The invention disclosed relates to spool valves.
Spool valves are used for controlling the direction of flow of fluids in a variety of applications as varied as automobile power steering and ink jet printing. Spool valves comprise a plunger-like spool shaft that slides within a cylindrical barrel that has ports opening in the sides of the barrel. Blocking of the ports is provided by lands or full diameter sections on the spool shaft, separated by narrower sections that provide port interconnections through the cylindrical barrel. Seals are positioned between the ports and on the outer ends of the cylindrical barrel beyond the outermost ports. The sliding action of the spool shaft may be controlled by an electromechanical solenoid or by pneumatic or hydraulic pressure.
In pneumatic or hydraulic pressure control, a control fluid pressure signal is introduced into a control fluid chamber of the valve housing, which is separated from a second chamber by a flexible membrane. A pressure plate located in the second chamber abuts with the flexible membrane and is mechanically connected to one end of the spool shaft. A coil spring located in the second chamber maintains a spring force against the pressure plate directed against the flexible membrane. As the control fluid pressure signal is increased in the control fluid chamber, the flexible membrane expands into the second chamber, pressing on and moving the pressure plate farther into the second chamber, sliding the spool shaft toward an open position. Alternately, as the control fluid pressure signal is decreased in the control fluid chamber, the flexible membrane retracts from the second chamber, pulling on the pressure plate which, in turn, pulls on the mechanical connection to the spool shaft, sliding the spool shaft toward the closed position.
A problem with pneumatic or hydraulic pressure controlled spool valves is that as the flexible membrane is expanded and retracted by changes in the control fluid pressure signal, the pressure plate and its mechanical connection to the spool shaft may become tilted with respect to the axis of the cylindrical barrel. The tilted orientation of the pressure plate and its mechanical connection may cause the lands or full diameter sections on the spool shaft to abrade or stick to the internally facing surface of the cylindrical barrel, causing eventual leakage of the working fluid around the lands, thereby limiting the useful life of the spool valve.
What is needed is a design for pneumatic or hydraulic pressure controlled spool valves that minimizes the abrasion or sticking caused by the tilted orientation of the pressure plate and its mechanical connection.
In accordance with example embodiments of the invention, a pneumatic or hydraulic pressure controlled spool valve minimizes abrasion or sticking caused by a tilted orientation of a pressure plate forcing lands of a spool shaft to abrade or stick to internally facing surfaces of a cylindrical barrel supporting the spool shaft. A permanent magnet is mounted on the pressure plate in an interior chamber. A round head formed on an end of the spool shaft is composed of a ferromagnetic material and is configured to be magnetically attracted to the permanent magnet. In accordance with the invention, a magnetic attraction force vector produced on the round head of the spool shaft remains coaxial with the axis of the spool shaft, when the pressure plate and the magnet are tilted with respect to the axis of the spool shaft. The attraction force vector produced on the round head of the spool shaft remains coaxial with the axis of the spool shaft, when the pressure of the control fluid is reduced, to minimize abrasion or sticking in the barrel of the spool valve caused by a tilted orientation of the pressure plate. A force vector produced on the round head of the spool shaft when the pressure of the control fluid is increased, pushing the magnet against the round head of the spool shaft, remains coaxial with the axis of the spool shaft.
As the control fluid pressure signal 105 is increased in the control fluid chamber 122, the flexible membrane expands into the second chamber, pressing on and moving the pressure plate farther into the second chamber, sliding the spool shaft 125 to connect the port Y2 to the supply port S and to connect the port Y1 to the exhaust port. Working fluid from the supply system 104 flows through the interconnected supply port S and port Y2 to the port 108 of the double acting hydraulic actuator 106, pushing the piston 112 in the downward direction shown in the figure. Working fluid returned from the port 110 of the double acting hydraulic actuator 106, flows through the interconnected port Y1 and exhaust port supply of the spool valve 100.
The round head 132 formed on the end of the spool shaft 125 may be composed of a ferromagnetic material, such as an alloy of iron, cobalt or nickel. The permanent magnet 130 may be composed of an alloy of neodymium, iron and boron. The round head 132 is configured to be magnetically attracted to the permanent magnet 130. In accordance with the invention, a magnetic attraction force vector produced on the round head 132 of the spool shaft 125 remains coaxial with the axis of the spool shaft 125, when the pressure plate 128 and the magnet 130 are tilted with respect to the axis of the spool shaft 125. The attraction force vector produced on the round head 132 of the spool shaft 125 remains coaxial with the axis of the spool shaft 125, when the pressure of the control fluid 105 is reduced in the control fluid chamber 122, to minimize abrasion or sticking in the cylindrical barrel of the spool valve 100 caused by a tilted orientation of the pressure plate 128.
Moreover, a force vector produced on the round head 132 of the spool shaft 125 when the pressure of the control fluid 105 is increased in the control fluid chamber 122, pushing the surface of the magnet 130 against the surface of the round head 132 of the spool shaft 125, remains coaxial with the axis of the spool shaft 125, to minimize abrasion or sticking in the cylindrical barrel of the spool valve 100 caused by a tilted orientation of the pressure plate 128. The composition of the material for the magnet 130 and the composition for the material of the round head 132 may be chosen to maximize their hardness and resistance to abrasion or sticking due to their contacting surfaces when the pressure of the control fluid 105 is increased in the control fluid chamber 122. The round head 132 may be contoured to have a hemispherical surface, to minimize any component of force transverse to the axis of the spool shaft 125 when the surface of the magnet 130 pushes against the surface of the round head 132 of the spool shaft 125.
The figure shows a coil spring 140 located in the interior, second chamber 124, which maintains a spring force against the pressure plate 128 directed against the flexible membrane 126. The figure shows a bushing 142 positioned around the spool shaft 125 to support the spool shaft in the cylindrical barrel of the housing 102. The figure shows seals 144 positioned between the ports Y1, Y2, S, E1 and E2 between the bushing 142 and the cylindrical barrel of the housing 102.
Although specific example embodiments of the invention have been disclosed, persons of skill in the art will appreciate that changes may be made to the details described for the specific example embodiments, without departing from the spirit and the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2564569 | Goehring | Aug 1951 | A |
3203439 | Beckett | Aug 1965 | A |
3392742 | Diver | Jul 1968 | A |
3410159 | Zundel | Nov 1968 | A |
3625246 | Reaves | Dec 1971 | A |
3749128 | Sallberg et al. | Jul 1973 | A |
4325412 | Hayner | Apr 1982 | A |
4606317 | Jauch et al. | Aug 1986 | A |
4643228 | Spencer | Feb 1987 | A |
5252939 | Riefler et al. | Oct 1993 | A |
5507316 | Meyer | Apr 1996 | A |
6065451 | Lebrun | May 2000 | A |
6729283 | Simpson et al. | May 2004 | B2 |
7219875 | Dayton | May 2007 | B2 |
8047502 | Paffrath | Nov 2011 | B2 |
8991173 | Mavir et al. | Mar 2015 | B2 |
20190154164 | Mikota et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
812534 | May 1969 | CA |
3412746 | Oct 1985 | DE |
3236123 | Oct 2017 | EP |
WO 2014011896 | Jan 2014 | WO |
Entry |
---|
Extended European Search Report for European Application No. 201611985-1015 dated Jul. 21, 2020. |
Number | Date | Country | |
---|---|---|---|
20200292097 A1 | Sep 2020 | US |