented input, thereby always signaling one or the other mode at all times.
The embodiments discussed above provide important advantages. The joystick input devices are easily manipulable and are well suited to control various machine functions. By selecting between different control modes, the joysticks can be configured to perform specific tasks more easily. For example, by having a mode for controlling drive and an implement mounted to the undercarriage, the excavator can be operated in a mode that is more closely associated with a loader. The same machine can be, in a separate mode, operated more like an excavator.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the discussion.
This application claims the benefit of U.S. Provisional Application No. 62/580,162, which was filed on Nov. 1, 2017.
Number | Date | Country | |
---|---|---|---|
62580162 | Nov 2017 | US |